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Deep Network Designer
Design, visualize, and train deep learning networks

Description
The Deep Network Designer app lets you build, visualize, edit, and train deep learning networks.
Using this app, you can:

• Build, import, edit, and combine networks.
• Load pretrained networks and edit them for transfer learning.
• View and edit layer properties and add new layers and connections.
• Analyze the network to ensure that the network architecture is defined correctly, and detect

problems before training.
• Import and visualize datastores and image data for training and validation.
• Apply augmentations to image classification training data and visualize the distribution of the

class labels.
• Train networks and monitor training with plots of accuracy, loss, and validation metrics.
• Generate MATLAB® code for building and training networks.
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Open the Deep Network Designer App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter deepNetworkDesigner.

Examples

Select Pretrained Image Classification Network

Examine a simple pretrained image classification network in Deep Network Designer.

Open the app and select a pretrained network. You can also load a pretrained network by selecting
the Designer tab and clicking New. If you need to download the network, then click Install to open
the Add-On Explorer.

Tip To get started, try choosing one of the faster networks, such as SqueezeNet or GoogLeNet. Once
you gain an understanding of which settings work well, try a more accurate network, such as
Inception-v3 or a ResNet, and see if that improves your results. For more information on selecting a
pretrained network, see “Pretrained Deep Neural Networks”.

In the Designer pane, visualize and explore the network. For a list of available pretrained networks
and how to compare them, see “Pretrained Deep Neural Networks”.
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For information on constructing networks using Deep Network Designer, see “Build Networks with
Deep Network Designer”.

Edit Pretrained Network for Transfer Learning

Prepare a network for transfer learning by editing it in Deep Network Designer.

Transfer learning is the process of taking a pretrained deep learning network and fine-tuning it to
learn a new task. You can quickly transfer learned features to a new task using a smaller number of
training images. Transfer learning is therefore often faster and easier than training a network from
scratch. To use a pretrained network for transfer learning, you must change the number of classes to
match your new data set.

Open Deep Network Designer with SqueezeNet.

deepNetworkDesigner(squeezenet)

To prepare the network for transfer learning, replace the last learnable layer and the final
classification layer. For SqueezeNet, the last learnable layer is a 2-D convolutional layer named
'conv10'.

• Drag a new convolution2dLayer onto the canvas. Set the FilterSize property to 1,1 and the
NumFilters property to the new number of classes.

• Change the learning rates so that learning is faster in the new layer than in the transferred layers
by increasing the WeightLearnRateFactor and BiasLearnRateFactor.
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• Delete the last convolution2dLayer and connect your new layer instead.

Tip For most pretrained networks (for example, GoogLeNet) the last learnable layer is the fully
connected layer. To prepare the network for transfer learning, replace the fully connected layer with
a new fully connected layer and set the OutputSize property to the new number of classes. For an
example, see “Get Started with Deep Network Designer”.

Next, delete the classification output layer. Then, drag a new classificationLayer onto the
canvas and connect it instead. The default settings for the output layer mean the network learns the
number of classes during training.

Check your network by clicking Analyze in the Designer tab. The network is ready for training if
Deep Learning Network Analyzer reports zero errors. For an example showing how to train a network
to classify new images, see “Transfer Learning with Deep Network Designer”.

Get Help on Layer Properties

For help understanding and editing layer properties, click the help icon next to the layer name.

On the Designer pane, select a layer to view and edit the properties. Click the help icon next to the
layer name for more information about the properties of the layer.

 Deep Network Designer

1-5



For more information about layer properties, see “List of Deep Learning Layers”.

Add Custom Layer to Network

Add layers from the workspace to a network in Deep Network Designer.

In Deep Network Designer, you can build a network by dragging built-in layers from the Layer
Library to the Designer pane and connecting them. You can also add custom layers from the
workspace to a network in the Designer pane. Suppose that you have a custom layer stored in the
variable myCustomLayer.

1 Click New in the Designer tab.
2 Pause on From Workspace and click Import.
3 Select myCustomLayer and click OK.
4 Click Add.

The app adds the custom layer to the top of the Designer pane. To see the new layer, zoom-in using a
mouse or click Zoom in.

Connect myCustomLayer to the network in the Designer pane. For an example showing how to use
a custom output layer to build a weighted classification network in Deep Network Designer, see
“Import Custom Layer into Deep Network Designer”.

You can also combine networks in Deep Network Designer. For example, you can create a semantic
segmentation network by combining a pretrained network with a decoder subnetwork.

Import Data for Training

Import data into Deep Network Designer for training.
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You can use the Data tab of Deep Network Designer to import training and validation data. Deep
Network Designer supports the import of image data and datastore objects. Select an import method
based on the type of task.

Task Data Type Data Import Method Example Visualization
Image
classifica
tion

ImageDatastor
e object, or a
folder with
subfolders
containing
images for each
class. The class
labels are
sourced from the
subfolder names.

Select Import Data >
Import Image Data.

You can select augmentation
options and specify the
validation data in the Import
Image Data dialog box. For
more information, see “Import
Data into Deep Network
Designer”.
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Task Data Type Data Import Method Example Visualization
Other
extended
workflow
s (such
as
numeric
feature
input,
out-of-
memory
data,
image
processi
ng, and
audio
and
speech
processi
ng)

Datastore.

For other
extended
workflows, use a
suitable
datastore object.
For example,
AugmentedImag
eDatastore,
CombinedDatas
tore,
pixelLabelIma
geDatastore,
or custom
datastore.

You can import
and train any
datastore object
that works with
the
trainNetwork
function. For
more information
about
constructing and
using datastore
objects for deep
learning
applications, see
“Datastores for
Deep Learning”.

Select Import Data >
Import Datastore.

You can specify the validation
data in the Import Datastore
dialog box. For more
information, see “Import Data
into Deep Network Designer”.

To train a network on data you import into Deep Network Designer, on the Training tab, click Train.
If you require greater control over the training, click Training Options to select the training
settings. For more information about selecting training options, see trainingOptions. For an
example showing how to train an image classification network, see “Transfer Learning with Deep
Network Designer”.

Export Network Architecture

Create and export the network architecture created in Deep Network Designer to the workspace.

• To export the network architecture with the initial weights, on the Designer tab, click Export.
Depending on the network architecture, Deep Network Designer exports the network as a
LayerGraph lgraph or as a Layer object layers.

• To export the network architecture with the trained weights, on the Training tab, click Export.
Deep Network Designer exports the trained network architecture as a DAGNetwork object
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trainedNetwork. Deep Network Designer also exports the results from training, such as training
and validation accuracy, as the structure array trainInfoStruct.

Generate MATLAB Code

To recreate a network that you construct and train in Deep Network Designer, generate MATLAB
code.

To recreate the network layers, on the Designer tab, select Export > Generate Code. Alternatively,
you can recreate your network, including any learnable parameters, by selecting Export > Generate
Code with Initial Parameters. After generating a script, you can perform the following tasks.

• To recreate the network layers created in the app, run the script.
• To train the network, run the script and then supply the layers to the trainNetwork function.
• Examine the code to learn how to create and connect layers programmatically.
• To modify the layers, edit the code. You can also run the script and import the network back into

the app for editing.

To recreate the network, data import, and training, on the Training tab, select Export > Generate
Code for Training. After generating a script, you can perform the following tasks.

• To recreate the network layers and the training performed in the app, run the script.
• Examine the code to learn how to import data programmatically, and construct and train a

network.
• Modify the code to try different network architectures and training options, and see how they
affect the results.

For more information, see “Generate MATLAB Code from Deep Network Designer”.

• “Transfer Learning with Deep Network Designer”
• “Build Networks with Deep Network Designer”
• “Import Data into Deep Network Designer”
• “Create Simple Sequence Classification Network Using Deep Network Designer”
• “Create Simple Semantic Segmentation Network in Deep Network Designer”
• “Image-to-Image Regression in Deep Network Designer”
• “Import Custom Layer into Deep Network Designer”
• “Generate MATLAB Code from Deep Network Designer”
• “List of Deep Learning Layers”

Programmatic Use
deepNetworkDesigner opens the Deep Network Designer app. If Deep Network Designer is already
open, deepNetworkDesigner brings focus to the app.

deepNetworkDesigner(net) opens the Deep Network Designer app and loads the specified
network into the app. The network can be a series network, DAG network, layer graph, or an array of
layers.

 Deep Network Designer
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For example, open Deep Network Designer with a pretrained SqueezeNet network.

net = squeezenet;
deepNetworkDesigner(net);

If Deep Network Designer is already open, deepNetworkDesigner(net) brings focus to the app
and prompts you to add to or replace any existing network.

Tips
To train multiple networks and compare the results, try Experiment Manager.

See Also
Functions
Experiment Manager | analyzeNetwork | trainNetwork | trainingOptions

Topics
“Transfer Learning with Deep Network Designer”
“Build Networks with Deep Network Designer”
“Import Data into Deep Network Designer”
“Create Simple Sequence Classification Network Using Deep Network Designer”
“Create Simple Semantic Segmentation Network in Deep Network Designer”
“Image-to-Image Regression in Deep Network Designer”
“Import Custom Layer into Deep Network Designer”
“Generate MATLAB Code from Deep Network Designer”
“List of Deep Learning Layers”

Introduced in R2018b
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Deep Network Quantizer
Quantize a deep neural network to 8-bit scaled integer data types

Description
Use the Deep Network Quantizer app to reduce the memory requirement of a deep neural network
by quantizing weights, biases, and activations of convolution layers to 8-bit scaled integer data types.
Using this app you can:

• Visualize the dynamic ranges of convolution layers in a deep neural network.
• Select individual network layers to quantize.
• Asses the performance of a quantized network.
• Generate GPU code to deploy the quantized network using GPU Coder.

Quantization of a neural network requires a GPU, the GPU Coder™ Interface for Deep Learning
Libraries support package, and the Deep Learning Toolbox Model Quantization Library support
package. Using a GPU requires a CUDA® enabled NVIDIA® GPU with compute capability 6.1, 6.3 or
higher.

 Deep Network Quantizer
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Open the Deep Network Quantizer App
• MATLAB command prompt: Enter deepNetworkQuantizer.

Examples

Quantize a Network

To explore the behavior of a neural network with quantized convolution layers, use the Deep
Network Quantizer app. This example quantizes the learnable parameters of the convolution layers
of the squeezenet neural network after retraining the network to classify new images according to
the “Train Deep Learning Network to Classify New Images” example.

Load the network to quantize into the base workspace.

net

net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data.

The app uses calibration data to exercise the network and collect the dynamic ranges of the weights
and biases in the convolution and fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network. For the best quantization results, the calibration data must be
representative of inputs to the network.

The app uses the validation data to test the network after quantization to understand the effects of
the limited range and precision of the quantized learnable parameters of the convolution layers in the
network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

At the MATLAB command prompt, open the app.

deepNetworkQuantizer

In the app, click the New button. The app verifies your execution environment. To use the Deep
Network Quantizer app, you must have a GPU execution environment. If there is no GPU available,
this step produces an error.
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In the dialog, select the network to quantize from the base workspace.

After selecting the network, the app displays the layer graph of the network.

In the Calibrate section of the toolstrip, under Calibration Data, select the
augmentedImageDatastore object from the base workspace containing the calibration data,
calData.

Click Calibrate.

The Deep Network Quantizer uses the calibration data to exercise the network and collect range
information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network and their minimum and maximum values during the calibration. To the right of
the table, the app displays histograms of the dynamic ranges of the parameters. The gray regions of
the histograms indicate data that cannot be represented by the quantized representation. For more
information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.
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In the Quantize column of the table, indicate whether to quantize the learnable parameters in the
layer. Layers that are not convolution layers cannot be quantized, and therefore cannot be selected.
Layers that are not quantized remain in single-precision after quantization.

In the Validate section of the toolstrip, under Validation Data, select the
augmentedImageDatastore object from the base workspace containing the validation data,
valData.

Click Quantize and Validate.

The Deep Network Quantizer quantizes the weights, activations, and biases of convolution layers in
the network to scaled 8-bit integer data types and uses the validation data to exercise the network.
The app determines a metric function to use for the validation based on the type of network that is
being quantized.

Type of Network Metric Function
Classification Top-1 Accuracy – Accuracy of the network
Regression MSE – Mean squared error of the network

When the validation is complete, the app displays the results of the validation, including:

• Metric function used for validation
• Result of the metric function before and after quantization
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• Memory requirement of the network before and after quantization (MB)

After quantizing and validating the network, you can choose to export the quantized network.

Click the Export button. In the drop down, select Export Quantizer to create a dlquantizer
object in the base workspace. To open the GPU Coder app and generate GPU code from the
quantized neural network, select Generate Code. Generating GPU code requires a GPU Coder
license.

If the performance of the quantized network is not satisfactory, you can choose to not quantize some
layers by deselecting the layer in the table. To see the effects, click Quantize and Validate again.

• “Quantization of Deep Neural Networks”

See Also
Functions
calibrate | dlquantizationOptions | dlquantizer | validate

Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
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Experiment Manager
Design and run experiments to train and compare deep learning networks

Description
The Experiment Manager app enables you to create a deep learning experiment to train networks
under various initial conditions and compare the results. For example, you can use deep learning
experiments to:

• Sweep through a range of hyperparameter values or use Bayesian optimization to find optimal
training options. Bayesian optimization requires Statistics and Machine Learning Toolbox™.

• Compare the results of using different data sets to train a network.
• Test different deep network architectures by reusing the same set of training data on several

networks.

Experiment Manager provides visualization tools such as training plots and confusion matrices, filters
to refine your experiment results, and the ability to define custom metrics to evaluate your results. To
improve reproducibility, every time that you run an experiment, Experiment Manager stores a copy of
the experiment definition. You can access past experiment definitions to keep track of the
hyperparameter combinations that produce each of your results.

Experiment Manager organizes your experiments and results in a project.

• You can store several experiments in the same project.
• Each experiment contains a set of results for each time that you run the experiment.
• Each set of results consists of one or more trials corresponding to a different combination of

hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™,
you can configure your experiment to run multiple trials simultaneously. Running an experiment in
parallel allows you to use MATLAB while the training is in progress.

The Experiment Browser pane displays the hierarchy of experiments and results in the project. For
instance, this project has two experiments, each of which has several sets of results. To open the
configuration for an experiment and view its results, double-click the name of an experiment or a set
of results.
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Open the Experiment Manager App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter experimentManager.

 Experiment Manager
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Examples

Sweep Hyperparameters to Train a Classification Network

This example shows how to use the default experiment setup function to train an image classification
network by sweeping hyperparameters. For more examples of solving image classification problems
with Experiment Manager, see “Create a Deep Learning Experiment for Classification” and “Use
Experiment Manager to Train Networks in Parallel”. For more information on an alternative strategy
to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using Bayesian
Optimization”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experiment1).

Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager.

2. Click New > Project and select the location and name for a new project. Experiment Manager
opens a new experiment in the project. The Experiment pane displays the description,
hyperparameters, setup function, and metrics that define the experiment.

3. In the Description box, enter a description of the experiment:
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Classification of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with
0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.

5. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup
function specifies the training data, network architecture, and training options for the experiment. By
default, the template for the setup function has three sections.

• Load Image Data defines image datastores containing the training and validation data for the
experiment. The experiment uses the Digits data set, which consists of 10,000 28-by-28 pixel
grayscale images of digits from 0 to 9, categorized by the digit they represent. For more
information on this data set, see “Image Data Sets”.

• Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning classification.

• Specify Training Options defines a trainingOptions object for the experiment. By default,
the template loads the values for the training option 'InitialLearnRate' from the
myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time. For best results, before you run your experiment, start a parallel pool
with as many workers as GPUs. For more information, see “Use Experiment Manager to Train
Networks in Parallel”.

• To run one trial of the experiment at a time, in the Experiment Manager toolstrip, click Run.
• To run multiple trials at the same time, click Use Parallel and then Run. If there is no current

parallel pool, Experiment Manager starts one using the default cluster profile. Experiment
Manager then executes multiple simultaneous trials, depending on the number of parallel workers
available.

A table of results displays the accuracy and loss for each trial.

While the experiment is running, click Training Plot to display the training plot and track the
progress of each trial. You can also monitor the training progress in the MATLAB Command Window.
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Click Confusion Matrix to display the confusion matrix for the validation data in each completed
trial.

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. For more information, see “Sort and Filter Experiment Results” on page 1-25.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0  and “info” on
page 1-0 .

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Sweep Hyperparameters to Train Regression Network

This example shows how to configure an experiment to train an image regression network by
sweeping hyperparameters. For another example of solving a regression problem with Experiment
Manager, see “Create a Deep Learning Experiment for Regression”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experiment1).
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Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager.

2. Click New > Project and select the location and name for a new project. Experiment Manager
opens a new experiment in the project. The Experiment pane displays the description,
hyperparameters, setup function, and metrics that define the experiment.

3. In the Description box, enter a description of the experiment:

Regression to predict angles of rotation of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with
0.001:0.001:0.006. Verify that Strategy is set to Exhaustive Sweep.

5. Under Setup Function, click Edit. The setup function opens in MATLAB Editor.

• Modify the setup function signature to return four outputs. These outputs are used to call the
trainNetwork function to train a network for image regression problems.

function [XTrain,YTrain,layers,options] = Experiment1_setup1(params)

• Modify the Load Image Data section of the setup function to define the training and validation
data for the experiment as 4-D arrays. In this experiment, the training and validation data each
consist of 5000 images from the Digits data set. Each image shows a digit from 0 to 9, rotated by a
certain angle. The regression values correspond to the angles of rotation. For more information on
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this data set, see “Image Data Sets”. Be sure to delete all of the existing code in this section of the
setup function.

[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

• Modify the Define Network Architecture section of the setup function to define a convolutional
neural network for regression. Be sure to delete all of the existing code in this section of the setup
function.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    dropoutLayer(0.2)
    fullyConnectedLayer(1)
    regressionLayer];

• Modify the Specify Training Options section of the setup function to use the validation data in
the 4-D arrays XValidation and YValidation. This section of the setup function loads the
values for the training option 'InitialLearnRate' from the myInitialLearnRate entry in
the hyperparameter table.

options = trainingOptions('sgdm', ...
    'MaxEpochs',5, ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'InitialLearnRate',params.myInitialLearnRate);

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. Each trial
uses one of the learning rates specified in the hyperparameter table. By default, Experiment Manager
runs one trial at a time. If you have Parallel Computing Toolbox, you can run multiple trials at the
same time. For best results, before you run your experiment, start a parallel pool with as many
workers as GPUs. For more information, see “Use Experiment Manager to Train Networks in
Parallel”.

• To run one trial of the experiment at a time, in the Experiment Manager toolstrip, click Run.
• To run multiple trials at the same time, click Use Parallel and then Run. If there is no current

parallel pool, Experiment Manager starts one using the default cluster profile. Experiment
Manager then executes multiple simultaneous trials, depending on the number of parallel workers
available.

A table of results displays the root mean squared error (RMSE) and loss for each trial.
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While the experiment is running, click Training Plot to display the training plot and track the
progress of each trial. You can also monitor the training progress in the MATLAB Command Window.

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. For more information, see “Sort and Filter Experiment Results” on page 1-25.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager tab, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0  and “info” on
page 1-0 .

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Configure Deep Learning Experiment

This example shows how to set up an experiment using the Experiment Manager app.

Experiment definitions consist of a description, a table of hyperparameters, a setup function, and
(optionally) a collection of metric functions to evaluate the results of the experiment.

In the Description box, enter a description of the experiment.

Under Hyperparameters, select the strategy to use for your experiment.

• To sweep through a range of hyperparameter values, set Strategy to Exhaustive Sweep. In the
hyperparameter table, specify the values of the hyperparameters used in the experiment. You can
specify hyperparameter values as scalars or vectors with numeric, logical, or string values. For
example, these are valid hyperparameter specifications:

• 0.01
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• 0.01:0.01:0.05
• [0.01 0.02 0.04 0.08]
• ["sgdm" "rmsprop" "adam"]

When you run the experiment, Experiment Manager trains the network using every combination
of the hyperparameter values specified in the table.

• To use Bayesian optimization to find optimal training options, set Strategy to Bayesian
Optimization. In the hyperparameter table, specify these properties of the hyperparameters
used in the experiment:

• Range — Enter a two-element vector that gives the lower bound and upper bound of a real- or
integer-valued hyperparameter, or a string array or cell array that lists the possible values of a
categorical hyperparameter.

• Type — Select real (real-valued hyperparameter), integer (integer-valued hyperparameter),
or categorical (categorical hyperparameter).

• Transform — Select none (no transform) or log (logarithmic transform). For log, the
hyperparameter must be real or integer and positive. The hyperparameter is searched and
modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials. To specify the duration of your experiment, under
Bayesian Optimization Options, enter the maximum time (in seconds) and the maximum
number of trials to run. Bayesian optimization requires Statistics and Machine Learning Toolbox.
For more information, see “Tune Experiment Hyperparameters by Using Bayesian Optimization”.

The Setup Function configures the training data, network architecture, and training options for the
experiment. The input to the setup function is a struct with fields from the hyperparameter table.
The output of the setup function must match the input of the trainNetwork function. This table lists
the supported signatures for the setup function.

Goal of Experiment Setup Function Signature
Train a network for image classification problems
using the image datastore imds to store the input
image data.

function [imds,layers,options] = Experiment_setup(params)
...
end

Train a network using the datastore ds. function [ds,layers,options] = Experiment_setup(params)
...
end

Train a network for image classification and
regression problems using the numeric arrays X
to store the predictor variables and Y to store the
categorical labels or numeric responses.

function [X,Y,layers,options] = Experiment_setup(params)
...
end

Train a network for sequence classification and
regression problems using sequences to store
sequence or time-series predictors and Y to store
the responses.

function [sequences,Y,layers,options] = Experiment_setup(params)
...
end

Train a network for classification and regression
problems using the table tbl to store numeric
data or file paths to the data.

function [tbl,layers,options] = Experiment_setup(params)
...
end
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Goal of Experiment Setup Function Signature
Train a network for classification and regression
problems using responseNames to specify the
response variables in tbl.

function [tbl,responseNames,layers,options] = Experiment_setup(params)
...
end

Note Experiment Manager does not support parallel execution when you set the training option
“'ExecutionEnvironment'” on page 1-0  to 'multi-gpu' or 'parallel' or enable the
training option “'DispatchInBackground'” on page 1-0 . For more information, see “Use
Experiment Manager to Train Networks in Parallel”.

The Metrics section specifies functions to evaluate the results of the experiment. The input to a
metric function is a struct with three fields:

• trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function. For more information, see Trained Network on page 1-0 .

• trainingInfo is a struct containing the training information returned by the trainNetwork
function. For more information, see Training Information on page 1-0 .

• parameters is a struct with fields from the hyperparameter table.

The output of a metric function must be a scalar number, a logical value, or a string.

If your experiment uses Bayesian optimization, select a metric to optimize from the Optimize list. In
the Direction list, specify that you want to Maximize or Minimize this metric. Experiment Manager
uses this metric to determine the best combination of hyperparameters for your experiment. You can
choose a standard training or validation metric (such as accuracy, RMSE, or loss) or a custom metric
from the table.

Sort and Filter Experiment Results

This example shows how to compare the results of running an experiment.

When you run an experiment, Experiment Manager trains the network defined by the setup function
multiple times. Each trial uses a different combination of hyperparameters. When the experiment
finishes, a table displays training and validation metrics (such as accuracy, RMSE, and loss) for each
trial. To compare the results of an experiment, you can use the training and validation metrics to sort
the results table and filter trials.

To sort the trials in the results table, use the drop-down menu for the column corresponding to a
training or validation metric.

1 Point to the header of a column by which you want to sort.
2 Click the triangle icon.
3 Select Sort in Ascending Order or Sort in Descending Order.
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To filter trials from the results table, use the Filters pane.

1 On the Experiment Manager toolstrip, select Filters.

The Filters pane shows histograms for the numeric metrics in the results table. To remove a
histogram from the Filters pane, in the results table, open the drop-down menu for the
corresponding column and clear the Show Filter check box.

2 Adjust the sliders under the histogram for the training or validation metric by which you want to
filter.

The results table shows only the trials with a metric value in the selected range.

3 To restore all of the trials in the results table, close the Experiment Result pane and reopen the
results from the Experiment Browser pane.

View Source of Past Experiment Definitions

This example shows how to inspect the configuration of an experiment that produced a given result.

After you run an experiment, you can open the Experiment Source pane to see a read-only copy of
the experiment description and hyperparameter table, as well as links to the setup and metric
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functions called by the experiment. You can use the information in this pane to track the
configuration of data, network, and training options that produce each of your results.

For instance, suppose that you run an experiment multiple times. Each time that you run the
experiment, you change the contents of the setup function but always use the same name. The first
time that you run the experiment, you use the default classification network provided by the setup
function template. The second time that you run the experiment, you modify the setup function to
load a pretrained GoogLeNet network, replacing the final layers with new layers for transfer learning.
For an example that uses these two network architectures, see “Create a Deep Learning Experiment
for Classification”.

On the first Experiment Result pane, click the View Experiment Source link. Experiment Manager
opens an Experiment Source pane that contains the experiment definition that produced the first
set of results. Click the link at the bottom of the pane to open the setup function that you used the
first time you ran the experiment. You can copy this setup function to rerun the experiment using a
simple classification network.

On the second Experiment Result pane, click the View Experiment Source link. Experiment
Manager opens an Experiment Source pane that contains the experiment definition that produced
the second set of results. Click the link at the bottom of the pane to open the setup function that you
used the second time you ran the experiment. You can copy this setup function to rerun the
experiment using transfer learning.

Experiment Manager stores a copy of the setup and custom metric functions that you use, so you do
not have to manually rename these functions when you modify and rerun an experiment.

• “Create a Deep Learning Experiment for Classification”
• “Create a Deep Learning Experiment for Regression”
• “Use Experiment Manager to Train Networks in Parallel”
• “Evaluate Deep Learning Experiments by Using Metric Functions”
• “Tune Experiment Hyperparameters by Using Bayesian Optimization”
• “Try Multiple Pretrained Networks for Transfer Learning”
• “Experiment with Weight Initializers for Transfer Learning”

Tips
To visualize, build, and train a network without sweeping hyperparameters, try the Deep Network
Designer app.

See Also
Deep Network Designer | trainNetwork | trainingOptions

Topics
“Create a Deep Learning Experiment for Classification”
“Create a Deep Learning Experiment for Regression”
“Use Experiment Manager to Train Networks in Parallel”
“Evaluate Deep Learning Experiments by Using Metric Functions”
“Tune Experiment Hyperparameters by Using Bayesian Optimization”
“Try Multiple Pretrained Networks for Transfer Learning”
“Experiment with Weight Initializers for Transfer Learning”
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Introduced in R2020a

1 Deep Learning Functions

1-28



adamupdate
Update parameters using adaptive moment estimation (Adam)

Syntax
[dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,
averageSqGrad,iteration)
[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad,iteration)
[ ___ ] = adamupdate( ___ learnRate,gradDecay,sqGradDecay,epsilon)

Description
Update the network learnable parameters in a custom training loop using the adaptive moment
estimation (Adam) algorithm.

Note This function applies the Adam optimization algorithm to update network parameters in custom
training loops that use networks defined as dlnetwork objects or model functions. If you want to
train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsADAM object using the trainingOptions function.
• Use the TrainingOptionsADAM object with the trainNetwork function.

[dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,
averageSqGrad,iteration) updates the learnable parameters of the network dlnet using the
Adam algorithm. Use this syntax in a training loop to iteratively update a network defined as a
dlnetwork object.

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad,iteration) updates the learnable parameters in params using the Adam
algorithm. Use this syntax in a training loop to iteratively update the learnable parameters of a
network defined using functions.

[ ___ ] = adamupdate( ___ learnRate,gradDecay,sqGradDecay,epsilon) also specifies
values to use for the global learning rate, gradient decay, square gradient decay, and small constant
epsilon, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using adamupdate

Perform a single adaptive moment estimation update step with a global learning rate of 0.05,
gradient decay factor of 0.75, and squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.
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params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the iteration counter, average gradient, and average squared gradient for the first iteration.

iteration = 1;
averageGrad = [];
averageSqGrad = [];

Specify custom values for the global learning rate, gradient decay factor, and squared gradient decay
factor.

learnRate = 0.05;
gradDecay = 0.75;
sqGradDecay = 0.95;

Update the learnable parameters using adamupdate.

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);

Update the iteration counter.

iteration = iteration + 1;

Train Network Using adamupdate

Use adamupdate to train a network using the Adam algorithm.

Load Training Data

Load the digits training data.

[XTrain,YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the 'Mean' option in the image input
layer.

layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);
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Define Model Gradients Function

Create the helper function modelGradients, listed at the end of the example. The function takes a
dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and
returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU with compute capability 3.0 or higher.

executionEnvironment = "auto";

Visualize the training progress in a plot.

plots = "training-progress";

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the adamupdate function. At the end of each
epoch, display the training progress.

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Initialize the average gradients and squared average gradients.

averageGrad = [];
averageSqGrad = [];

Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(idx);
    
    for i = 1:numIterationsPerEpoch
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        iteration = iteration + 1;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);
        
        Y = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y(c,YTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to a dlarray.
        dlX = dlarray(single(X),'SSCB');
        
        % If training on a GPU, then convert data to a gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients helper function.
        [grad,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);
        
        % Update the network parameters using the Adam optimizer.
        [dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,averageSqGrad,iteration);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
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Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest, YTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format 'SSCB'. For GPU prediction, also convert
the data to a gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YPred==YTest)

accuracy = 0.9896
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Model Gradients Function

The modelGradients helper function takes a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect
to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient
function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)

    dlYPred = forward(dlnet,dlX);
    
    loss = crossentropy(dlYPred,Y);
    
    gradients = dlgradient(loss,dlnet.Learnables);
    
end

Input Arguments
dlnet — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.
dlnet.Learnables is a table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as dlnet.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell
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grad — Gradients of the loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to adamupdate.

Input Learnable Parameters Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables. grad
must have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageGrad — Moving average of parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of parameter gradients, specified as an empty array, a dlarray, a numeric array, a
cell array, a structure, or a table.

The exact form of averageGrad depends on the input network or learnable parameters. The
following table shows the required format for averageGrad for possible inputs to adamupdate.
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Input Learnable Parameters Average Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables.
averageGrad must have a
Value variable consisting of cell
arrays that contain the average
gradient of each learnable
parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. averageGrad must
have a Value variable
consisting of cell arrays that
contain the average gradient of
each learnable parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
learnable parameters iteratively, use the averageGrad output of a previous call to adamupdate as
the averageGrad input.

averageSqGrad — Moving average of squared parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric
array, a cell array, a structure, or a table.

The exact form of averageSqGrad depends on the input network or learnable parameters. The
following table shows the required format for averageSqGrad for possible inputs to adamupdate.
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Input Learnable parameters Average Squared Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables.
averageSqGrad must have a
Value variable consisting of cell
arrays that contain the average
squared gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables and ordering as
params. averageSqGrad must
have a Value variable
consisting of cell arrays that
contain the average squared
gradient of each learnable
parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
learnable parameters iteratively, use the averageSqGrad output of a previous call to adamupdate as
the averageSqGrad input.

iteration — Iteration number
positive integer

Iteration number, specified as a positive integer. For the first call to adamupdate, use a value of 1.
You must increment iteration by 1 for each subsequent call in a series of calls to adamupdate. The
Adam algorithm uses this value to correct for bias in the moving averages at the beginning of a set of
iterations.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the
global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.
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gradDecay — Gradient decay factor
0.9 (default) | positive scalar between 0 and 1

Gradient decay factor, specified as a positive scalar between 0 and 1. The default value of gradDecay
is 0.9.

sqGradDecay — Squared gradient decay factor
0.999 (default) | positive scalar between 0 and 1

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of
sqGradDecay is 0.999.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of
epsilon is 1e-8.

Output Arguments
dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

averageGrad — Updated moving average of parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of parameter gradients, returned as a dlarray, a numeric array, a cell
array, a structure, or a table.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a
cell array, a structure, or a table.

More About
Adam

The function uses the adaptive moment estimation (Adam) algorithm to update the learnable
parameters. For more information, see the definition of the Adam algorithm under “Stochastic
Gradient Descent” on page 1-992 on the trainingOptions reference page.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• grad
• averageGrad
• averageSqGrad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | dlnetwork | dlupdate | forward | rmspropupdate |
sgdmupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”

Introduced in R2019b
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activations
Compute deep learning network layer activations

Syntax
act = activations(net,imds,layer)
act = activations(net,ds,layer)

act = activations(net,X,layer)
act = activations(net,X1,...,XN)
act = activations(net,sequences,layer)

act = activations(net,tbl,layer)

act = activations( ___ ,Name,Value)

Description
You can compute deep learning network layer activations on either a CPU or GPU. Using a GPU
requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0
or higher. Specify the hardware requirements using the ExecutionEnvironment name-value pair
argument.

act = activations(net,imds,layer) returns network activations for a specific layer using the
trained network net and the image data in the image datastore imds.

act = activations(net,ds,layer) returns network activations using the data in the datastore
ds.

act = activations(net,X,layer) returns network activations using the image or feature data
in the numeric array X.

act = activations(net,X1,...,XN) returns network activations for the data in the numeric
arrays X1, …, XN for the mutli-input network net. The input Xi corresponds to the network input
net.InputNames(i).

act = activations(net,sequences,layer) returns network activations for a recurrent
network (for example, an LSTM or GRU network), where sequences contains sequence or time
series predictors.

act = activations(net,tbl,layer) returns network activations using the data in the table
tbl.

act = activations( ___ ,Name,Value) returns network activations with additional options
specified by one or more name-value pair arguments. For example, 'OutputAs','rows' specifies
the activation output format as 'rows'. Specify name-value pair arguments after all other input
arguments.

Examples
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Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural
network, and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some
sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

for i = 1:16
    I{i} = readimage(imdsTrain,idx(i));
end

figure
imshow(imtile(I))

 activations

1-41



Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network
support package is not installed, then the software provides a download link. AlexNet is trained on
more than a million images and can classify images into 1000 object categories. For example,
keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

net = alexnet;

Display the network architecture. The network has five convolutional layers and three fully connected
layers.
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net.Layers

ans = 
  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'relu3'    ReLU                          ReLU
    12   'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         crossentropyex with 'tench' and 999 other classes

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-
level features, constructed using the lower-level features of earlier layers. To get the feature
representations of the training and test images, use activations on the fully connected layer
'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = 'fc7';
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featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy = 1

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.
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Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

ds — Datastore
datastore

Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a
cell array. The format of the datastore output depends on the network architecture.

Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depend on the type of data.
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Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data
numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of
input:

Input Description
2-D images A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width,

and number of channels of the images, respectively, and N is the number of
images.

3-D images A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height,
width, depth, and number of channels of the images, respectively, and N is
the number of images.

Features A N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input
data.

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, …, XN, where N is the number
of network inputs and the input Xi corresponds to the network input net.InputNames(i).
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For image input, if the 'OutputAs' option is 'channels', then the images in the input data X can
be larger than the input size of the image input layer of the network. For other output formats, the
images in X must have the same size as the input size of the image input layer of the network.

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

tbl — Table of image or feature data
table

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

Input Predictors
Image data • Absolute or relative file path to an image,

specified as a character vector in a single
column

• Image specified as a 3-D numeric array

Specify predictors in a single column.
Feature data Numeric scalar.

Specify predictors in numFeatures columns of
the table, where numFeatures is the number of
features of the input data.

This argument supports networks with a single input only.
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Data Types: table

layer — Layer to extract activations from
numeric index | character vector

Layer to extract activations from, specified as a numeric index or a character vector.

To compute the activations of a SeriesNetwork object, specify the layer using its numeric index, or
as a character vector corresponding to the layer name.

To compute the activations of a DAGNetwork object, specify the layer as the character vector
corresponding to the layer name. If the layer has multiple outputs, specify the layer and output as the
layer name, followed by the character “/”, followed by the name of the layer output. That is, layer is
of the form 'layerName/outputName'.
Example: 3
Example: 'conv1'
Example: 'mpool/out'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: activations(net,X,layer,'OutputAs','rows')

OutputAs — Format of output activations
'channels' (default) | 'rows' | 'columns'

Format of output activations, specified as the comma-separated pair consisting of 'OutputAs' and
either 'channels', 'rows', or 'columns'. For descriptions of the different output formats, see
act.

For image input, if the 'OutputAs' option is 'channels', then the images in the input data X can
be larger than the input size of the image input layer of the network. For other output formats, the
images in X must have the same size as the input size of the image input layer of the network.
Example: 'OutputAs','rows'

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.
Example: 'MiniBatchSize',256

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.
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• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.
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• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with
compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler
installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the
support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup”
(GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder). Recurrent neural networks (RNNs) containing a sequenceInputLayer are not
supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler™ to deploy your network when using the 'mex' option.
Example: 'Acceleration','mex'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled

NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
act — Activations from the network layer
numeric array | cell array

Activations from the network layer, returned as a numeric array or a cell array of numeric arrays. The
format of act depends on the type of input data, the type of layer output, and the 'OutputAs'
option.
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Image or Folded Sequence Output

If the layer outputs image or folded sequence data, then act is a numeric array.

'OutputAs' act
'channels' For 2-D image output, act is an h-by-w-by-c-by-n array, where h, w, and c

are the height, width, and number of channels for the output of the chosen
layer, respectively, and n is the number of images. In this case,
act(:,:,:,i) contains the activations for the ith image.

For 3-D image output, act is an h-by-w-by-d-by-c-by-n array, where h, w, d,
and c are the height, width, depth, and number of channels for the output
of the chosen layer, respectively, and n is the number of images. In this
case, act(:,:,:,:,i) contains the activations for the ith image.

For folded 2-D image sequence output, act is an h-by-w-by-c-by-(n*s) array,
where h, w, and c are the height, width, and number of channels for the
output of the chosen layer, respectively, n is the number of sequences, and
s is the sequence length. In this case, act(:,:,:,(t-1)*n+k) contains
the activations for time step t of the kth sequence.

For folded 3-D image sequence output, act is an h-by-w-by-d-by-c-by-(n*s)
array, where h, w, d, and c are the height, width, depth, and number of
channels for the output of the chosen layer, respectively, n is the number of
sequences, and s is the sequence length. In this case, act(:,:,:,:,
(t-1)*n+k) contains the activations for time step t of the kth sequence.

'rows' For 2-D and 3-D image output, act is an n-by-m matrix, where n is the
number of images and m is the number of output elements from the layer.
In this case, act(i,:) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an (n*s)-by-m
matrix, where n is the number of sequences, s is the sequence length, and
m is the number of output elements from the layer. In this case,
act((t-1)*n+k,:) contains the activations for time step t of the kth
sequence.

'columns' For 2-D and 3-D image output, act is an m-by-n matrix, where m is the
number of output elements from the chosen layer, and n is the number of
images. In this case, act(:,i) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an m-by-(n*s)
matrix, where m is the number of output elements from the chosen layer, n
is the number of sequences, and s is the sequence length. In this case,
act(:,(t-1)*n+k) contains the activations for time step t of the kth
sequence.

Sequence Output

If layer has sequence output (for example, LSTM layers with output mode 'sequence'), then act
is a cell array. In this case, the 'OutputAs' option must be 'channels'.
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'OutputAs' act
'channels' For vector sequence output, act is a n-by-1 cell array, of c-by-s matrices,

where n is the number of sequences, c is the number of features in the
sequence, and s is the sequence length.

For 2-D image sequence output, act is a n-by-1 cell array, of h-by-w-by-c-
by-s matrices, where n is the number of sequences, h, w, and c are the
height, width, and the number of channels of the images, respectively, and
s is the sequence length.

For 3-D image sequence output, act is a n-by-1 cell array, of h-by-w-by-c-
by-d-by-s matrices, where n is the number of sequences, h, w, d, and c are
the height, width, depth, and the number of channels of the images,
respectively, and s is the sequence length.

In these cases, act{i} contains the activations of the ith sequence.

Single Time-Step Output

If layer outputs a single time-step of a sequence (for example, an LSTM layer with output mode
'last'), then act is a numeric array.

'OutputAs' act
'channels' For a single time-step containing vector data, act is a c-by-n matrix, where

n is the number of sequences and c is the number of features in the
sequence.

For a single time-step containing 2-D image data, act is a h-by-w-by-c-by-n
array, where n is the number of sequences, h, w, and c are the height,
width, and the number of channels of the images, respectively.

For a single time-step containing 3-D image data, act is a h-by-w-by-c-by-d-
by-n array, where n is the number of sequences, h, w, d, and c are the
height, width, depth, and the number of channels of the images,
respectively.

'rows' n-by-m matrix, where n is the number of observations, and m is the number
of output elements from the chosen layer. In this case, act(i,:) contains
the activations for the ith sequence.

'columns' m-by-n matrix, where m is the number of output elements from the chosen
layer, and n is the number of observations. In this case, act(:,i) contains
the activations for the ith image.

Algorithms
All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input X must not have a variable size. The size must be fixed at code generation time.
• The layer argument must be constant.
• Only the 'OutputAs' name-value pair argument is supported. The value must be 'channels'.

For more information about generating code for deep learning neural networks, see “Workflow for
Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• act = activations(net,X,layer)
• act = activations(net,sequences,layer)
• act = activations(__,Name,Value)

• The input X must not have variable size. The size of the input must be fixed at code generation
time.

• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences. The ARM® Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• The layer argument must be a constant during code generation.
• Only the 'OutputAs', 'MiniBatchSize', 'SequenceLength',

'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments
are supported for code generation. All name-value pairs must be compile-time constants.

• The format of the output activations must be 'channels'.
• Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is

supported for code generation.
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• GPU code generation for the activations function supports inputs that are defined as half-
precision floating point data types. For more information, see half.

See Also
classify | deepDreamImage | predict | trainNetwork

Topics
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”
“Deep Learning in MATLAB”

Introduced in R2016a
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additionLayer
Addition layer

Description
An addition layer adds inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers. All inputs to an
addition layer must have the same dimension.

Creation

Syntax
layer = additionLayer(numInputs)
layer = additionLayer(numInputs,'Name',Name)

Description

layer = additionLayer(numInputs) creates an addition layer that adds numInputs inputs
element-wise. This function also sets the NumInputs property.

layer = additionLayer(numInputs,'Name',Name) also sets the Name property. To create a
network containing an addition layer, you must specify a layer name.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1','in2',...,'inN', where N equals NumInputs. For example, if
NumInputs equals 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input
names when connecting or disconnecting the layer by using connectLayers or
disconnectLayers.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph,
you must specify a layer name.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')

add = 
  AdditionLayer with properties:

          Name: 'add_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs
from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names
and all names must be unique.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
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    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the
'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv'
and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To
check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9930

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
depthConcatenationLayer | layerGraph | trainNetwork
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Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
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addLayers
Add layers to layer graph

Syntax
newlgraph = addLayers(lgraph,larray)

Description
newlgraph = addLayers(lgraph,larray) adds the network layers in larray to the layer graph
lgraph. The new layer graph, newlgraph, contains the layers and connections of lgraph together
with the layers in larray, connected sequentially. The layer names in larray must be unique,
nonempty, and different from the names of the layers in lgraph.

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the
graph. addLayers connects the layers sequentially.

lgraph = layerGraph;

layers = [
    imageInputLayer([32 32 3],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments
newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also
assembleNetwork | connectLayers | disconnectLayers | layerGraph | plot | removeLayers
| replaceLayer
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Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
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addParameter
Add parameter to ONNXParameters object

Syntax
params = addParameter(params,name,value,type)
params = addParameter(params,name,value,type,NumDimensions)

Description
params = addParameter(params,name,value,type) adds the network parameter specified by
name, value, and type to the ONNXParameters object params. The returned params object
contains the model parameters of the input argument params together with the added parameter,
stacked sequentially. The added parameter name must be unique, nonempty, and different from the
parameter names in params.

params = addParameter(params,name,value,type,NumDimensions) adds the network
parameter specified by name, value, type, and NumDimensions to params.

Examples

Add Parameters to Imported ONNX Model Function

Import a network saved in the ONNX format as a function and modify the network parameters.

Create an ONNX model from the pretrained alexnet network. Then import alexnet.onnx as a
function. Import the pretrained ONNX network using importONNXFunction, which returns an
ONNXParamaters object that contains the network parameters. The function also creates a new
model function in the current folder that contains the network architecture. Specify the name of the
model function as alexnetFcn.

net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters
that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
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      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc7_Stride: [1×2 dlarray]
      fc7_DilationFactor: [1×2 dlarray]
             fc7_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]

The network has parameters that represent three fully connected layers. You can add a fully
connected layer in the original parameters params between layers fc7 and fc8. The new layer might
increase the classification accuracy.

Name the new layer fc9, because each added parameter name must be unique. The addParameter
function always adds a new parameter sequentially to the params.Learnables or
params.Nonlearnables structure. The order of the layers in the model function alexnetFcn
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determines the order in which the network layers are executed. The order or the names of the
parameters do not influence the execution order.

Add a new fully connected layer fc9 with the same parameters as fc7.

params = addParameter(params,'fc9_W',params.Learnables.fc7_W,'Learnable');
params = addParameter(params,'fc9_B',params.Learnables.fc7_B,'Learnable');
params = addParameter(params,'fc9_Stride',params.Nonlearnables.fc7_Stride,'Nonlearnable');
params = addParameter(params,'fc9_DilationFactor',params.Nonlearnables.fc7_DilationFactor,'Nonlearnable');
params = addParameter(params,'fc9_Padding',params.Nonlearnables.fc7_Padding,'Nonlearnable');

Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]
        fc9_W: [1×1×4096×4096 dlarray]
        fc9_B: [4096×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
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    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc7_Stride: [1×2 dlarray]
      fc7_DilationFactor: [1×2 dlarray]
             fc7_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]
              fc9_Stride: [1×2 dlarray]
      fc9_DilationFactor: [1×2 dlarray]
             fc9_Padding: [1×1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the
network for prediction with the new parameters or retrain the network. Open the model function by
using open alexnetFcn and add the fully connected layer fc9 between layers fc7 and fc8.

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX™ model.

name — Name of parameter
character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.
Example: 'conv2_W'
Example: 'conv2_Padding'

value — Value of parameter
numeric array | character vector | string scalar

Value of the parameter, specified as a numeric array, character vector, or string scalar. To duplicate
an existing network layer (stored in params), copy the parameter values of the network layer.
Example: params.Learnables.conv1_W
Example: params.Nonlearnables.conv1_Padding
Data Types: single | double | char | string

type — Type of parameter
'Learnable' | 'Nonlearnable' | 'State'

Type of parameter, specified as 'Learnable', 'Nonlearnable', or 'State'.
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• The value 'Learnable' specifies a parameter that is updated by the network during training (for
example, weights and bias of convolution).

• The value 'Nonlearnable' specifies a parameter that remains unchanged during network
training (for example, padding).

• The value 'State' specifies a parameter that contains information remembered by the network
between iterations and updated across multiple training batches.

Data Types: char | string

NumDimensions — Number of dimensions for every parameter
structure

Number of dimensions for every parameter, specified as a structure. NumDimensions includes
trailing singleton dimensions.
Example: params.NumDimensions.conv1_W
Example: 4

Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by addParameter.

See Also
ONNXParameters | importONNXFunction | removeParameter

Introduced in R2020b
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alexnet
AlexNet convolutional neural network

Syntax
net = alexnet
net = alexnet('Weights','imagenet')

layers = alexnet('Weights','none')

Description
AlexNet is a convolutional neural network that is 8 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 227-by-227. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the AlexNet network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with AlexNet.

For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.

net = alexnet returns an AlexNet network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for AlexNet Network support package. If this
support package is not installed, the function provides a download link. Alternatively, see Deep
Learning Toolbox Model for AlexNet Network.

For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

net = alexnet('Weights','imagenet') returns an AlexNet network trained on the ImageNet
data set. This syntax is equivalent to net = alexnet.

layers = alexnet('Weights','none') returns the untrained AlexNet network architecture.
The untrained model does not require the support package.

Examples

Download AlexNet Support Package

Download and install Deep Learning Toolbox Model for AlexNet Network support package.

Type alexnet at the command line.

alexnet

If Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
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support package, click the link, and then click Install. Check that the installation is successful by
typing alexnet at the command line.

alexnet

ans = 

  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

If the required support package is installed, then the function returns a SeriesNetwork object.

Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.

AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
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    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end

Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.
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net = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = net.Layers(1:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
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connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with
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compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,layers,options);

Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
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Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet model.

net = alexnet;

Read the image using imread.

I = imread('peppers.png');
figure
imshow(I)
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The pretrained model requires the image size to be the same as the input size of the network.
Determine the input size of the network using the InputSize property of the first layer of the
network.

sz = net.Layers(1).InputSize

sz = 1×3

   227   227     3

Resize the image to the input size of the network.

I = imresize(I,sz(1:2));
figure
imshow(I)
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Classify the image using classify.

label = classify(net,I)

label = categorical
     bell pepper 

Show the image and classification result together.

figure
imshow(I)
title(label)
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Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural
network, and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some
sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

for i = 1:16
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    I{i} = readimage(imdsTrain,idx(i));
end

figure
imshow(imtile(I))

Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network
support package is not installed, then the software provides a download link. AlexNet is trained on
more than a million images and can classify images into 1000 object categories. For example,
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keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

net = alexnet;

Display the network architecture. The network has five convolutional layers and three fully connected
layers.

net.Layers

ans = 
  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'relu3'    ReLU                          ReLU
    12   'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         crossentropyex with 'tench' and 999 other classes

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-
level features, constructed using the lower-level features of earlier layers. To get the feature
representations of the training and test images, use activations on the fully connected layer
'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
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network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = 'fc7';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy = 1

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Output Arguments
net — Pretrained AlexNet convolutional neural network
SeriesNetwork object

Pretrained AlexNet convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained AlexNet convolutional neural network architecture
Layer array

Untrained AlexNet convolutional neural network architecture, returned as a Layer array.

Tips
• For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = alexnet or by passing the
alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax alexnet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = alexnet or by passing
the alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax alexnet('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | densenet201 | googlenet | importCaffeNetwork |
importKerasNetwork | inceptionresnetv2 | resnet18 | resnet50 | squeezenet | vgg16 |
vgg19

Topics
“Deep Learning in MATLAB”
“Classify Webcam Images Using Deep Learning”
“Pretrained Deep Neural Networks”
“Train Deep Learning Network to Classify New Images”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
“Deep Learning Tips and Tricks”

Introduced in R2017a
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analyzeNetwork
Analyze deep learning network architecture

Syntax
analyzeNetwork(net)
analyzeNetwork(layers)
analyzeNetwork(lgraph)
analyzeNetwork(dlnet)
analyzeNetwork(lgraph,'TargetUsage',target)

Description
Use analyzeNetwork to visualize and understand the architecture of a network, check that you have
defined the architecture correctly, and detect problems before training. Problems that
analyzeNetwork detects include missing or unconnected layers, incorrectly sized layer inputs, an
incorrect number of layer inputs, and invalid graph structures.

analyzeNetwork(net) analyzes the SeriesNetwork or DAGNetwork object net. The function
displays an interactive visualization of the network architecture and provides detailed information
about the network layers. The layer information includes the sizes of layer activations and learnable
parameters, the total number of learnable parameters, and the sizes of state parameters of recurrent
layers.

analyzeNetwork(layers) analyzes the layer array layers and also detects errors and issues for
trainNetwork workflows.

analyzeNetwork(lgraph) analyzes the layer graph lgraph and also detects errors and issues for
trainNetwork workflows.

analyzeNetwork(dlnet) analyzes the dlnetwork object for custom training loop workflows.

analyzeNetwork(lgraph,'TargetUsage',target) analyzes the layer graph lgraph for the
specified target workflow. Use this syntax when analyzing a layer graph for dlnetwork workflows.

Examples

Analyze Trained Network

Load a pretrained GoogLeNet convolutional neural network.

net = googlenet

net = 
  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
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Analyze the network. analyzeNetwork displays an interactive plot of the network architecture and a
table containing information about the network layers.

Investigate the network architecture using the plot to the left. Select a layer in the plot. The selected
layer is highlighted in the plot and in the layer table.

In the table, view layer information such as layer properties, layer type, and sizes of the layer
activations and learnable parameters. The activations of a layer are the outputs of that layer.

Select a deeper layer in the network. Notice that activations in deeper layers are smaller in the
spatial dimensions (the first two dimensions) and larger in the channel dimension (the last
dimension). Using this structure enables convolutional neural networks to gradually increase the
number of extracted image features while decreasing the spatial resolution.

Show the total number of learnable parameters in each layer by clicking the arrow in the top-right
corner of the layer table and select Total Learnables. To sort the layer table by column value, hover
the mouse over the column heading and click the arrow that appears. For example, you can
determine which layer contains the most parameters by sorting the layers by the total number of
learnable parameters.

analyzeNetwork(net)
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Fix Errors in Network Architecture

Create a simple convolutional network with shortcut connections. Create the main branch of the
network as an array of layers and create a layer graph from the layer array. layerGraph connects all
the layers in layers sequentially.

layers = [
    imageInputLayer([32 32 3],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_2')
    reluLayer('Name','relu_2') 
    additionLayer(2,'Name','add1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_3')
    reluLayer('Name','relu_3') 
    additionLayer(3,'Name','add2')
    
    fullyConnectedLayer(10,'Name','fc')
    classificationLayer('Name','output')];

lgraph = layerGraph(layers);

Create the shortcut connections. One of the shortcut connections contains a single 1-by-1
convolutional layer skipConv.

skipConv = convolution2dLayer(1,16,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
lgraph = connectLayers(lgraph,'relu_1','add1/in2');
lgraph = connectLayers(lgraph,'add1','add2/in2');

Analyze the network architecture. analyzeNetwork finds four errors in the network.

analyzeNetwork(lgraph)

 analyzeNetwork

1-89



Investigate and fix the errors in the network. In this example, the following issues cause the errors:

• A softmax layer, which outputs class probabilities, must precede the classification layer. To fix the
error in the output classification layer, add a softmax layer before the classification layer.

• The skipConv layer is not connected to the rest of the network. It should be a part of the shortcut
connection between the add1 and add2 layers. To fix this error, connect add1 to skipConv and
skipConv to add2.

• The add2 layer is specified to have three inputs, but the layers only has two inputs. To fix the
error, specify the number of inputs as 2.

• All the inputs to an addition layer must have the same size, but the add1 layer has two inputs with
different sizes. Because the conv_2 layer has a 'Stride' value of 2, this layer downsamples the
activations by a factor of two in the first two dimensions (the spatial dimensions). To resize the
input from the relu2 layer so that it has the same size as the input from relu1, remove the
downsampling by setting the 'Stride' value of the conv_2 layer to 1.

Apply these modifications to the layer graph construction from the beginning of this example and
create a new layer graph.

layers = [
    imageInputLayer([32 32 3],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',1,'Name','conv_2')
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    reluLayer('Name','relu_2') 
    additionLayer(2,'Name','add1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_3')
    reluLayer('Name','relu_3') 
    additionLayer(2,'Name','add2')
    
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax');
    classificationLayer('Name','output')];

lgraph = layerGraph(layers);

skipConv = convolution2dLayer(1,16,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
lgraph = connectLayers(lgraph,'relu_1','add1/in2');
lgraph = connectLayers(lgraph,'add1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add2/in2');

Analyze the new architecture. The new network does not contain any errors and is ready to be
trained.

analyzeNetwork(lgraph)

 analyzeNetwork

1-91



Analyze Layer Graph for Custom Training Loop

Create a layer graph for a custom training loop. For custom training loop workflows, the layer graph
must not have an output layer.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','input')
    convolution2dLayer(5, 20,'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3, 20,'Padding', 1,'Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')];

lgraph = layerGraph(layers);

Analyze the layer graph using the analyzeNetwork function and set the 'TargetUsage' option to
'dlnetwork'.

analyzeNetwork(lgraph,'TargetUsage','dlnetwork')

Here, the function does not report any issues with the layer graph.
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Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

layers — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

target — Target workflow
'trainNetwork' (default) | 'dlnetwork'

Target workflow, specified as one of the following:

• 'trainNetwork' – Analyze layer graph for usage with the trainNetwork function. For example,
the function checks that the layer graph has an output layer and no disconnected layer outputs.

• 'dlnetwork' – Analyze layer graph for usage with dlnetwork objects. For example, the function
checks that the layer graph does not have any output layers.

See Also
DAGNetwork | Deep Network Designer | LayerGraph | SeriesNetwork | assembleNetwork |
plot | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning with Deep Network Designer”
“Build Networks with Deep Network Designer”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”
“Visualize Activations of a Convolutional Neural Network”
“Deep Learning in MATLAB”

Introduced in R2018a
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assembleNetwork
Assemble deep learning network from pretrained layers

Syntax
assembledNet = assembleNetwork(layers)

Description
assembleNetwork creates deep learning networks from layers without training.

Use assembleNetwork for the following tasks:

• Convert a layer array or layer graph to a network ready for prediction.
• Assemble networks from imported layers.
• Modify the weights of a trained network.

To train a network from scratch, use trainNetwork.

assembledNet = assembleNetwork(layers) assembles the layer array or layer graph layers
into a deep learning network ready to use for prediction.

Examples

Assemble Network from Pretrained Keras Layers

Import the layers from a pretrained Keras network, replace the unsupported layers with custom
layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox™. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers and display their Keras configurations.

placeholderLayers = findPlaceholderLayers(lgraph);
placeholderLayers.KerasConfiguration
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ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer by saving the file gaussianNoiseLayer.m in the current
folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras
layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Specify Class Names

The imported classification layer does not contain the classes, so you must specify these before
assembling the network. If you do not specify the classes, then the software automatically sets the
classes to 1, 2, ..., N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer_activation_1'. Set the classes to
0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);
cLayer.Classes = string(0:9);
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
layers — Network layers
Layer array | LayerGraph object
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Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input
argument. In this case, the returned network is a SeriesNetwork object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple
inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph
object and then use that layer graph as the input argument to assembleNetwork.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments
assembledNet — Assembled network
SeriesNetwork object | DAGNetwork object

Assembled network ready for prediction, returned as a SeriesNetwork object or a DAGNetwork
object. The returned network depends on the layers input argument:

• If layers is a Layer array, then assembledNet is a SeriesNetwork object.
• If layers is a LayerGraph object, then assembledNet is a DAGNetwork object.

See Also
findPlaceholderLayers | importKerasLayers | importKerasNetwork | replaceLayer |
trainNetwork

Topics
“Assemble Network from Pretrained Keras Layers”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Define Custom Deep Learning Layers”

Introduced in R2018b
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augment
Apply identical random transformations to multiple images

Syntax
augI = augment(augmenter,I)

Description
augI = augment(augmenter,I) augments image I using a random transformation from the set of
image preprocessing options defined by image data augmenter, augmenter. If I consists of multiple
images, then augment applies an identical transformation to all images.

Examples

Augment Image Data with Custom Rotation Range

Create an image augmenter that rotates images by a random angle. To use a custom range of valid
rotation angles, you can specify a function handle when you create the augmenter. This example
specifies a function called myrange (defined at the end of the example) that selects an angle from
within two disjoint intervals.

imageAugmenter = imageDataAugmenter('RandRotation',@myrange);

Read multiple images into the workspace, and display the images.

img1 = imread('peppers.png');
img2 = imread('corn.tif',2);
inImg = imtile({img1,img2});
imshow(inImg)
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Augment the images with identical augmentations. The randomly selected rotation angle is returned
in a temporary variable, angle.

outCellArray = augment(imageAugmenter,{img1,img2});

angle = 8.1158

View the augmented images.

outImg = imtile(outCellArray);
imshow(outImg);

Supporting Function

This example defines the myrange function that first randomly selects one of two intervals (-10, 10)
and (170, 190) with equal probability. Within the selected interval, the function returns a single
random number from a uniform distribution.

function angle = myrange()
    if randi([0 1],1)
        a = -10;
        b = 10;
    else
        a = 170;
        b = 190;
    end
    angle = a + (b-a).*rand(1)
end

Input Arguments
augmenter — Augmentation options
imageDataAugmenter object

Augmentation options, specified as an imageDataAugmenter object.
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I — Images to augment
numeric array | cell array of numeric and categorical images

Images to augment, specified as one of the following.

• Numeric array, representing a single grayscale or color image.
• Cell array of numeric and categorical images. Images can be different sizes and types.

Output Arguments
augI — Augmented images
numeric array | cell array of numeric and categorical images

Augmented images, returned as a numeric array or cell array of numeric and categorical images,
consistent with the format of the input images I.

Tips
• You can use the augment function to preview the transformations applied to sample images.
• To perform image augmentation during training, create an augmentedImageDatastore and

specify preprocessing options by using the 'DataAugmentation' name-value pair with an
imageDataAugmenter. The augmented image datastore automatically applies random
transformations to the training data.

See Also
augmentedImageDatastore | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”

Introduced in R2018b
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augmentedImageDatastore
Transform batches to augment image data

Description
An augmented image datastore transforms batches of training, validation, test, and prediction data,
with optional preprocessing such as resizing, rotation, and reflection. Resize images to make them
compatible with the input size of your deep learning network. Augment training image data with
randomized preprocessing operations to help prevent the network from overfitting and memorizing
the exact details of the training images.

To train a network using augmented images, supply the augmentedImageDatastore to
trainNetwork. For more information, see “Preprocess Images for Deep Learning”.

• When you use an augmented image datastore as a source of training images, the datastore
randomly perturbs the training data for each epoch, so that each epoch uses a slightly different
data set. The actual number of training images at each epoch does not change. The transformed
images are not stored in memory.

• An imageInputLayer normalizes images using the mean of the augmented images, not the mean
of the original data set. This mean is calculated once for the first augmented epoch. All other
epochs use the same mean, so that the average image does not change during training.

By default, an augmentedImageDatastore only resizes images to fit the output size. You can
configure options for additional image transformations using an imageDataAugmenter.

Creation
Syntax
auimds = augmentedImageDatastore(outputSize,imds)
auimds = augmentedImageDatastore(outputSize,X,Y)
auimds = augmentedImageDatastore(outputSize,X)
auimds = augmentedImageDatastore(outputSize,tbl)
auimds = augmentedImageDatastore(outputSize,tbl,responseNames)
auimds = augmentedImageDatastore( ___ ,Name,Value)

Description

auimds = augmentedImageDatastore(outputSize,imds) creates an augmented image
datastore for classification problems using images from image datastore imds, and sets the
OutputSize property.

auimds = augmentedImageDatastore(outputSize,X,Y) creates an augmented image
datastore for classification and regression problems. The array X contains the predictor variables and
the array Y contains the categorical labels or numeric responses.

auimds = augmentedImageDatastore(outputSize,X) creates an augmented image datastore
for predicting responses of image data in array X.
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auimds = augmentedImageDatastore(outputSize,tbl) creates an augmented image
datastore for classification and regression problems. The table, tbl, contains predictors and
responses.

auimds = augmentedImageDatastore(outputSize,tbl,responseNames) creates an
augmented image datastore for classification and regression problems. The table, tbl, contains
predictors and responses. The responseNames argument specifies the response variables in tbl.

auimds = augmentedImageDatastore( ___ ,Name,Value) creates an augmented image
datastore, using name-value pairs to set the ColorPreprocessing, DataAugmentation,
OutputSizeMode, and DispatchInBackground properties. You can specify multiple name-value
pairs. Enclose each property name in quotes.

For example,
augmentedImageDatastore([28,28],myTable,'OutputSizeMode','centercrop') creates
an augmented image datastore that crops images from the center.

Input Arguments

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.
Data Types: single | double | uint8 | int8 | uint16 | int16 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

• For a classification problem, Y is a categorical vector containing the image labels.
• For a regression problem, Y can be an:

• n-by-r numeric matrix. n is the number of observations and r is the number of responses.
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• h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number
of observations.

Responses must not contain NaNs.
Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

• For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageDatastore, the responses must be in the second column. If the responses are
in a different column of tbl, then you must specify the response variable name using the
responseNames argument.

• For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageDatastore accepts the remaining
columns of tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.
Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Properties
ColorPreprocessing — Preprocessing color operations
'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing color operations performed on input grayscale or RGB images, specified as 'none',
'gray2rgb', or 'rgb2gray'. When the image datastore contains a mixture of grayscale and RGB
images, use ColorPreprocessing to ensure that all output images have the number of channels
required by imageInputLayer.
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No color preprocessing operation is performed when an input image already has the required number
of color channels. For example, if you specify the value 'gray2rgb' and an input image already has
three channels, then no color preprocessing occurs.

Note The augmentedImageDatastore object converts RGB images to grayscale by using the
rgb2gray function. If an image has three channels that do not correspond to red, green, and blue
channels (such as an image in the L*a*b* color space), then using ColorPreprocessing can give
poor results.

No color preprocessing operation is performed when the input images do not have 1 or 3 channels,
such as for multispectral or hyperspectral images. In this case, all input images must have the same
number of channels.
Data Types: char | string

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'.
When DataAugmentation is 'none', no preprocessing is applied to input images.

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, or classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox.

Augmented image datastores only perform background dispatching when used with trainNetwork
and inference functions such as predict and classify. Background dispatching does not occur
when you call the read function of the datastore directly.

MiniBatchSize — Number of observations in each batch
128 | positive integer

Number of observations that are returned in each batch. You can change the value of
MiniBatchSize only after you create the datastore. For training, prediction, and classification, the
MiniBatchSize property is set to the mini-batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the augmented image datastore. The number of observations is the
length of one training epoch.

OutputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns.

Note If you create an augmentedImageDatastore by specifying the image output size as a three-
element vector, then the datastore ignores the third element. Instead, the datastore uses the value of
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ColorPreprocessing to determine the dimensionality of output images. For example, if you specify
OutputSize as [28 28 1] but set ColorPreprocessing as 'gray2rgb', then the output images
have size 28-by-28-by-3.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following.

• 'resize' — Scale the image using bilinear interpolation to fit the output size.

Note augmentedImageDatastore uses the bilinear interpolation method of imresize with
antialiasing. Bilinear interpolation enables fast image processing while avoiding distortions such
as caused by nearest-neighbor interpolation. In contrast, by default imresize uses bicubic
interpolation with antialiasing to produce a high-quality resized image at the cost of longer
processing time.

• 'centercrop' — Take a crop from the center of the training image. The crop has the same size
as the output size.

• 'randcrop' — Take a random crop from the training image. The random crop has the same size
as the output size.

Data Types: char | string

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
partitionByIndex Partition augmentedImageDatastore according to indices
preview Preview subset of data in datastore
read Read data from augmentedImageDatastore
readall Read all data in datastore
readByIndex Read data specified by index from augmentedImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in augmentedImageDatastore
subset Create subset of datastore or file-set
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;
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digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
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    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);
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Tips
• You can visualize many transformed images in the same figure by using the imtile function. For

example, this code displays one mini-batch of transformed images from an augmented image
datastore called auimds.

minibatch = read(auimds);
imshow(imtile(minibatch.input))

• By default, resizing is the only image preprocessing operation performed on images. Enable
additional preprocessing operations by using the DataAugmentation name-value pair argument
with an imageDataAugmenter object. Each time images are read from the augmented image
datastore, a different random combination of preprocessing operations are applied to each image.

See Also
imageDataAugmenter | imageInputLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”

Introduced in R2018a
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augmentedImageSource
(To be removed) Generate batches of augmented image data

Note augmentedImageSource will be removed in a future release. Create an augmented image
datastore using the augmentedImageDatastore function instead. For more information, see
“Compatibility Considerations”.

Syntax
auimds = augmentedImageSource(outputSize,imds)
auimds = augmentedImageSource(outputSize,X,Y)
auimds = augmentedImageSource(outputSize,tbl)
auimds = augmentedImageSource(outputSize,tbl,responseNames)
auimds = augmentedImageSource( ___ ,Name,Value)

Description
auimds = augmentedImageSource(outputSize,imds) creates an augmented image datastore,
auimds, for classification problems using images from image datastore imds, with output image size
outputSize.

auimds = augmentedImageSource(outputSize,X,Y) creates an augmented image datastore
for classification and regression problems. The array X contains the predictor variables and the array
Y contains the categorical labels or numeric responses.

auimds = augmentedImageSource(outputSize,tbl) creates an augmented image datastore
for classification and regression problems. The table, tbl, contains predictors and responses.

auimds = augmentedImageSource(outputSize,tbl,responseNames) creates an augmented
image datastore for classification and regression problems. The table, tbl, contains predictors and
responses. The responseNames argument specifies the response variable in tbl.

auimds = augmentedImageSource( ___ ,Name,Value) creates an augmented image datastore,
using name-value pairs to configure the image preprocessing done by the augmented image
datastore. You can specify multiple name-value pairs.

Examples
Train Network with Rotational Invariance Using augmentedImageSource

Preprocess images using random rotation so that the trained convolutional neural network has
rotational invariance. This example uses the augmentedImageSource function to create an
augmented image datastore object. For an example of the recommended workflow that uses the
augmentedImageDatastore function to create an augmented image datastore object, see “Train
Network with Augmented Images” on page 1-104.

Load the sample data, which consists of synthetic images of handwritten numbers.

[XTrain,YTrain] = digitTrain4DArrayData;
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digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Create an image augmenter that rotates images during training. This image augmenter rotates each
image by a random angle.

imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-180 180]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]

Use the augmentedImageSource function to create an augmented image datastore. Specify the size
of augmented images, the training data, and the image augmenter.
imageSize = [28 28 1];
auimds = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter)

auimds = 
  augmentedImageDatastore with properties:

         NumObservations: 5000
           MiniBatchSize: 128
        DataAugmentation: [1x1 imageDataAugmenter]
      ColorPreprocessing: 'none'
              OutputSize: [28 28]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
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    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
       
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
        
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'InitialLearnRate',1e-3);

Train the network.

net = trainNetwork(auimds,layers,opts);

Training on single CPU.
Initializing image normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |        7.81% |       2.4151 |          0.0010 |
|       2 |          50 |       00:00:23 |       52.34% |       1.4930 |          0.0010 |
|       3 |         100 |       00:00:44 |       74.22% |       1.0148 |          0.0010 |
|       4 |         150 |       00:01:05 |       78.13% |       0.8153 |          0.0010 |
|       6 |         200 |       00:01:26 |       76.56% |       0.6903 |          0.0010 |
|       7 |         250 |       00:01:45 |       87.50% |       0.4891 |          0.0010 |
|       8 |         300 |       00:02:06 |       87.50% |       0.4874 |          0.0010 |
|       9 |         350 |       00:02:30 |       87.50% |       0.4866 |          0.0010 |
|      10 |         390 |       00:02:46 |       89.06% |       0.4021 |          0.0010 |
|========================================================================================|

Input Arguments
outputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns. This
value sets the OutputSize on page 1-0  property of the returned augmented image datastore,
auimds.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

1 Deep Learning Functions

1-110



Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.
Data Types: single | double | uint8 | int8 | uint16 | int16 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

• For a classification problem, Y is a categorical vector containing the image labels.
• For a regression problem, Y can be an:

• n-by-r numeric matrix. n is the number of observations and r is the number of responses.
• h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number

of observations.

Responses must not contain NaNs.
Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

• For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageSource, the responses must be in the second column. If the responses are in a
different column of tbl, then you must specify the response variable name using the
responseNames argument.

• For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageSource accepts the remaining columns of
tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.
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Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: augmentedImageSource([28,28],myTable,'OutputSizeMode','centercrop')
creates an augmented image datastore that sets the OutputSizeMode property to crop images from
the center.

ColorPreprocessing — Preprocessing color operations
'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing operations performed on color channels of input images, specified as the comma-
separated pair consisting of 'ColorPreprocessing' and 'none', 'gray2rgb', or 'rgb2gray'.
This argument sets the ColorPreprocessing on page 1-0  property of the returned
augmented image datastore, auimds. The ColorPreprocessing property ensures that all output
images from the augmented image datastore have the number of color channels required by
inputImageLayer.

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as the comma-separated pair consisting of
'DataAugmentation' and an imageDataAugmenter object or 'none'. This argument sets the
DataAugmentation on page 1-0  property of the returned augmented image datastore,
auimds. When DataAugmentation is 'none', no preprocessing is applied to input images.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as the comma-separated pair consisting of
'OutputSizeMode' and one of the following. This argument sets the OutputSizeMode on page
1-0  property of the returned augmented image datastore, auimds.

• 'resize' — Scale the image to fit the output size. For more information, see imresize.
• 'centercrop' — Take a crop from the center of the training image. The crop has the same size

as the output size.
• 'randcrop' — Take a random crop from the training image. The random crop has the same size

as the output size.
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Data Types: char | string

BackgroundExecution — Perform augmentation in parallel
false (default) | true

Perform augmentation in parallel, specified as the comma-separated pair consisting of
'BackgroundExecution' and false or true. This argument sets the DispatchInBackground
on page 1-0  property of the returned augmented image datastore, auimds. If
'BackgroundExecution' is true, and you have Parallel Computing Toolbox software installed,
then the augmented image datastore auimds performs image augmentation in parallel.

Output Arguments
auimds — Augmented image datastore
augmentedImageDatastore object

Augmented image datastore, returned as an augmentedImageDatastore object.

Compatibility Considerations
augmentedImageSource object is removed

In R2017b, you could create an augmentedImageSource object to preprocess images for training
deep learning networks. Starting in R2018a, the augmentedImageSource object has been removed.
Use an augmentedImageDatastore object instead.

An augmentedImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike augmentedImageSource, which could be used for training only, you can use
an augmentedImageDatastore for both training and prediction.

To create an augmentedImageDatastore object, you can use either the
augmentedImageDatastore function (recommended) or the augmentedImageSource function.

augmentedImageSource function will be removed
Not recommended starting in R2018a

The augmentedImageSource function will be removed in a future release. Create an
augmentedImageDatastore using the augmentedImageDatastore function instead.

To update your code, change instances of the function name augmentedImageSource to
augmentedImageDatastore. You do not need to change the input arguments.

See Also
augmentedImageDatastore

Introduced in R2017b
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averagePooling2dLayer
Average pooling layer

Description
An average pooling layer performs down-sampling by dividing the input into rectangular pooling
regions and computing the average values of each region.

Creation

Syntax
layer = averagePooling2dLayer(poolSize)
layer = averagePooling2dLayer(poolSize,Name,Value)

Description

layer = averagePooling2dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling2dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling2dLayer(2,'Stride',2) creates an average pooling
layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each
property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride and Name properties. Enclose names in single
quotes.
Example: averagePooling2dLayer(2,'Stride',2) creates an average pooling layer with pool
size [2 2] and stride [2 2].

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
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the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Average Pooling

PoolSize — Dimensions of pooling regions
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is
the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use
the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive
integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

PaddingValue — Value used to pad input
0 (default) | 'mean'

Value used to pad input, specified as 0 or 'mean'.

When you use the 'Padding' option to add padding to the input, the value of the padding applied
can be one of the following:

• 0 — Input is padded with zeros at the positions specified by the 'Padding' option. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

• 'mean' — Input is padded with the mean of the pooling region at the positions specified by the
'Padding' option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Example: 'PaddingValue','mean'

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Average Pooling Layer

Create an average pooling layer with the name 'avg1'.

layer = averagePooling2dLayer(2,'Name','avg1')

layer = 
  AveragePooling2DLayer with properties:

            Name: 'avg1'

   Hyperparameters
        PoolSize: [2 2]
          Stride: [1 1]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
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    PaddingValue: 0

Include an average pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Average Pooling         2x2 average pooling with stride [1  1] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Average Pooling Layer with Nonoverlapping Pooling Regions

Create an average pooling layer with nonoverlapping pooling regions.

layer = averagePooling2dLayer(2,'Stride',2)

layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [2 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

The height and width of the rectangular regions (pool size) are both 2. The pooling regions do not
overlap because the step size for traversing the images vertically and horizontally (stride) is also 2.

Include an average pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Average Pooling         2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions.

layer = averagePooling2dLayer([3 2],'Stride',2)

layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [3 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

This layer creates pooling regions of size [3 2] and takes the average of the six elements in each
region. The pooling regions overlap because Stride includes dimensions that are less than the
respective pooling dimensions PoolSize.

Include an average pooling layer with overlapping pooling regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Average Pooling         3x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
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     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Average Pooling Layer

An average pooling layer performs down-sampling by dividing the input into rectangular pooling
regions and computing the average values of each region.

Pooling layers follow the convolutional layers for down-sampling, hence, reducing the number of
connections to the following layers. They do not perform any learning themselves, but reduce the
number of parameters to be learned in the following layers. They also help reduce overfitting.

An average pooling layer outputs the average values of rectangular regions of its input. The size of
the rectangular regions is determined by the poolSize argument of averagePoolingLayer. For
example, if poolSize is [2,3], then the layer returns the average value of regions of height 2 and
width 3.

Pooling layers scan through the input horizontally and vertically in step sizes you can specify using
the 'Stride' name-value pair argument. If the pool size is smaller than or equal to the stride, then
the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the input to the pooling layer is n-by-n,
and the pooling region size is h-by-h, then the pooling layer down-samples the regions by h [1]. That
is, the output of a max or average pooling layer for one channel of a convolutional layer is n/h-by-n/h.
For overlapping regions, the output of a pooling layer is (Input Size – Pool Size + 2*Padding)/Stride +
1.

References
[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.

Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition''. IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | globalAveragePooling2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
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“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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averagePooling3dLayer
3-D average pooling layer

Description
A 3-D average pooling layer performs down-sampling by dividing three-dimensional input into
cuboidal pooling regions and computing the average values of each region.

Creation

Syntax
layer = averagePooling3dLayer(poolSize)
layer = averagePooling3dLayer(poolSize,Name,Value)

Description

layer = averagePooling3dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling
layer with pool size [2 2 2] and stride [2 2 2]. You can specify multiple name-value pairs. Enclose
each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride and Name properties. Enclose names in single
quotes.
Example: averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling layer with pool
size [2 2 2] and stride [2 2 2].

Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
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padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Average Pooling

PoolSize — Dimensions of pooling regions
vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers [h w d], where h
is the height, w is the width, and d is the depth. When creating the layer, you can specify PoolSize
as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1 1] specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth direction. When creating the layer, you can specify Stride as a scalar to use the same value
for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers
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Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

PaddingValue — Value used to pad input
0 (default) | 'mean'

Value used to pad input, specified as 0 or 'mean'.

When you use the 'Padding' option to add padding to the input, the value of the padding applied
can be one of the following:

• 0 — Input is padded with zeros at the positions specified by the 'Padding' option. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

• 'mean' — Input is padded with the mean of the pooling region at the positions specified by the
'Padding' option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Example: 'PaddingValue','mean'

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
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Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Average Pooling Layer

Create a 3-D average pooling layer with nonoverlapping pooling regions that downsamples by a
factor of 2.

layer = averagePooling3dLayer(2,'Stride',2)

layer = 
  AveragePooling3DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [2 2 2]
          Stride: [2 2 2]
     PaddingMode: 'manual'
     PaddingSize: [2x3 double]
    PaddingValue: 0

Include a 3-D average pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
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    reluLayer
    averagePooling3dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Average 3D Pooling      2x2x2 average pooling with stride [2  2  2] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create 3-D Average Pooling Layer with Overlapping Pooling Regions

Create a 3-D average pooling layer with overlapping pooling regions and padding for the top and
bottom of the input.

layer = averagePooling3dLayer([3 2 2],'Stride',2,'Padding',[1 0 0])

layer = 
  AveragePooling3DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [3 2 2]
          Stride: [2 2 2]
     PaddingMode: 'manual'
     PaddingSize: [2x3 double]
    PaddingValue: 0

This layer creates pooling regions of size 3-by-2-by-2 and takes the average of the twelve elements in
each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride
dimensions Stride that are less than the respective pooling dimensions PoolSize.

More About
3-D Average Pooling Layer

A 3-D average pooling layer extends the functionality of an average pooling layer to a third
dimension, depth. An average pooling layer performs down-sampling by dividing the input into
rectangular or cuboidal pooling regions, and computing the average of each region. To learn more,
see the definition of average pooling layer on page 1-120 on the averagePooling2dLayer
reference page.

See Also
averagePooling2dLayer | convolution3dLayer | maxPooling3dLayer
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Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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avgpool
Pool data to average values over spatial dimensions

Syntax
dlY = avgpool(dlX,poolsize)
dlY = avgpool(dlX,poolsize,Name,Value)
dlY = avgpool(dlX,'global')
dlY = avgpool( ___ ,'DataFormat',FMT)

Description
The average pooling operation performs downsampling by dividing the input into pooling regions and
computing the average value of each region.

Note This function applies the average pooling operation to dlarray data. If you want to apply
average pooling within a layerGraph object or Layer array, use one of the following layers:

• averagePooling2dLayer
• averagePooling3dLayer
• globalAveragePooling2dLayer
• globalAveragePooling3dLayer

dlY = avgpool(dlX,poolsize) performs downsampling by dividing the input dlX into
rectangular or cuboidal regions defined by poolsize and computing the average value of the data in
each region. The input dlX is a formatted dlarray with dimension labels. Pooling acts on spatial
dimensions labeled 'S'. The output dlY is a formatted dlarray with the same dimension labels as
dlX.

dlY = avgpool(dlX,poolsize,Name,Value) specifies options using one or more name-value
pair arguments. For example, 'Stride',3 sets the stride of the pooling operation.

dlY = avgpool(dlX,'global') computes the global average over the spatial dimensions of the
input dlX. This syntax is equivalent to setting poolsize in the previous syntax to the size of the 'S'
dimensions of dlX.

dlY = avgpool( ___ ,'DataFormat',FMT) specifies the dimension format FMT when dlX is not a
formatted dlarray, in addition to the input arguments in previous syntaxes. The output dlY is an
unformatted dlarray with the same dimension order as dlX.

Examples

Pool Data to Average Values

Pool data to average values over two spatial dimensions.
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Create the input data as a dlarray. The data contains a single observation of random values with a
height and width of six and a single channel.

height = 6;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')

dlX = 
  6(S) × 6(S) × 1(C) × 1(B) dlarray

    0.1781    0.8819    0.1564    0.4820    0.2518    0.7302
    0.1280    0.6692    0.8555    0.1206    0.2904    0.3439
    0.9991    0.1904    0.6448    0.5895    0.6171    0.5841
    0.1711    0.3689    0.3763    0.2262    0.2653    0.1078
    0.0326    0.4607    0.1909    0.3846    0.8244    0.9063
    0.5612    0.9816    0.4283    0.5830    0.9827    0.8797

Pool the data to average values over pooling regions of size 2 using a stride of 2.

dlY = avgpool(dlX,2,'Stride',2)

dlY = 
  3(S) × 3(S) × 1(C) × 1(B) dlarray

    0.4643    0.4036    0.4041
    0.4324    0.4592    0.3936
    0.5090    0.3967    0.8983

Pool Data to Global Average Value

Pool data to its global average value.

Create the input data as an unformatted dlarray. The data contains a single observation of random
values with a height of four, a width of six, and a single channel.

height = 4;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X)

dlX = 
  4×6 dlarray

    0.8147    0.6324    0.9575    0.9572    0.4218    0.6557
    0.9058    0.0975    0.9649    0.4854    0.9157    0.0357
    0.1270    0.2785    0.1576    0.8003    0.7922    0.8491
    0.9134    0.5469    0.9706    0.1419    0.9595    0.9340

Pool the data to the global average value. Specify the dimension format of the input data.

 avgpool

1-129



dlY = avgpool(dlX,'global','DataFormat','SSCB')

dlY = 
  1×1 dlarray

    0.6381

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted
dlarray, you must specify the dimension label format using 'DataFormat',FMT.

Pooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. dlX
must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S'
dimensions. The avgpool operation divides the data along each 'S' dimension into regions defined
by poolsize. Values within each pooling region are averaged.
Data Types: single | double

poolsize — Size of pooling regions
numeric scalar | numeric vector

Size of the pooling regions, specified as a numeric scalar or numeric vector. If you specify poolsize
as a scalar, the pooling regions have the same size along all spatial dimensions. To use rectangular or
cuboidal pooling regions that have different sizes along each spatial dimension, specify poolsize as
a vector with the same length as the number of spatial dimensions in dlX.
Example: 3
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified
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You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the
pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
'Padding' and one of the following:

• 'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.
Example: 'Padding','same'
Data Types: single | double

PaddingValue — Value used to pad input
0 (default) | 'mean'

Value used to pad input, specified as 0 or 'mean'.
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When you use the 'Padding' option to add padding to the input, the value of the padding applied
can be one of the following:

• 0 — Input is padded with zeros at the positions specified by the 'Padding' option. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

• 'mean' — Input is padded with the mean of the pooling region at the positions specified by the
'Padding' option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Example: 'PaddingValue','mean'

Output Arguments
dlY — Pooled data
dlarray

Pooled data, returned as a dlarray. The output dlY has the same underlying data type as the input
dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

More About
Average Pooling

The avgpool function pools the input data to average values over the spatial dimensions. For more
information, see the definition of “Average Pooling Layer” on page 1-120 on the
averagePooling2dLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlconv | dlfeval | dlgradient | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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batchnorm
Normalize each channel of mini-batch

Syntax
[dlY,mu,sigmaSq] = batchnorm(dlX,offset,scaleFactor)
dlY = batchnorm(dlX,offset,scaleFactor,mu,sigmaSq)
[dlY,datasetMu,datasetSigmaSq] = batchnorm(dlX,offset,scaleFactor,datasetMu,
datasetSigmaSq)
[ ___ ] = batchnorm( ___ ,'DataFormat',FMT)
[ ___ ] = batchnorm( ___ ,Name,Value)

Description
The batch normalization operation normalizes each input channel across a mini-batch. To speed up
training of convolutional neural networks and reduce the sensitivity to network initialization, use
batch normalization between convolution and nonlinear operations such as relu.

Note This function applies the batch normalization operation to dlarray data. If you want to apply
batch normalization within a layerGraph object or Layer array, use the following layer:

• batchNormalizationLayer

[dlY,mu,sigmaSq] = batchnorm(dlX,offset,scaleFactor) normalizes each channel of the
input mini-batch dlX using the mean and variance statistics computed from each channel and applies
a scale factor and offset.

The normalized activation is calculated using the following formula:

x i =
xi− μc

σc
2 + ε

where xi is the input activation, μc (mu) and σc
2 (sigmaSq) are the per-channel mean and variance,

respectively, and ε is a small constant. mu and sigmaSq are calculated over all 'S' (spatial), 'B'
(batch), 'T' (time), and 'U' (unspecified) dimensions in dlX for each channel.

The normalized activation is offset and scaled according to the following formula:

yi = γx i + β .

The offset β and scale factor γ are specified with the offset and scaleFactor arguments.

The input dlX is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray
with the same dimension labels as dlX.

dlY = batchnorm(dlX,offset,scaleFactor,mu,sigmaSq) normalizes each channel of the
input dlX using the specified mu and sigmaSq statistics and applies a scale factor and offset.
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[dlY,datasetMu,datasetSigmaSq] = batchnorm(dlX,offset,scaleFactor,datasetMu,
datasetSigmaSq) normalizes each channel of the input mini-batch dlX using the mean and
variance statistics computed from each channel and applies a scale factor and offset. The function
also updates the data set statistics datasetMu and datasetSigmaSq using the following formula:

sn = ϕsx + (1− ϕ)sn− 1

where sn is the statistic computed over several mini-batches, sx is the per-channel statistic of the
current mini-batch, and ϕ is the decay value for the statistic.

Use this syntax to iteratively update the mean and variance statistics over several mini-batches of
data during training. Use the final value of the mean and variance computed over all training mini-
batches to normalize data for prediction and classification.

[ ___ ] = batchnorm( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when
dlX is not a formatted dlarray in addition to the input arguments in previous syntaxes. The output
dlY is an unformatted dlarray with the same dimension order as dlX.

[ ___ ] = batchnorm( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'MeanDecay',3
sets the decay rate of the moving average computation.

Examples

Normalize Data and Obtain the Statistics

Use batchnorm to normalize each channel of a mini-batch and obtain the per-channel normalization
statistics.

Create the input data as a single observation of random values with a height and width of four and
three channels.

height = 4;
width = 4;
channels = 3;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the learnable parameters.

offset = zeros(channels,1);
scaleFactor = ones(channels,1);

Compute the batch normalization and obtain the statistics of each channel of the batch.

[dlY,mu,sigmaSq] = batchnorm(dlX,offset,scaleFactor);
mu
sigmaSq

mu = 3×1    
    0.6095
    0.6063
    0.4619
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sigmaSq = 3×1    
    0.1128
    0.0880
    0.0805

Update Mean and Variance Over Multiple Batches of Data

Use the batchnorm function to normalize several batches of data and update the statistics of the
whole data set after each normalization.

Create three batches of data. The data consists of 10-by-10 random arrays with five channels. Each
batch contains 20 observations. The second and third batches are scaled by a multiplicative factor of
1.5 and 2.5, respectively, so the mean of the data set increases with each batch.

height = 10;
width = 10;
channels = 5;
observations = 20;

X1 = rand(height,width,channels,observations);
dlX1 = dlarray(X1,'SSCB');

X2 = 1.5*rand(height,width,channels,observations);
dlX2 = dlarray(X2,'SSCB');

X3 = 2.5*rand(height,width,channels,observations);
dlX3 = dlarray(X3,'SSCB');

Create the learnable parameters.

offset = zeros(channels,1);
scale = ones(channels,1);

Normalize the first batch of data, dlX1, using batchnorm. Obtain the values of the mean and
variance of this batch as outputs.

[dlY1,mu,sigmaSq] = batchnorm(dlX1,offset,scale);

Normalize the second batch of data, dlX2. Use mu and sigmaSq as inputs to obtain the values of the
combined mean and variance of the data in batches dlX1 and dlX2.

[dlY2,datasetMu,datasetSigmaSq] = batchnorm(dlX2,offset,scale,mu,sigmaSq);

Normalize the final batch of data, dlX3. Update the data set statistics datasetMu and
datasetSigmaSq to obtain the values of the combined mean and variance of all data in batches
dlX1, dlX2, and dlX3.

[dlY3,datasetMuFull,datasetSigmaSqFull] = batchnorm(dlX3,offset,scale,datasetMu,datasetSigmaSq);

Observe the change in the mean of each channel as each batch is normalized.

plot([mu';datasetMu';datasetMuFull'])
legend({'Channel 1','Channel 2','Channel 3','Channel 4','Channel 5'},'Location','southeast')
xticks([1 2 3])
xlabel('Number of Batches')
xlim([0.9 3.1])
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ylabel('Per-Channel Mean')
title('Data Set Mean')

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of offset or scaleFactor must be a dlarray.

dlX must have a 'C' channel dimension.
Data Types: single | double

offset — Channel offset
dlarray vector | numeric vector

Channel offset β, specified as a dlarray vector with or without dimension labels or a numeric vector.

If offset is a formatted dlarray, it must contain a 'C' dimension of the same size as the 'C'
dimension of the input data.
Data Types: single | double
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scaleFactor — Channel scale factor
dlarray vector | numeric vector

Channel scale factor γ, specified as a dlarray vector with or without dimension labels or a numeric
vector.

If scaleFactor is a formatted dlarray, it must contain a 'C' dimension of the same size as the
'C' dimension of the input data.
Data Types: single | double

mu — Mean statistic for normalization
numeric vector

Mean statistic for normalization, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

mu is calculated over all 'S' (spatial), 'B' (batch), 'T' (time), and 'U' (unspecified) dimensions in
dlX for each channel.
Data Types: single | double

sigmaSq — Variance statistic for normalization
numeric vector

Variance statistic for normalization, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

sigmaSq is calculated over all 'S' (spatial), 'B' (batch), 'T' (time), and 'U' (unspecified)
dimensions in dlX for each channel.
Data Types: single | double

datasetMu — Mean statistic of several batches of data
numeric vector

Mean statistic of several batches of data, specified as a numeric vector of the same length as the 'C'
dimension of the input data. To iteratively update the dataset mean over several batches of input
data, use the datasetMu output of a previous call to batchnorm as the datasetMu input argument.
Data Types: single | double

datasetSigmaSq — Variance statistic of several batches of data
numeric vector

Variance statistic of several batches of data, specified as a numeric vector of the same length as the
'C' dimension of the input data. To iteratively update the dataset variance over several batches of
input data, use the datasetSigmaSq output of a previous call to batchnorm as the
datasetSigmaSq input argument.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'MeanDecay',0.3,'MeanVariance',0.5 sets the decay rate for the moving average
computations of the mean and variance of several batches of data to 0.3 and 0.5, respectively.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Epsilon — Variance offset
numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar. The specified value must be greater than 1e-5. The default
value is 1e-5.
Data Types: single | double

MeanDecay — Mean decay value
numeric scalar between 0 and 1

Decay value for the moving average computation of the datasetMu output, specified as the comma-
separated pair consisting of 'MeanDecay' and a numeric scalar between 0 and 1. The default value
is 0.1.
Data Types: single | double

VarianceDecay — Variance decay value
numeric scalar between 0 and 1

Decay value for the moving average computation of the datasetSigmaSq output, specified as the
comma-separated pair consisting of 'VarianceDecay' and a numeric scalar between 0 and 1. The
default value is 0.1.
Data Types: single | double
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Output Arguments
dlY — Normalized data
dlarray

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the
input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

mu — Per-channel mean
numeric column vector

Per-channel mean of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

sigmaSq — Per-channel variance
numeric column vector

Per-channel variance of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

datasetMu — Updated mean statistic of several batches of data
numeric vector

Updated mean statistic of several batches of data, returned as a numeric vector with length equal to
the size of the 'C' dimension of the input data. datasetMu is returned with the same shape as the
input datasetMu.

The datasetMu output is the moving average computation of the mean statistic for each channel
over several batches of input data. datasetMu is computed from the channel mean of the input data
and the input datasetMu using the following formula:

datasetMu = meanDecay × currentMu + (1 – meanDecay) × datasetMu,

where currentMu is the channel mean computed from the input data and the value of meanDecay is
specified using the 'MeanDecay' name-value pair argument.

datasetSigmaSq — Updated variance statistic of several batches of data
numeric vector

Updated variance statistic of several batches of data, returned as a numeric vector with length equal
to the size of the 'C' dimension of the input data. datasetSigmaSq is returned with the same shape
as the input datasetSigmaSq.

The datasetSigmaSq output is the moving average computation of the variance statistic for each
channel over several batches of input data. datasetSigmaSq is computed from the channel variance
of the input data and the input datasetSigmaSq using the following formula:

datasetSigmaSq = varianceDecay × currentSigmaSq + (1 – varianceDecay) ×
datasetSigmaSq,
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where currentSigmaSq is the channel variance computed from the input data and the value of
varianceDecay is specified using the 'VarianceDecay' name-value pair.

More About
Batch Normalization

The batchnorm function normalizes each input channel of a mini-batch of data. For more
information, see the definition of “Batch Normalization Layer” on page 1-146 on the
batchNormalizationLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlconv | dlfeval | dlgradient | fullyconnect | groupnorm | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Update Batch Normalization Statistics Using Model Function”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”

Introduced in R2019b
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batchNormalizationLayer
Batch normalization layer

Description
A batch normalization layer normalizes each input channel across a mini-batch. To speed up training
of convolutional neural networks and reduce the sensitivity to network initialization, use batch
normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset β
and scales it by a learnable scale factor γ.

Creation

Syntax
layer = batchNormalizationLayer
layer = batchNormalizationLayer('Name',Value)

Description

layer = batchNormalizationLayer creates a batch normalization layer.

layer = batchNormalizationLayer('Name',Value) creates a batch normalization layer and
sets the optional “Batch Normalization” on page 1-141, “Parameters and Initialization” on page 1-
142, “Learn Rate and Regularization” on page 1-143, and Name properties using name-value pairs.
For example, batchNormalizationLayer('Name','batchnorm') creates a batch normalization
layer with the name 'batchnorm'. You can specify multiple name-value pairs. Enclose each property
name in quotes.

Properties
Batch Normalization

TrainedMean — Input mean
numeric array

Input mean of each channel, specified as one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

After network training finishes, the software calculates the input mean over the entire training data
set. The layer uses TrainedMean (in place of the mini-batch mean) to normalize the input during
prediction.
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TrainedVariance — Input variance
numeric array

Input variance of each channel, specified as one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

After network training finishes, the software calculates the input variance over the entire training
data set. The layer uses TrainedVariance (in place of the mini-batch variance) to normalize the
input during prediction.

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.

NumChannels — Number of input channels
'auto' (default) | positive integer

Number of input channels, specified as 'auto' or a positive integer.

This property is always equal to the number of channels of the input to the layer. If NumChannels
equals 'auto', then the software infers the correct value for the number of channels at training
time.

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with zero mean and standard deviation 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:
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• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with zero mean and standard deviation 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric array

Channel scale factors γ, specified as a numeric array.

The channel scale factors are learnable parameters. When training a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Offset — Channel offsets
[] (default) | numeric array

Channel offsets β, specified as a numeric array.

The channel offsets are learnable parameters. When training a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Learn Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
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OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor equals 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.

ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Batch Normalization Layer

Create a batch normalization layer with the name 'BN1'.

layer = batchNormalizationLayer('Name','BN1')

layer = 
  BatchNormalizationLayer with properties:

               Name: 'BN1'
        NumChannels: 'auto'
        TrainedMean: []
    TrainedVariance: []

   Hyperparameters
            Epsilon: 1.0000e-05

   Learnable Parameters
             Offset: []
              Scale: []

  Show all properties

Include batch normalization layers in a Layer array.

layers = [
    imageInputLayer([32 32 3]) 
  
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
          
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ]
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layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             32x32x3 images with 'zerocenter' normalization
     2   ''   Convolution             16 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   ''   Batch Normalization     Batch normalization
     4   ''   ReLU                    ReLU
     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Convolution             32 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     7   ''   Batch Normalization     Batch normalization
     8   ''   ReLU                    ReLU
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

More About
Batch Normalization Layer

A batch normalization layer normalizes each input channel across a mini-batch. To speed up training
of convolutional neural networks and reduce the sensitivity to network initialization, use batch
normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset β
and scales it by a learnable scale factor γ. β and γ are themselves learnable parameters that are
updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L2 and dropout
regularization. With batch normalization layers, the activations of a specific image during training
depend on which images happen to appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every training epoch. To specify how often to
shuffle the data during training, use the 'Shuffle' name-value pair argument of
trainingOptions.

Algorithms
A batch normalization normalizes its inputs xi by first calculating the mean μB and variance σB

2 over a
mini-batch and over each input channel. Then, it calculates the normalized activations as

xi =
xi− μB

σB
2 + ϵ

.

Here, ϵ (the property Epsilon) improves numerical stability when the mini-batch variance is very
small. To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
layer that follows the batch normalization layer, the batch normalization layer further shifts and
scales the activations as

yi = γx i + β .
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Here, the offset β and scale factor γ (Offset and Scale properties) are learnable parameters that
are updated during network training.

When network training finishes, the batch normalization layer calculates the mean and variance over
the full training set and stores them in the TrainedMean and TrainedVariance properties. When
you use a trained network to make predictions on new images, the layer uses the trained mean and
variance instead of the mini-batch mean and variance to normalize the activations.

References
[1] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by

reducing internal covariate shift." preprint, arXiv:1502.03167 (2015).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | fullyConnectedLayer | groupNormalizationLayer | reluLayer |
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
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bilstmLayer
Bidirectional long short-term memory (BiLSTM) layer

Description
A bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies between time steps
of time series or sequence data. These dependencies can be useful when you want the network to
learn from the complete time series at each time step.

Creation

Syntax
layer = bilstmLayer(numHiddenUnits)
layer = bilstmLayer(numHiddenUnits,Name,Value)

Description

layer = bilstmLayer(numHiddenUnits) creates a bidirectional LSTM layer and sets the
NumHiddenUnits property.

layer = bilstmLayer(numHiddenUnits,Name,Value) sets additional OutputMode,
“Activations” on page 1-149, , “Parameters and Initialization” on page 1-150, “Learn Rate and
Regularization” on page 1-152, and Name properties using one or more name-value pair arguments.
You can specify multiple name-value pair arguments. Enclose each property name in quotes.

Properties
BiLSTM

NumHiddenUnits — Number of hidden units
positive integer

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for training, use the 'SequenceLength' option in
trainingOptions.
Example: 200

OutputMode — Format of output
'sequence' (default) | 'last'
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Format of output, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

InputSize — Input size
'auto' (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Example: 100

Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

Activation function to update the cell and hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σc in the calculations to update the cell and hidden state.
For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-695.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

CellState — Initial value of cell state
numeric vector

Initial value of the cell state, specified as a 2*NumHiddenUnits-by-1 numeric vector. This value
corresponds to the cell state at time step 0.

After setting this property, calls to the resetState function set the cell state to this value.

HiddenState — Initial value of hidden state
numeric vector
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Initial value of the hidden state, specified as a 2*NumHiddenUnits-by-1 numeric vector. This value
corresponds to the hidden state at time step 0.

After setting this property, calls to the resetState function set the hidden state to this value.

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 8*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
8*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [2]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
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• Function handle – Initialize the recurrent weights with a custom function. If you specify a function
handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' – Initialize the forget gate bias with ones and the remaining biases with
zeros.

• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the eight input weight matrices for the components
(gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in the
following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is an 8*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix
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Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the eight recurrent weight matrices for the
components (gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in
the following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time, RecurrentWeights is an 8*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases
[] (default) | numeric vector

Layer biases, specified as a numeric vector.

The bias vector is a concatenation of the eight bias vectors for the components (gates) in the
bidirectional LSTM layer. The eight vectors are concatenated vertically in the following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is an 8*NumHiddenUnits-by-1 numeric vector.

Learn Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector
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Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 0.1

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learn rate for the four individual matrices in RecurrentWeights, assign a
1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 0.1
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Example: [1 2 1 1 1 2 1 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-8 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in Bias, assign a 1-
by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1 1 2 1 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
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7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 0.1
Example: [1 2 1 1 1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, assign a 1-by-8 vector, where the entries correspond to the L2 regularization
factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 0.1
Example: [1 2 1 1 1 2 1 1]

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-8 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in Bias, assign a
1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:
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1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1 1 2 1 1]

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples
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Create Bidirectional LSTM Layer

Create a bidirectional LSTM layer with the name 'bilstm1' and 100 hidden units.

layer = bilstmLayer(100,'Name','bilstm1')

layer = 
  BiLSTMLayer with properties:

                       Name: 'bilstm1'

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []

   State Parameters
                HiddenState: []
                  CellState: []

  Show all properties

Include a bidirectional LSTM layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    bilstmLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Compatibility Considerations
Default input weights initialization is Glorot
Behavior changed in R2019a
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Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the
Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling
from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'InputWeightsInitializer' option of the layer to 'narrow-normal'.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with
Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random matrix Z sampled
from a unit normal distribution. This behavior helps stabilize training and usually reduces the training
time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by
sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior,
set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, the StateActivationFunction property must be set to 'tanh'.
• For code generation, the GateActivationFunction property must be set to 'sigmoid'.

See Also
Deep Network Designer | classifyAndUpdateState | flattenLayer | gruLayer | lstmLayer |
predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer |
sequenceUnfoldingLayer

Topics
“Sequence Classification Using Deep Learning”
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“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2018a
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calibrate
Simulate and collect ranges of a deep neural network

Syntax
calibrationResults = calibrate(quantObj, calData)
calibrationResults = calibrate(quantObj, calData,Name,Value)

Description
calibrationResults = calibrate(quantObj, calData) exercises the network and collects
the dynamic ranges of the weights and biases in the convolution and fully connected layers of the
network and the dynamic ranges of the activations in all layers of the network specified by
dlquantizer object, quantObj, using the data specified by calData.

calibrationResults = calibrate(quantObj, calData,Name,Value) exercises the network
and collects the dynamic ranges of the weights and biases in the convolution and fully connected
layers of the network and the dynamic ranges of the activations in all layers of the network specified
by dlquantizer object, quantObj, using the data specified by calData, with additional arguments
specified by one or more name-value pair arguments.

To learn about the products required to quantize a deep neural network, see “Quantization Workflow
Prerequisites”

Examples

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
squeezenet neural network after retraining the network to classify new images according to the
“Train Deep Learning Network to Classify New Images” example. In this example, the memory
required for the network is reduced approximately 75% through quantization while the accuracy of
the network is not affected.

Load the pretrained network.

net

net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.
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The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults =

  95x5 table

                   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue  
    __________________________________________________    _________________________    ________________________    __________    ___________
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    {'conv1_relu_conv1_Weights'                      }    {'relu_conv1'           }         "Weights"                -0.91985        0.88489
    {'conv1_relu_conv1_Bias'                         }    {'relu_conv1'           }         "Bias"                   -0.07925        0.26343
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Weights'}    {'fire2-relu_squeeze1x1'}         "Weights"                   -1.38         1.2477
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Bias'   }    {'fire2-relu_squeeze1x1'}         "Bias"                   -0.11641        0.24273
    {'fire2-expand1x1_fire2-relu_expand1x1_Weights'  }    {'fire2-relu_expand1x1' }         "Weights"                 -0.7406        0.90982
    {'fire2-expand1x1_fire2-relu_expand1x1_Bias'     }    {'fire2-relu_expand1x1' }         "Bias"                  -0.060056        0.14602
    {'fire2-expand3x3_fire2-relu_expand3x3_Weights'  }    {'fire2-relu_expand3x3' }         "Weights"                -0.74397        0.66905
    {'fire2-expand3x3_fire2-relu_expand3x3_Bias'     }    {'fire2-relu_expand3x3' }         "Bias"                  -0.051778       0.074239
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Weights'}    {'fire3-relu_squeeze1x1'}         "Weights"                -0.77263        0.68897
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Bias'   }    {'fire3-relu_squeeze1x1'}         "Bias"                   -0.10141        0.32678
    {'fire3-expand1x1_fire3-relu_expand1x1_Weights'  }    {'fire3-relu_expand1x1' }         "Weights"                -0.72131        0.97287
    {'fire3-expand1x1_fire3-relu_expand1x1_Bias'     }    {'fire3-relu_expand1x1' }         "Bias"                  -0.067043        0.30424
    {'fire3-expand3x3_fire3-relu_expand3x3_Weights'  }    {'fire3-relu_expand3x3' }         "Weights"                -0.61196        0.77431
    {'fire3-expand3x3_fire3-relu_expand3x3_Bias'     }    {'fire3-relu_expand3x3' }         "Bias"                  -0.053612        0.10329
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Weights'}    {'fire4-relu_squeeze1x1'}         "Weights"                -0.74145         1.0888
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Bias'   }    {'fire4-relu_squeeze1x1'}         "Bias"                   -0.10886        0.13882
...

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = 

  struct with fields:

       NumSamples: 20
    MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

valResults.MetricResults.Result

ans =

  2x3 table

    NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
    _____________________    ____________    _______________________________

     {'Floating-Point'}           1                    2.9003e+06           
     {'Quantized'     }           1                    7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites”.
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For additional requirements, see “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an
augmentedImageDatastore object to resize the data for the network. Then, split the data into
calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)
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ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
%% hComputeAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

To compile and deploy the quantized network, run the validate function of the dlquantizer
object. Use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. This function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then
starts programming the FPGA device by using the sof file, displays progress messages, and the time it
takes to deploy the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________
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    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
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        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
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    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Input Arguments
quantObj — Network to quantize
dlquantizer object

dlquantizer object containing the network to quantize.
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calData — Data to use for calibration of quantized network
imageDatastore object | augmentedImageDatastore object | pixelLabelImageDatastore
object

Data to use for calibration of quantized network, specified as an imageDatastore object, an
augmentedImageDatastore object, or a pixelLabelImageDatastore object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: calResults = calibrate(quantObj, calData, 'UseGPU', 'on')

FPGA Execution Environment Options

UseGPU — Logical flag to use GPU for calibration
'off' (default) | 'on'

This property affects FPGA targeting only.

Logical flag to use a GPU for calibration when the dlquantizer object ExecutionEnvironment is
set to FPGA.
Example: 'UseGPU', 'on'

Output Arguments
calibrationResults — Dynamic ranges of network
table

Dynamic ranges of layers of the network, returned as a table. Each row in the table displays the
minimum and maximum values of a learnable parameter of a convolution layer of the optimized
network. The software uses these minimum and maximum values to determine the scaling for the
data type of the quantized parameter.

See Also
Apps
Deep Network Quantizer

Functions
dlquantizationOptions | dlquantizer | validate

Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
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checkLayer
Check validity of custom layer

Syntax
checkLayer(layer,validInputSize)
checkLayer(layer,validInputSize,Name,Value)

Description
checkLayer(layer,validInputSize) checks the validity of a custom layer using generated data
of the sizes in validInputSize. For layers with a single input, set validInputSize to a typical
size of input data to the layer. For layers with multiple inputs, set validInputSize to a cell array of
typical sizes, where each element corresponds to a layer input.

checkLayer(layer,validInputSize,Name,Value) specifies additional options using one or
more name-value pairs.

Examples

Check Layer Validity

Check the validity of the example custom layer preluLayer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create an instance of the layer and check that it is valid using checkLayer. Set the valid input size
to the typical size of a single observation input to the layer. For a single input, the layer expects
observations of size h-by-w-by-c, where h, w, and c are the height, width, and number of channels of
the previous layer output, respectively.

Specify validInputSize as the typical size of an input array.

layer = preluLayer(20,'prelu');
validInputSize = [5 5 20];
checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option.
For 2-D image data, set 'ObservationDimension' to 4.
For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.
 
Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.........
Done nnet.checklayer.TestLayerWithoutBackward
__________
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Test Summary:
     9 Passed, 0 Failed, 0 Incomplete, 12 Skipped.
     Time elapsed: 0.21371 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
'ObservationsDimension' option, or do not have a GPU, then the function skips the
corresponding tests.

Check Multiple Observations

For multi-observation input, the layer expects an array of observations of size h-by-w-by-c-by-N,
where h, w, and c are the height, width, and number of channels, respectively, and N is the number of
observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
'ObservationDimension' to 4.

layer = preluLayer(20,'prelu');
validInputSize = [5 5 20];
checkLayer(layer,validInputSize,'ObservationDimension',4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ...
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     13 Passed, 0 Failed, 0 Incomplete, 8 Skipped.
     Time elapsed: 0.087935 seconds.

In this case, the function does not detect any issues with the layer.

Check Layer for Code Generation Compatibility

Check code generation compatibility of the custom layer codegenPreluLayer.

Define a custom PReLU layer with code generation support. To create this layer, save the file
codegenPreluLayer.m in the current folder.

Create an instance of the layer and check its validity using checkLayer. Specify the valid input size
to be the size of a single observation of typical input to the layer. The layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the 'ObservationDimension' option
to 4. To check for code generation compatibility set the 'CheckCodegenCompatibility' option to
true.

layer = codegenPreluLayer(20,'prelu');
validInputSize = [24 24 20];
checkLayer(layer,validInputSize,'ObservationDimension',4,'CheckCodegenCompatibility',true)
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Skipping GPU tests. No compatible GPU device found.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... .......
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     17 Passed, 0 Failed, 0 Incomplete, 4 Skipped.
     Time elapsed: 1.129 seconds.

Here, the function does not detect any issues with the layer.

Input Arguments
layer — Custom layer
nnet.layer.Layer object | nnet.layer.ClassificationLayer object |
nnet.layer.RegressionLayer object

Custom layer, specified as an nnet.layer.Layer object, nnet.layer.ClassificationLayer
object, or nnet.layer.RegressionLayer object. For an example showing how to define your own
custom layer, see “Define Custom Deep Learning Layer with Learnable Parameters”.

validInputSize — Valid input sizes
vector of positive integers | cell array of vectors of positive integers

Valid input sizes of the layer, specified as a vector of positive integers or cell array of vectors of
positive integers.

• For layers with a single input, specify validInputSize as a vector of integers corresponding to
the dimensions of the input data. For example, [5 5 10] corresponds to valid input data of size
5-by-5-by-10.

• For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each
vector corresponds to a layer input and the elements of the vectors correspond to the dimensions
of the corresponding input data. For example, {[24 24 20],[24 24 10]} corresponds to the
valid input sizes of two inputs, where 24-by-24-by-20 is a valid input size for the first input and 24-
by-24-by-10 is a valid input size for the second input.

For more information, see “Layer Input Sizes” on page 1-172.

For large input sizes, the gradient checks take longer to run. To speed up the tests, specify a smaller
valid input size.
Example: [5 5 10]
Example: {[24 24 20],[24 24 10]}
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'ObservationDimension',4 sets the observation dimension to 4

ObservationDimension — Observation dimension
positive integer

Observation dimension, specified as the comma-separated pair consisting of
'ObservationDimension' and a positive integer.

The observation dimension specifies which dimension of the layer input data corresponds to
observations. For example, if the layer expects input data is of size h-by-w-by-c-by-N, where h, w, and
c correspond to the height, width, and number of channels of the input data, respectively, and N
corresponds to the number of observations, then the observation dimension is 4. For more
information, see “Layer Input Sizes” on page 1-172.

If you specify the observation dimension, then the checkLayer function checks that the layer
functions are valid using generated data with mini-batches of size 1 and 2. If you do not specify the
observation dimension, then the function skips the corresponding tests.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckCodegenCompatibility — Flag to enable code generation tests
false (default) | true

Flag to enable code generation tests, specified as the comma-separated pair consisting of
'CheckCodegenCompatibility' and true or false.

If 'CheckCodegenCompatibility' is true, then you must set the 'ObservationDimension'
option.
Data Types: logical

More About
Layer Input Sizes

For each layer, the valid input size and the observation dimension depend on the output of the
previous layer.

Intermediate Layers

For intermediate layers (layers of type nnet.layer.Layer), the valid input size and the observation
dimension depend on the type of data input to the layer. For layers with a single input, specify
validInputSize as a vector of integers corresponding to the dimensions of the input data.For
layers with multiple inputs, specify validInputSize as a cell array of vectors, where each vector
corresponds to a layer input and the elements of the vectors correspond to the dimensions of the
corresponding input data. For large input sizes, the gradient checks take longer to run. To speed up
the tests, specify a smaller valid input size.

Layer Input Input Size Observation Dimension
2-D images h-by-w-by-c-by-N, where h, w,

and c correspond to the height,
width, and number of channels
of the images respectively, and
N is the number of observations.

4
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Layer Input Input Size Observation Dimension
3-D images h-by-w-by-d-by-c-by-N, where h,

w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images respectively, and N is
the number of observations.

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length.

2

2-D image sequences h-by-w-by-c-by-N-by-S, where h,
w, and c correspond to the
height, width, and number of
channels of the images
respectively, N is the number of
observations, and S is the
sequence length.

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images respectively, N is the
number of observations, and S
is the sequence length.

5

For example, for 2-D image classification problems, set validInputSize to [h w c], where h, w,
and c correspond to the height, width, and number of channels of the images, respectively, and
'ObservationDimension' to 4.

Code generation supports intermediate layers with 2-D image input only.

Output Layers

For output layers (layers of type nnet.layer.ClassificationLayer or
nnet.layer.RegressionLayer), set validInputSize to the typical size of a single input
observation Y to the layer.

For classification problems, the valid input size and the observation dimension of Y depend on the
type of problem:

Classification Task Input Size Observation Dimension
2-D image classification 1-by-1-by-K-by-N, where K is the

number of classes and N is the
number of observations.

4

3-D image classification 1-by-1-by-1-by-K-by-N, where K
is the number of classes and N
is the number of observations.

5
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Classification Task Input Size Observation Dimension
Sequence-to-label classification K-by-N, where K is the number

of classes and N is the number
of observations.

2

Sequence-to-sequence
classification

K-by-N-by-S, where K is the
number of classes, N is the
number of observations, and S
is the sequence length.

2

For example, for 2-D image classification problems, set validInputSize to [1 1 K], where K is the
number of classes, and 'ObservationDimension' to 4.

For regression problems, the dimensions of Y also depend on the type of problem. The following table
describes the dimensions of Y.

Regression Task Input Size Observation Dimension
2-D image regression 1-by-1-by-R-by-N, where R is the

number of responses and N is
the number of observations.

4

2-D Image-to-image regression h-by-w-by-c-by-N, where h, w,
and c are the height, width, and
number of channels of the
output respectively, and N is the
number of observations.

4

3-D image regression 1-by-1-by-1-by-R-by-N, where R
is the number of responses and
N is the number of observations.

5

3-D Image-to-image regression h-by-w-by-d-by-c-by-N, where h,
w, d, and c are the height,
width, depth, and number of
channels of the output
respectively, and N is the
number of observations.

5

Sequence-to-one regression R-by-N, where R is the number
of responses and N is the
number of observations.

2

Sequence-to-sequence
regression

R-by-N-by-S, where R is the
number of responses, N is the
number of observations, and S
is the sequence length.

2

For example, for 2-D image regression problems, set validInputSize to [1 1 R], where R is the
number of responses, and 'ObservationDimension' to 4.
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Algorithms
List of Tests

The checkLayer function checks the validity of a custom layer by performing a series of tests,
described in these tables. For more information on the tests used by checkLayer, see “Check
Custom Layer Validity”.
Intermediate Layers

The checkLayer function uses these tests to check the validity of custom intermediate layers (layers
of type nnet.layer.Layer).

Test Description
functionSyntaxesAreCorrect The syntaxes of the layer functions are correctly

defined.
predictDoesNotError predict does not error.
forwardDoesNotError When specified, forward does not error.
forwardPredictAreConsistentInSize When forward is specified, forward and

predict output values of the same size.
backwardDoesNotError When specified, backward does not error.
backwardIsConsistentInSize When backward is specified, the outputs of

backward are consistent in size:

• The derivatives with respect to each input are
the same size as the corresponding input.

• The derivatives with respect to each learnable
parameter are the same size as the
corresponding learnable parameter.

predictIsConsistentInType The outputs of predict are consistent in type
with the inputs.

forwardIsConsistentInType When forward is specified, the outputs of
forward are consistent in type with the inputs.

backwardIsConsistentInType When backward is specified, the outputs of
backward are consistent in type with the inputs.

gradientsAreNumericallyCorrect When backward is specified, the gradients
computed in backward are consistent with the
numerical gradients.

backwardPropagationDoesNotError When backward is not specified, the derivatives
can be computed using automatic differentiation.

codegenPragmaDefinedInClassDef The pragma "%#codegen" for code generation is
specified in class file.

checkForSupportedLayerPropertiesForCod
egen

The layer properties support code generation.

predictIsValidForCodeGeneration predict is valid for code generation.

The tests predictIsConsistentInType, forwardIsConsistentInType, and
backwardIsConsistentInType also check for GPU compatibility. To execute the layer functions on
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a GPU, the functions must support inputs and outputs of type gpuArray with the underlying data
type single.

Output Layers

The checkLayer function uses these tests to check the validity of custom output layers (layers of
type nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer).

Test Description
forwardLossDoesNotError forwardLoss does not error.
backwardLossDoesNotError backwardLoss does not error.
forwardLossIsScalar The output of forwardLoss is scalar.
backwardLossIsConsistentInSize When backwardLoss is specified, the output of

backwardLoss is consistent in size: dLdY is the
same size as the predictions Y.

forwardLossIsConsistentInType The output of forwardLoss is consistent in type:
loss is the same type as the predictions Y.

backwardLossIsConsistentInType When backwardLoss is specified, the output of
backwardLoss is consistent in type: dLdY must
be the same type as the predictions Y.

gradientsAreNumericallyCorrect When backwardLoss is specified, the gradients
computed in backwardLoss are numerically
correct.

backwardPropagationDoesNotError When backwardLoss is not specified, the
derivatives can be computed using automatic
differentiation.

The forwardLossIsConsistentInType and backwardLossIsConsistentInType tests also
check for GPU compatibility. To execute the layer functions on a GPU, the functions must support
inputs and outputs of type gpuArray with the underlying data type single.

See Also
analyzeNetwork | trainNetwork | trainingOptions

Topics
“Check Custom Layer Validity”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Define Custom Deep Learning Layer with Multiple Inputs”
“Define Custom Classification Output Layer”
“Define Custom Weighted Classification Layer”
“Define Custom Regression Output Layer”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”

Introduced in R2018a

1 Deep Learning Functions

1-176



classificationLayer
Classification output layer

Syntax
layer = classificationLayer
layer = classificationLayer(Name,Value)

Description
A classification layer computes the cross entropy loss for multi-class classification problems with
mutually exclusive classes.

The layer infers the number of classes from the output size of the previous layer. For example, to
specify the number of classes K of the network, include a fully connected layer with output size K and
a softmax layer before the classification layer.

layer = classificationLayer creates a classification layer.

layer = classificationLayer(Name,Value) sets the optional Name and Classes properties
using name-value pairs. For example, classificationLayer('Name','output') creates a
classification layer with the name 'output'. Enclose each property name in single quotes.

Examples

Create Classification Layer

Create a classification layer with the name 'output'.

layer = classificationLayer('Name','output')

layer = 
  ClassificationOutputLayer with properties:

            Name: 'output'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: classificationLayer('Name','output') creates a classification layer with the name
'output'

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str). The default value is 'auto'.
Data Types: char | categorical | string | cell

Output Arguments
layer — Classification layer
ClassificationOutputLayer object

Classification layer, returned as a ClassificationOutputLayer object.

For information on concatenating layers to construct convolutional neural network architecture, see
Layer.
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More About
Classification Layer

A classification layer computes the cross entropy loss for multi-class classification problems with
mutually exclusive classes.

For typical classification networks, the classification layer must follow the softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
[1]:

loss = − ∑
i = 1

N ∑
j = 1

K

ti jlnyi j,

where N is the number of samples, K is the number of classes, ti j is the indicator that the ith sample
belongs to the jth class, and yi j is the output for sample i for class j, which in this case, is the value
from the softmax function. That is, it is the probability that the network associates the ith input with
class j.

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
ClassificationOutputLayer | regressionLayer | softmaxLayer

Topics
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2016a
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ClassificationOutputLayer
Classification layer

Description
A classification layer computes the cross entropy loss for multi-class classification problems with
mutually exclusive classes.

Creation
Create a classification layer using classificationLayer.

Properties
Classification Output

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str). The default value is 'auto'.
Data Types: char | categorical | string | cell

OutputSize — Size of the output
'auto' (default) | positive integer

This property is read-only.

Size of the output, specified as a positive integer. This value is the number of labels in the data.
Before the training, the output size is set to 'auto'.

LossFunction — Loss function for training
'crossentropyex'

This property is read-only.

Loss function for training, specified as 'crossentropyex', which stands for Cross Entropy Function
for k Mutually Exclusive Classes.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.
Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.
Data Types: cell

Examples
Create Classification Layer

Create a classification layer with the name 'output'.

layer = classificationLayer('Name','output')

layer = 
  ClassificationOutputLayer with properties:

            Name: 'output'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
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    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Classification Output Layer

A classification layer computes the cross entropy loss for multi-class classification problems with
mutually exclusive classes.

For typical classification networks, the classification layer must follow the softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
[1]:

loss = − ∑
i = 1

N ∑
j = 1

K

ti jlnyi j,

where N is the number of samples, K is the number of classes, ti j is the indicator that the ith sample
belongs to the jth class, and yi j is the output for sample i for class j, which in this case, is the value
from the softmax function. That is, it is the probability that the network associates the ith input with
class j.

Compatibility Considerations
ClassNames property will be removed
Not recommended starting in R2018b

ClassNames will be removed. Use Classes instead. To update your code, replace all instances of
ClassNames with Classes. There are some differences between the properties that require
additional updates to your code.

The ClassNames property of the output layer is a cell array of character vectors. The Classes
property is a categorical array. To use the value of Classes with functions that require cell array
input, convert the classes using the cellstr function.
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References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also
regressionLayer | softmaxLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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classify
Classify data using a trained deep learning neural network

Syntax
YPred = classify(net,imds)
YPred = classify(net,ds)
YPred = classify(net,X)
YPred = classify(net,X1,...,XN)
YPred = classify(net,sequences)
YPred = classify(net,tbl)
YPred = classify( ___ ,Name,Value)
[YPred,scores] = classify( ___ )

Description
You can make predictions using a trained neural network for deep learning on either a CPU or GPU.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute
capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment
name-value pair argument.

For networks with multiple outputs, use the predict and set the 'ReturnCategorial' option to
true.

YPred = classify(net,imds) predicts class labels for the images in the image datastore imds
using the trained network net.

YPred = classify(net,ds) predicts class labels for the data in the datastore ds.

YPred = classify(net,X) predicts class labels for the image or feature data specified by the
numeric array X.

YPred = classify(net,X1,...,XN) predicts class labels for the data in the numeric arrays X1,
…, XN for the mutli-input network net. The input Xi corresponds to the network input
net.InputNames(i).

YPred = classify(net,sequences) predicts class labels for the time series or sequence data in
sequences for the recurrent network (for example, an LSTM or GRU network) net.

YPred = classify(net,tbl) predicts class labels for the data in the table tbl.

YPred = classify( ___ ,Name,Value) predicts class labels with additional options specified by
one or more name-value pair arguments using any of the previous syntaxes.

[YPred,scores] = classify( ___ ) also returns the classification scores corresponding to the
class labels using any of the previous syntaxes.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
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different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Classify Images Using Trained ConvNet

Load the sample data.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels
and 5000 is the number of synthetic images of handwritten digits. YTrain is a categorical vector
containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng('default')
net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |       10.16% |       2.3195 |          0.0100 |
|       2 |          50 |       00:00:10 |       50.78% |       1.7102 |          0.0100 |
|       3 |         100 |       00:00:19 |       63.28% |       1.1632 |          0.0100 |
|       4 |         150 |       00:00:33 |       60.16% |       1.0859 |          0.0100 |
|       6 |         200 |       00:00:43 |       68.75% |       0.8997 |          0.0100 |
|       7 |         250 |       00:00:53 |       76.56% |       0.7920 |          0.0100 |
|       8 |         300 |       00:01:03 |       73.44% |       0.8410 |          0.0100 |
|       9 |         350 |       00:01:13 |       81.25% |       0.5512 |          0.0100 |
|      11 |         400 |       00:01:21 |       90.63% |       0.4742 |          0.0100 |
|      12 |         450 |       00:01:35 |       92.19% |       0.3615 |          0.0100 |
|      13 |         500 |       00:01:50 |       94.53% |       0.3160 |          0.0100 |
|      15 |         550 |       00:02:02 |       96.09% |       0.2545 |          0.0100 |
|      16 |         600 |       00:02:15 |       92.19% |       0.2765 |          0.0100 |
|      17 |         650 |       00:02:25 |       95.31% |       0.2461 |          0.0100 |
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|      18 |         700 |       00:02:34 |       99.22% |       0.1420 |          0.0100 |
|      20 |         750 |       00:02:43 |       98.44% |       0.1000 |          0.0100 |
|      21 |         800 |       00:02:55 |       98.44% |       0.1449 |          0.0100 |
|      22 |         850 |       00:03:05 |       98.44% |       0.0989 |          0.0100 |
|      24 |         900 |       00:03:13 |       96.88% |       0.1315 |          0.0100 |
|      25 |         950 |       00:03:24 |      100.00% |       0.0859 |          0.0100 |
|      26 |        1000 |       00:03:34 |      100.00% |       0.0701 |          0.0100 |
|      27 |        1050 |       00:03:44 |      100.00% |       0.0759 |          0.0100 |
|      29 |        1100 |       00:03:52 |       99.22% |       0.0663 |          0.0100 |
|      30 |        1150 |       00:03:59 |       98.44% |       0.0775 |          0.0100 |
|      30 |        1170 |       00:04:02 |       99.22% |       0.0732 |          0.0100 |
|========================================================================================|

Run the trained network on a test set.

[XTest,YTest]= digitTest4DArrayData;
YPred = classify(net,XTest);

Display the first 10 images in the test data and compare to the classification from classify.

[YTest(1:10,:) YPred(1:10,:)]

ans = 10x2 categorical
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 
     0      0 

The results from classify match the true digits for the first ten images.

Calculate the accuracy over all test data.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9820

Classify Sequences Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the
Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by
sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:
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     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Classify the test data.

YPred = classify(net,XTest);

View the labels of the first 10 sequences with their predicted labels.

[YTest(1:10) YPred(1:10)]

ans = 10x2 categorical
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 
     1      1 

Calculate the classification accuracy of the predictions.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.8595

Classify Feature Data Using Trained Network

Load the pretrained network TransmissionCasingNet. This network classifies the gear tooth
condition of a transmission system given a mixture of numeric sensor readings, statistics, and
categorical inputs.

load TransmissionCasingNet.mat

View the network architecture.

net.Layers

ans = 
  7x1 Layer array with layers:

     1   'input'         Feature Input           22 features with 'zscore' normalization
     2   'fc_1'          Fully Connected         50 fully connected layer
     3   'batchnorm'     Batch Normalization     Batch normalization with 50 channels
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     4   'relu'          ReLU                    ReLU
     5   'fc_2'          Fully Connected         2 fully connected layer
     6   'softmax'       Softmax                 softmax
     7   'classoutput'   Classification Output   crossentropyex with classes 'No Tooth Fault' and 'Tooth Fault'

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');

Convert the labels for prediction to categorical using the convertvars function.

labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');

To make predictions using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. In this data set,
there are two categorical features with names "SensorCondition" and "ShaftCondition".

categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');

Loop over the categorical input variables. For each variable:

• Convert the categorical values to one-hot encoded vectors using the onehotencode function.
• Add the one-hot vectors to the table using the addvars function. Specify to insert the vectors

after the column containing the corresponding categorical data.
• Remove the corresponding column containing the categorical data.

for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end

Split the vectors into separate columns using the splitvars function.

tbl = splitvars(tbl);

View the first few rows of the table.

head(tbl)

ans=8×23 table
    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    ____________    _____________    __________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13                0                1                1              0           No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12                0                1                1              0           No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39                0                1                0              1           No Tooth Fault  
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Predict the labels of the test data using the trained network and calculate the accuracy. Specify the
same mini-batch size used for training.

YPred = classify(net,tbl(:,1:end-1));

Calculate the classification accuracy. The accuracy is the proportion of the labels that the network
predicts correctly.

YTest = tbl{:,labelName};
accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9952

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

ds — Datastore
datastore

Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a
cell array. The format of the datastore output depends on the network architecture.
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Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depend on the type of data.

Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.
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Data Format of Predictors
2-D image sequence h-by-w-by-c-by-s array, where h, w, and c

correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data
numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of
input:

Input Description
2-D images A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width,

and number of channels of the images, respectively, and N is the number of
images.

3-D images A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height,
width, depth, and number of channels of the images, respectively, and N is
the number of images.

Features A N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input
data.

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, …, XN, where N is the number
of network inputs and the input Xi corresponds to the network input net.InputNames(i).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.
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Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

tbl — Table of image or feature data
table

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

Input Predictors
Image data • Absolute or relative file path to an image,

specified as a character vector in a single
column

• Image specified as a 3-D numeric array

Specify predictors in a single column.
Feature data Numeric scalar.

Specify predictors in numFeatures columns of
the table, where numFeatures is the number of
features of the input data.

This argument supports networks with a single input only.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').
Example: 'MiniBatchSize','256' specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.
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When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.
Example: 'MiniBatchSize',256

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with
compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler
installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the
support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup”
(GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder). Recurrent neural networks (RNNs) containing a sequenceInputLayer are not
supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler to deploy your network when using the 'mex' option.
Example: 'Acceleration','mex'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
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• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled
NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

1 Deep Learning Functions

1-194



Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

Output Arguments
YPred — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The
format of YPred depends on the type of task.

The following table describes the format for classification tasks.

Task Format
Image or feature classification N-by-1 categorical vector of labels, where N is

the number of observations.Sequence-to-label classification
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
applying the SequenceLength option to each
mini-batch independently.

For sequence-to-sequence classification tasks
with one observation, sequences can be a
matrix. In this case, YPred is a categorical
sequence of labels.

scores — Predicted class scores
matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of task.

The following table describes the format of scores.

Task Format
Image classification N-by-K matrix, where N is the number of

observations, and K is the number of classesSequence-to-label classification
Feature classification
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequenceLength option to
each mini-batch independently.
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For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In
this case, scores is a matrix of predicted class scores.

For an example exploring classification scores, see “Classify Webcam Images Using Deep Learning”.

Algorithms
All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

Alternatives
For networks with multiple outputs, use the predict and set the 'ReturnCategorial' option to
true.

You can compute the predicted scores from a trained network using predict.

You can also compute the activations from a network layer using activations.

For sequence-to-label and sequence-to-sequence classification networks, you can make predictions
and update the network state using classifyAndUpdateState and predictAndUpdateState.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• [YPred,scores] = classify(net,X)
• [YPred,scores] = classify(net,sequences)
• [YPred,scores] = classify(__,Name,Value)

• GPU code generation for the classify function is not supported for regression networks and
networks with multiple outputs.

• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences. The ARM Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

1 Deep Learning Functions

1-196



• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the 'MiniBatchSize', 'SequenceLength', 'SequencePaddingDirection', and
'SequencePaddingValue' name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is
supported for code generation.

• GPU code generation for the classify function supports inputs that are defined as half-precision
floating point data types. For more information, see half.

See Also
activations | classifyAndUpdateState | predict | predictAndUpdateState

Topics
“Classify Image Using GoogLeNet”
“Classify Webcam Images Using Deep Learning”

Introduced in R2016a
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classifyAndUpdateState
Classify data using a trained recurrent neural network and update the network state

Syntax
[updatedNet,YPred] = classifyAndUpdateState(recNet,sequences)
[updatedNet,YPred] = classifyAndUpdateState( ___ ,Name,Value)
[updatedNet,YPred,scores] = classifyAndUpdateState( ___ )

Description
You can make predictions using a trained deep learning network on either a CPU or GPU. Using a
GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability
3.0 or higher. Specify the hardware requirements using the “'ExecutionEnvironment'” on page 1-0
name-value pair argument.

[updatedNet,YPred] = classifyAndUpdateState(recNet,sequences) classifies the data in
sequences using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one
recurrent layer.

[updatedNet,YPred] = classifyAndUpdateState( ___ ,Name,Value) uses any of the
arguments in the previous syntaxes and additional options specified by one or more Name,Value pair
arguments. For example, 'MiniBatchSize',27 classifies data using mini-batches of size 27

“Classify and Update Network State” on page 1-198

[updatedNet,YPred,scores] = classifyAndUpdateState( ___ ) uses any of the arguments
in the previous syntaxes, returns a matrix of classification scores, and updates the network state.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Classify and Update Network State

Classify data using a recurrent neural network and update the network state.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet
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View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Classify each time step and update the network state.

X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,label,score] = classifyAndUpdateState(net,v);
    labels(i) = label;
end

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time
steps.

figure
stairs(labels, '-o')
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")
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Compare the predictions with the true label. Plot a horizontal line showing the true label of the
observation.

trueLabel = YTest(94)

trueLabel = categorical
     3 

hold on
line([1 numTimeSteps],[trueLabel trueLabel], ...
    'Color','red', ...
    'LineStyle','--')
legend(["Prediction" "True Label"])
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Input Arguments
recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

 classifyAndUpdateState

1-201



Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [updatedNet, YPred] =
classifyAndUpdateState(recNet,C,'MiniBatchSize',27) classifies data using mini-batches
of size 27.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.
Example: 'MiniBatchSize',256

Acceleration — Performance optimization
'auto' (default) | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'none' — Disable all acceleration.

The default option is 'auto'.
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Using the 'Acceleration' option 'auto' can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using new input data.
Example: 'Acceleration','auto'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled

NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
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pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

Output Arguments
updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

YPred — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The
format of YPred depends on the type of problem.

The following table describes the format of YPred.

Task Format
Sequence-to-label classification N-by-1 categorical vector of labels, where N is

the number of observations.
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
applying the SequenceLength option to each
mini-batch independently.

For sequence-to-sequence classification problems
with one observation, sequences can be a
matrix. In this case, YPred is a categorical
sequence of labels.

scores — Predicted class scores
matrix | cell array of matrices
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Predicted class scores, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of problem.

The following table describes the format of scores.

Task Format
Sequence-to-label classification N-by-K matrix, where N is the number of

observations, and K is the number of classes.
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequenceLength option to
each mini-batch independently.

For sequence-to-sequence classification problems with one observation, sequences can be a matrix.
In this case, scores is a matrix of predicted class scores.

Algorithms
All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
bilstmLayer | classify | gruLayer | lstmLayer | predict | predictAndUpdateState |
resetState | sequenceInputLayer

Topics
“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”

Introduced in R2017b
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clippedReluLayer
Clipped Rectified Linear Unit (ReLU) layer

Description
A clipped ReLU layer performs a threshold operation, where any input value less than zero is set to
zero and any value above the clipping ceiling is set to that clipping ceiling.

This operation is equivalent to:

f (x) =
0, x < 0
x, 0 ≤ x < ceiling
ceiling, x ≥ ceiling

.

This clipping prevents the output from becoming too large.

Creation

Syntax
layer = clippedReluLayer(ceiling)
layer = clippedReluLayer(ceiling,'Name',Name)

Description

layer = clippedReluLayer(ceiling) returns a clipped ReLU layer with the clipping ceiling
equal to ceiling.

layer = clippedReluLayer(ceiling,'Name',Name) sets the optional Name property.

Properties
Clipped ReLU

Ceiling — Ceiling for input clipping
positive scalar

Ceiling for input clipping, specified as a positive scalar.
Example: 10

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Clipped ReLU Layer

Create a clipped ReLU layer with the name 'clip1' and the clipping ceiling equal to 10.

layer = clippedReluLayer(10,'Name','clip1')

layer = 
  ClippedReLULayer with properties:

       Name: 'clip1'

   Hyperparameters
    Ceiling: 10

Include a clipped ReLU layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    clippedReluLayer(10)
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    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Clipped ReLU            Clipped ReLU with ceiling 10
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

References
[1] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan

Prenger, et al. "Deep speech: Scaling up end-to-end speech recognition." Preprint, submitted
17 Dec 2014. http://arxiv.org/abs/1412.5567

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
leakyReluLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
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concatenationLayer
Concatenation layer

Description
A concatenation layer takes inputs and concatenates them along a specified dimension. The inputs
must have the same size in all dimensions except the concatenation dimension.

Specify the number of inputs to the layer when you create it. The inputs have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax
layer = concatenationLayer(dim,numInputs)
layer = concatenationLayer(dim,numInputs,'Name',name)

Description

layer = concatenationLayer(dim,numInputs) creates a concatenation layer that
concatenates numInputs inputs along the specified dimension, dim. This function also sets the Dim
and NumInputs properties.

layer = concatenationLayer(dim,numInputs,'Name',name) also sets the Name property. To
create a network containing a concatenation layer, you must specify a layer name.

Properties
Concatenation

Dim — Concatenation dimension
positive integer

Concatenation dimension, specified as a positive integer.
Example: 4

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph,
you must specify a layer name.
Data Types: char | string
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NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1','in2',...,'inN', where N equals NumInputs. For example, if
NumInputs equals 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input
names when connecting or disconnecting the layer by using connectLayers or
disconnectLayers.

InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Concatenation Layer

Create a concatenation layer that concatenates two inputs along the fourth dimension (channels).
Name the concatenation layer 'concat'.

concat = concatenationLayer(4,2,'Name','concat')

concat = 
  ConcatenationLayer with properties:

          Name: 'concat'
           Dim: 4
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the concatenation layer. The concatenation layer
concatenates the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph();
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lgraph = addLayers(lgraph, relu_1);
lgraph = addLayers(lgraph, relu_2);
lgraph = addLayers(lgraph, concat);

lgraph = connectLayers(lgraph, 'relu_1', 'concat/in1');
lgraph = connectLayers(lgraph, 'relu_2', 'concat/in2');
plot(lgraph)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
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Introduced in R2019a
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confusionchart
Create confusion matrix chart for classification problem

Syntax
confusionchart(trueLabels,predictedLabels)
confusionchart(m)
confusionchart(m,classLabels)
confusionchart(parent, ___ )
confusionchart( ___ ,Name,Value)
cm = confusionchart( ___ )

Description
confusionchart(trueLabels,predictedLabels) creates a confusion matrix chart from true
labels trueLabels and predicted labels predictedLabels and returns a ConfusionMatrixChart
object. The rows of the confusion matrix correspond to the true class and the columns correspond to
the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified
observations, respectively. Use cm to modify the confusion matrix chart after it is created. For a list of
properties, see ConfusionMatrixChart Properties.

confusionchart(m) creates a confusion matrix chart from the numeric confusion matrix m. Use this
syntax if you already have a numeric confusion matrix in the workspace.

confusionchart(m,classLabels) specifies class labels that appear along the x-axis and y-axis.
Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

confusionchart(parent, ___ ) creates the confusion chart in the figure, panel, or tab specified
by parent.

confusionchart( ___ ,Name,Value) specifies additional ConfusionMatrixChart properties
using one or more name-value pair arguments. Specify the properties after all other input arguments.
For a list of properties, see ConfusionMatrixChart Properties.

cm = confusionchart( ___ ) returns the ConfusionMatrixChart object. Use cm to modify
properties of the chart after creating it. For a list of properties, see ConfusionMatrixChart Properties.

Examples

Create Confusion Matrix Chart

Load a sample of predicted and true labels for a classification problem. trueLabels is the true
labels for an image classification problem and predictedLabels is the predictions of a
convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Create a confusion matrix chart.
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figure
cm = confusionchart(trueLabels,predictedLabels);

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add
column and row summaries and a title. A column-normalized column summary displays the number of
correctly and incorrectly classified observations for each predicted class as percentages of the
number of observations of the corresponding predicted class. A row-normalized row summary
displays the number of correctly and incorrectly classified observations for each true class as
percentages of the number of observations of the corresponding true class.

cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = 'CIFAR-10 Confusion Matrix';
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Create Confusion Matrix Chart from Numeric Confusion Matrix

You can use confusionchart to create a confusion matrix chart from a numeric confusion matrix.

Load a sample confusion matrix m and the associated class labels classLabels.

load('Cifar10ConfusionMat.mat','m','classLabels');
m

m = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

classLabels
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classLabels = 10x1 categorical
     airplane 
     automobile 
     bird 
     cat 
     deer 
     dog 
     frog 
     horse 
     ship 
     truck 

Create a confusion matrix chart from the numeric confusion matrix and the class labels.

cm = confusionchart(m,classLabels);

Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart with column and row summaries

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
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cm = confusionchart(trueLabels,predictedLabels, ...
    'ColumnSummary','column-normalized', ...
    'RowSummary','row-normalized');

To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell
values across each row, that is, by the number of observations that have the same true class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the row summaries to the right
are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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To sort the classes by class-wise precision (positive predictive value), normalize the cell values across
each column, that is, by the number of observations that have the same predicted class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the column summaries at the
bottom are decreasing.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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Input Arguments
trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector,
character array, cell array of character vectors, or logical vector. If trueLabels is a vector, then
each element corresponds to one observation. If trueLabels is a character array, then it must be
two-dimensional with each row corresponding to the label of one observation.

predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If predictedLabels is a
vector, then each element corresponds to one observation. If predictedLabels is a character array,
then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. m must be square and its elements must be positive integers.
The element m(i,j) is the number of times an observation of the ith true class was predicted to be
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of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the
confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If classLabels is a vector,
then it must have the same number of elements as the confusion matrix has rows and columns. If
classLabels is a character array, then it must be two-dimensional with each row corresponding to
the label of one class.

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: cm = confusionchart(trueLabels,predictedLabels,'Title','My Title
Text','ColumnSummary','column-normalized')

Note The properties listed here are only a subset. For a complete list, see ConfusionMatrixChart
Properties.

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.
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Option Description
'column-normalized' Display the number of correctly and incorrectly

classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
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Option Description
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Output Arguments
cm — Confusion matrix chart object
ConfusionMatrixChart object

ConfusionMatrixChart object, which is a standalone visualization on page 1-222. Use cm to set
properties of the confusion matrix chart after creating it.

Limitations
• MATLAB code generation is not supported for ConfusionMatrixChart objects.

More About
Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

Tips
• If you have Statistics and Machine Learning Toolbox, you can create a confusion matrix chart for

tall arrays. For details, see confusionchart and “Confusion Matrix for Classification Using Tall
Arrays” (Statistics and Machine Learning Toolbox).

See Also
Functions
categorical | classify | confusionmat | sortClasses
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Properties
ConfusionMatrixChart Properties

Topics
“Deep Learning in MATLAB”

Introduced in R2018b
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confusionmat
Compute confusion matrix for classification problem

Syntax
C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'Order',grouporder)
[C,order] = confusionmat( ___ )

Description
C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known
and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat,'Order',grouporder) uses grouporder to order the
rows and columns of C.

[C,order] = confusionmat( ___ ) also returns the order of the rows and columns of C in the
variable order using any of the input arguments in previous syntaxes.

Examples

Calculate Confusion Matrix

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Calculate the numeric confusion matrix. order is the order of the classes in the confusion matrix.

[m,order] = confusionmat(trueLabels,predictedLabels)

m = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

order = 10x1 categorical
     airplane 
     automobile 
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     bird 
     cat 
     deer 
     dog 
     frog 
     horse 
     ship 
     truck 

You can use confusionchart to plot a the confusion matrix as a confusion matrix chart.

figure
cm = confusionchart(m,order);

You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion
matrix chart directly from the true and predicted labels. You can also add column and row summaries
and a title.

figure
cm = confusionchart(trueLabels,predictedLabels, ...
    'Title','My Title', ...
    'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized');
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The ConfusionMatrixChart object stores the numeric confusion matrix in the NormalizedValues
property and classes in the ClassLabels property.

cm.NormalizedValues

ans = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

cm.ClassLabels

ans = 10x1 categorical
     airplane 
     automobile 
     bird 
     cat 
     deer 
     dog 
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     frog 
     horse 
     ship 
     truck 

Input Arguments
group — Known groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Known groups for categorizing observations, specified as a numeric vector, logical vector, character
array, string array, cell array of character vectors, or categorical vector.

group is a grouping variable of the same type as grouphat. The group argument must have the
same number of observations as grouphat, as described in “Grouping Variables” (Statistics and
Machine Learning Toolbox). The confusionmat function treats character arrays and string arrays as
cell arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined'
values in group as missing values and does not count them as distinct groups or categories.
Example: {'Male','Female','Female','Male','Female'}
Data Types: single | double | logical | char | string | cell | categorical

grouphat — Predicted groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Predicted groups for categorizing observations, specified as a numeric vector, logical vector,
character array, string array, cell array of character vectors, or categorical vector.

grouphat is a grouping variable of the same type as group. The grouphat argument must have the
same number of observations as group, as described in “Grouping Variables” (Statistics and Machine
Learning Toolbox). The confusionmat function treats character arrays and string arrays as cell
arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined' values
in grouphat as missing values and does not count them as distinct groups or categories.
Example: [1 0 0 1 0]
Data Types: single | double | logical | char | string | cell | categorical

grouporder — Group order
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Group order, specified as a numeric vector, logical vector, character array, string array, cell array of
character vectors, or categorical vector.

grouporder is a grouping variable containing all the distinct elements in group and grouphat.
Specify grouporder to define the order of the rows and columns of C. If grouporder contains
elements that are not in group or grouphat, the corresponding entries in C are 0.

By default, the group order depends on the data type of s = [group;grouphat]:
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• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

Example: 'order',{'setosa','versicolor','virginica'}
Data Types: single | double | logical | char | string | cell | categorical

Output Arguments
C — Confusion matrix
matrix

Confusion matrix, returned as a square matrix with size equal to the total number of distinct elements
in the group and grouphat arguments. C(i,j) is the count of observations known to be in group i
but predicted to be in group j.

The rows and columns of C have identical ordering of the same group indices. By default, the group
order depends on the data type of s = [group;grouphat]:

• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

To change the order, specify grouporder,

The confusionmat function treats NaN, empty, and 'undefined' values in the grouping variables
as missing values and does not include them in the rows and columns of C.

order — Order of rows and columns
numeric vector | logical vector | categorical vector | cell array of character vectors

Order of rows and columns in C, returned as a numeric vector, logical vector, categorical vector, or
cell array of character vectors. If group and grouphat are character arrays, string arrays, or cell
arrays of character vectors, then the variable order is a cell array of character vectors. Otherwise,
order is of the same type as group and grouphat.

Alternative Functionality
• Use confusionchart to calculate and plot a confusion matrix. Additionally, confusionchart

displays summary statistics about your data and sorts the classes of the confusion matrix
according to the class-wise precision (positive predictive value), class-wise recall (true positive
rate), or total number of correctly classified observations.

See Also
categories | classify | confusionchart

Topics
“Deep Learning in MATLAB”
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ConfusionMatrixChart Properties
Confusion matrix chart appearance and behavior

Description
ConfusionMatrixChart properties control the appearance and behavior of a
ConfusionMatrixChart object. By changing property values, you can modify certain aspects of the
confusion matrix chart. For example, you can add a title:

cm = confusionchart([1 3 5; 2 4 6; 11 7 3]);
cm.Title = 'My Confusion Matrix Title';

Properties
Labels

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'

XLabel — Label for x-axis
'Predicted class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'XLabel','My Label')
Example: cm.XLabel = 'My Label'

YLabel — Label for y-axis
'True class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'YLabel','My Label')
Example: cm.YLabel = 'My Label'

ClassLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

This property is read-only.

Class labels of the confusion matrix chart, stored as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector.
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Row and Column Summaries

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.

'column-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'
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Data

NormalizedValues — Values of the confusion matrix
numeric matrix

This property is read-only.

Values of the confusion matrix, stored as a numeric matrix. This property equals the values of the
confusion matrix normalized using the method of the Normalization property. The software
recalculates the normalized values of the confusion matrix each time you modify the Normalization
property.

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Color and Styling

GridVisible — State of grid visibility
'on' (default) | on/off logical value

State of grid visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of
this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display grid lines between the chart cells.
• 'off' — Do not display grid lines between the chart cells.

Example: cm = confusionchart(__,'GridVisible','off')
Example: cm.GridVisible = 'off'

DiagonalColor — Color for diagonal cells
[0 0.4471 0.7412] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color for diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the DiagonalColor
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property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values
are colored with a minimum amount of color, proportional to the DiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'DiagonalColor','blue')
Example: cm.DiagonalColor = 'blue'

OffDiagonalColor — Color for off-diagonal cells
[0.8510 0.3255 0.0980] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
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Color for off-diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the
OffDiagonalColor property, normalized to the largest cell value of the confusion matrix chart.
Cells with positive values are colored with a minimum amount of color, proportional to the
OffDiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'OffDiagonalColor','blue')
Example: cm.OffDiagonalColor = 'blue'
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FontColor — Text color for title, axis labels, and class labels
[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color for title, axis labels, and class labels, specified as an RGB triplet, a hexadecimal color code,
a color name, or a short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'FontColor','blue')
Example: cm.FontColor = 'blue'
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Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the specific
operating system and locale.
Example: cm = confusionchart(__,'FontName','Cambria')
Example: cm.FontName = 'Cambria'

FontSize — Font size
positive scalar

Font size used for the title, axis labels, class labels, and cell labels, specified as a positive scalar. The
default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not enough room
to display the cell labels within the cells, then the cell labels use a smaller font size. If the cell labels
become too small, then they are hidden.
Example: cm = confusionchart(__,'FontSize',12)
Example: cm.FontSize = 12

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element vector

Outer size and position within the parent container (a figure, panel, or tab), specified as a four-
element vector of the form [left bottom width height]. The outer position includes the title,
axis labels, and class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include the chart cells, plus a
margin for the surrounding text.
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The default value of [0 0 1 1] is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units property.
Example: cm = confusionchart(__,'OuterPosition',[0.1 0.1 0.8 0.8])
Example: cm.OuterPosition = [0.1 0.1 0.8 0.8]

InnerPosition — Inner size and position
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. The inner position does not
include the title, axis labels, or class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include only the chart cells.

Example: cm = confusionchart(__,'InnerPosition',[0.1 0.1 0.8 0.8])
Example: cm.InnerPosition = [0.1 0.1 0.8 0.8]

Position — Inner size and position
four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. This property is equivalent to the
InnerPosition property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values:

Units Description
'normalized' Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
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Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the Units
property before specifying the properties that you want to use these units for, such as
OuterPosition.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;
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To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south',
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the chart.
• 'off' — Hide the chart without deleting it. You still can access the properties of an invisible

chart.

Parent/Child

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the chart object handle in the Children property of the parent, specified as one of these
values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
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Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

See Also
Functions
categorical | confusionchart | sortClasses

Topics
“Deep Learning in MATLAB”

Introduced in R2018b
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connectLayers
Connect layers in layer graph

Syntax
newlgraph = connectLayers(lgraph,s,d)

Description
newlgraph = connectLayers(lgraph,s,d) connects the source layer s to the destination layer
d in the layer graph lgraph. The new layer graph, newlgraph, contains the same layers as lgraph
and includes the new connection.

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')

add = 
  AdditionLayer with properties:

          Name: 'add_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs
from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names
and all names must be unique.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
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    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the
'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv'
and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To
check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9930

Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

s — Connection source
character vector | string scalar

Connection source, specified as a character vector or a string scalar.
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• If the source layer has a single output, then s is the name of the layer.
• If the source layer has multiple outputs, then s is the layer name followed by the character / and

the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

d — Connection destination
character vector | string scalar

Connection destination, specified as a character vector or a string scalar.

• If the destination layer has a single input, then d is the name of the layer.
• If the destination layer has multiple inputs, then d is the layer name followed by the character /

and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments
newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also
addLayers | assembleNetwork | disconnectLayers | layerGraph | plot | removeLayers |
replaceLayer

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
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convolution2dLayer
2-D convolutional layer

Description
A 2-D convolutional layer applies sliding convolutional filters to the input. The layer convolves the
input by moving the filters along the input vertically and horizontally and computing the dot product
of the weights and the input, and then adding a bias term.

Creation

Syntax
layer = convolution2dLayer(filterSize,numFilters)
layer = convolution2dLayer(filterSize,numFilters,Name,Value)

Description

layer = convolution2dLayer(filterSize,numFilters) creates a 2-D convolutional layer
and sets the FilterSize and NumFilters properties.

layer = convolution2dLayer(filterSize,numFilters,Name,Value) sets the optional
Stride, DilationFactor, NumChannels, “Parameters and Initialization” on page 1-250, “Learn
Rate and Regularization” on page 1-251, and Name properties using name-value pairs. To specify
input padding, use the 'Padding' name-value pair argument. For example,
convolution2dLayer(11,96,'Stride',4,'Padding',1) creates a 2-D convolutional layer with
96 filters of size [11 11], a stride of [4 4], and zero padding of size 1 along all edges of the layer
input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride, DilationFactor, NumChannels, “Parameters and
Initialization” on page 1-250, “Learn Rate and Regularization” on page 1-251, and Name properties.
Enclose names in single quotes.
Example: convolution2dLayer(3,16,'Padding','same') creates a 2-D convolutional layer
with 16 filters of size [3 3] and 'same' padding. At training time, the software calculates and sets
the size of the zero padding so that the layer output has the same size as the input.

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:
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• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector [h w] of two positive integers, where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height
and width.
Example: [5 5] specifies filters with a height of 5 and a width of 5.

NumFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the convolutional layer that connect to the same region in the input. This parameter determines
the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.
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DilationFactor — Factor for dilated convolution
[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w] of two
positive integers, where h is the vertical dilation and w is the horizontal dilation. When creating the
layer, you can specify DilationFactor as a scalar to use the same value for both horizontal and
vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.
Example: [2 3]

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

NumChannels — Number of channels for each filter
'auto' (default) | positive integer

Number of channels for each filter, specified as 'auto' or a positive integer.

This parameter is always equal to the number of channels of the input to the convolutional layer. For
example, if the input is a color image, then the number of channels for the input is 3. If the number of
filters for the convolutional layer prior to the current layer is 16, then the number of channels for the
current layer is 16.

If NumChannels is 'auto', then the software determines the number of channels at training time.
Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [4] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*NumFilters.

• 'he' – Initialize the weights with the He initializer [5]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
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• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-NumChannels-by-
NumFilters array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFilters array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar
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Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters, each with a height and width of 11. Use a stride (step
size) of 4 in the horizontal and vertical directions.

layer = convolution2dLayer(11,96,'Stride',4)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [11 11]
       NumChannels: 'auto'
        NumFilters: 96
            Stride: [4 4]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Include a convolutional layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:
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     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in Convolutional Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Functions

Create a convolutional layer with 32 filters, each with a height and width of 5 and specify the weights
initializer to be the He initializer.

filterSize = 5;
numFilters = 32;
layer = convolution2dLayer(filterSize,numFilters, ...
    'WeightsInitializer','he')

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.
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Create a convolutional layer with 32 filters, each with a height and width of 5 and specify initializers
that sample the weights and biases from a Gaussian distribution with a standard deviation of 0.0001.

filterSize = 5;
numFilters = 32;

layer = convolution2dLayer(filterSize,numFilters, ...
    'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
    'BiasInitializer', @(sz) rand(sz) * 0.0001)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a fully connected layer with an output size of 10 and set the weights and bias to W and b in the
MAT file Conv2dWeights.mat respectively.

filterSize = 5;
numFilters = 32;
load Conv2dWeights

layer = convolution2dLayer(filterSize,numFilters, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 3
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
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       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]

   Learnable Parameters
           Weights: [5x5x3x32 double]
              Bias: [1x1x32 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

Create Convolutional Layer That Fully Covers Input

Suppose the size of the input is 28-by-28-by-1. Create a convolutional layer with 16 filters, each with
a height of 6 and a width of 4. Set the horizontal and vertical stride to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input,
both the horizontal and vertical output dimensions must be integer numbers. For the horizontal
output dimension to be an integer, one row of zero padding is required on the top and bottom of the
image: (28 – 6+ 2 * 1)/4 + 1 = 7. For the vertical output dimension to be an integer, no zero padding
is required: (28 – 4+ 2 * 0)/4 + 1 = 7.

Construct the convolutional layer.

layer = convolution2dLayer([6 4],16,'Stride',4,'Padding',[1 0])

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [6 4]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [1 1 0 0]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties
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More About
Convolutional Layer

A 2-D convolutional layer applies sliding convolutional filters to the input. The layer convolves the
input by moving the filters along the input vertically and horizontally, computing the dot product of
the weights and the input, and then adding a bias term.

The convolutional layer consists of various components.1

Filters and Stride

A convolutional layer consists of neurons that connect to subregions of the input images or the
outputs of the previous layer. The layer learns the features localized by these regions while scanning
through an image. When creating a layer using the convolution2dLayer function, you can specify
the size of these regions using the filterSize input argument.

For each region, the trainNetwork function computes a dot product of the weights and the input,
and then adds a bias term. A set of weights that is applied to a region in the image is called a filter.
The filter moves along the input image vertically and horizontally, repeating the same computation for
each region. In other words, the filter convolves the input.

This image shows a 3-by-3 filter scanning through the input. The lower map represents the input and
the upper map represents the output.

The step size with which the filter moves is called a stride. You can specify the step size with the
Stride name-value pair argument. The local regions that the neurons connect to can overlap
depending on the filterSize and 'Stride' values.

This image shows a 3-by-3 filter scanning through the input with a stride of 2. The lower map
represents the input and the upper map represents the output.

1. Image credit: Convolution arithmetic (License)
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The number of weights in a filter is h * w * c, where h is the height, and w is the width of the filter,
respectively, and c is the number of channels in the input. For example, if the input is a color image,
the number of color channels is 3. The number of filters determines the number of channels in the
output of a convolutional layer. Specify the number of filters using the numFilters argument with
the convolution2dLayer function.

Dilated Convolutions

A dilated convolution is a convolution in which the filters are expanded by spaces inserted between
the elements of the filter. Specify the dilation factor using the 'DilationFactor' property.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.

This image shows a 3-by-3 filter dilated by a factor of two scanning through the input. The lower map
represents the input and the upper map represents the output.
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Feature Maps

As a filter moves along the input, it uses the same set of weights and the same bias for the
convolution, forming a feature map. Each feature map is the result of a convolution using a different
set of weights and a different bias. Hence, the number of feature maps is equal to the number of
filters. The total number of parameters in a convolutional layer is ((h*w*c + 1)*Number of Filters),
where 1 is the bias.

Zero Padding

You can also apply zero padding to input image borders vertically and horizontally using the
'Padding' name-value pair argument. Padding is rows or columns of zeros added to the borders of
an image input. By adjusting the padding, you can control the output size of the layer.

This image shows a 3-by-3 filter scanning through the input with padding of size 1. The lower map
represents the input and the upper map represents the output.
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Output Size

The output height and width of a convolutional layer is (Input Size – ((Filter Size – 1)*Dilation Factor
+ 1) + 2*Padding)/Stride + 1. This value must be an integer for the whole image to be fully covered.
If the combination of these options does not lead the image to be fully covered, the software by
default ignores the remaining part of the image along the right and bottom edges in the convolution.

Number of Neurons

The product of the output height and width gives the total number of neurons in a feature map, say
Map Size. The total number of neurons (output size) in a convolutional layer is Map Size*Number of
Filters.

For example, suppose that the input image is a 32-by-32-by-3 color image. For a convolutional layer
with eight filters and a filter size of 5-by-5, the number of weights per filter is 5 * 5 * 3 = 75, and the
total number of parameters in the layer is (75 + 1) * 8 = 608. If the stride is 2 in each direction and
padding of size 2 is specified, then each feature map is 16-by-16. This is because (32 – 5 + 2 * 2)/2 +
1 = 16.5, and some of the outermost zero padding to the right and bottom of the image is discarded.
Finally, the total number of neurons in the layer is 16 * 16 * 8 = 2048.

Usually, the results from these neurons pass through some form of nonlinearity, such as rectified
linear units (ReLU).
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Learnable Parameters

You can adjust the learning rates and regularization options for the layer using name-value pair
arguments while defining the convolutional layer. If you choose not to specify these options, then
trainNetwork uses the global training options defined with the trainingOptions function. For
details on global and layer training options, see “Set Up Parameters and Train Convolutional Neural
Network”.

Number of Layers

A convolutional neural network can consist of one or multiple convolutional layers. The number of
convolutional layers depends on the amount and complexity of the data.

Compatibility Considerations
Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
Deep Network Designer | batchNormalizationLayer | fullyConnectedLayer |
groupedConvolution2dLayer | maxPooling2dLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2016a
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convolution3dLayer
3-D convolutional layer

Description
A 3-D convolutional layer applies sliding cuboidal convolution filters to three-dimensional input. The
layer convolves the input by moving the filters along the input vertically, horizontally, and along the
depth, computing the dot product of the weights and the input, and then adding a bias term.

Creation

Syntax
layer = convolution3dLayer(filterSize,numFilters)
layer = convolution3dLayer(filterSize,numFilters,Name,Value)

Description

layer = convolution3dLayer(filterSize,numFilters) creates a 3-D convolutional layer
and sets the FilterSize and NumFilters properties.

layer = convolution3dLayer(filterSize,numFilters,Name,Value) sets the optional
Stride, DilationFactor, NumChannels, “Parameters and Initialization” on page 1-266, “Learn
Rate and Regularization” on page 1-267, and Name properties using name-value pairs. To specify
input padding, use the 'Padding' name-value pair argument. For example,
convolution3dLayer(11,96,'Stride',4,'Padding',1) creates a 3-D convolutional layer with
96 filters of size [11 11 11], a stride of [4 4 4], and zero padding of size 1 along all edges of the
layer input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride, DilationFactor, NumChannels, “Parameters and
Initialization” on page 1-266, “Learn Rate and Regularization” on page 1-267, and Name properties.
Enclose names in single quotes.
Example: convolution3dLayer(3,16,'Padding','same') creates a 3-D convolutional layer
with 16 filters of size [3 3 3] and 'same' padding. At training time, the software calculates and
sets the size of the zero padding so that the layer output has the same size as the input.

Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:
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• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Convolution

FilterSize — Height, width, and depth of filters
vector of three positive integers

Height, width, and depth of the filters, specified as a vector [h w d] of three positive integers,
where h is the height, w is the width, and d is the depth. FilterSize defines the size of the local
regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the
height, width, and depth.
Example: [5 5 5] specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the convolutional layer that connect to the same region in the input. This parameter determines
the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
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depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

DilationFactor — Factor for dilated convolution
[1 1 1] (default) | vector of three positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w d] of
three positive integers, where h is the vertical dilation, w is the horizontal dilation, and d is the
dilation along the depth. When creating the layer, you can specify DilationFactor as a scalar to
use the same value for dilation in all three directions.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3-
by-3 filter with the dilation factor [2 2 2] is equivalent to a 5-by-5-by-5 filter with zeros between the
elements.
Example: [2 3 1] dilates the filter vertically by a factor of 2, horizontally by a factor of 3, and along
the depth by a factor of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
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padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

NumChannels — Number of channels for each filter
'auto' (default) | positive integer

Number of channels for each filter, specified as 'auto' or a positive integer.

This parameter is always equal to the number of channels of the input to the convolutional layer. For
example, if the input is a color image, then the number of channels for the input is 3. If the number of
filters for the convolutional layer prior to the current layer is 16, then the number of channels for the
current layer is 16.

If NumChannels is 'auto', then the software determines the number of channels at training time.
Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
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• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• Function handle – Initialize the bias with a custom function. If you specify a function handle, then
the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-
NumChannels-by-NumFilters array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-1-by-NumFilters array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Convolution Layer

Create a 3-D convolution layer with 16 filters, each with a height, width, and depth of 5. Use a stride
(step size) of 4 in all three directions.

layer = convolution3dLayer(5,16,'Stride',4)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4 4]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Include a 3-D convolution layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,16,'Stride',4)
    reluLayer
    maxPooling3dLayer(2,'Stride',4)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             16 5x5x5 convolutions with stride [4  4  4] and padding [0  0  0; 0  0  0]
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     3   ''   ReLU                    ReLU
     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [4  4  4] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in 3-D Convolutional Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Functions

Create a 3-D convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify the
weights initializer to be the He initializer.

filterSize = 5;
numFilters = 32;
layer = convolution3dLayer(filterSize,numFilters, ...
    'WeightsInitializer','he')

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1 1]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.

Create a convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify
initializers that sample the weights and biases from a Gaussian distribution with a standard deviation
of 0.0001.
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filterSize = 5;
numFilters = 32;

layer = convolution3dLayer(filterSize,numFilters, ...
    'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
    'BiasInitializer', @(sz) rand(sz) * 0.0001)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1 1]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a 3-D convolutional layer compatible with color images. Set the weights and bias to W and b in
the MAT file Conv3dWeights.mat respectively.

filterSize = 5;
numFilters = 32;
load Conv3dWeights

layer = convolution3dLayer(filterSize,numFilters, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 3
        NumFilters: 32
            Stride: [1 1 1]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
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   Learnable Parameters
           Weights: [5-D double]
              Bias: [1x1x1x32 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

Create Convolutional Layer That Fully Covers 3-D Input

Suppose the size of the input is 28-by-28-by-28-by-1. Create a 3-D convolutional layer with 16 filters,
each with a height of 6, a width of 4, and a depth of 5. Set the stride in all dimensions to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input,
the output dimensions must be integer numbers. When there is no dilation, the i-th output dimension
is calculated as (imageSize(i) - filterSize(i) + padding(i)) / stride(i) + 1.

• For the horizontal output dimension to be an integer, two rows of zero padding are required: (28 –
6 + 2)/4 + 1 = 7. Distribute the padding symmetrically by adding one row of padding at the top
and bottom of the image.

• For the vertical output dimension to be an integer, no zero padding is required: (28 – 4+ 0)/4 + 1
= 7.

• For the depth output dimension to be an integer, one plane of zero padding is required: (28 – 5 +
1)/4 + 1 = 7. You must distribute the padding asymmetrically across the front and back of the
image. This example adds one plane of zero padding to the back of the image.

Construct the convolutional layer. Specify 'Padding' as a 2-by-3 matrix. The first row specifies
prepadding and the second row specifies postpadding in the three dimensions.

layer = convolution3dLayer([6 4 5],16,'Stride',4,'Padding',[1 0 0;1 0 1])

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [6 4 5]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4 4]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties
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More About
3-D Convolutional Layer

A convolutional layer applies sliding convolutional filters to the input. A 3-D convolutional layer
extends the functionality of a 2-D convolutional layer to a third dimension, depth. The layer convolves
the input by moving the filters along the input vertically, horizontally, and along the depth, computing
the dot product of the weights and the input, and then adding a bias term. To learn more, see the
definition of convolutional layer on page 1-257 on the convolution2dLayer reference page.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
convolution2dLayer | globalAveragePooling3dLayer | image3dInputLayer |
maxPooling3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2019a

 convolution3dLayer

1-273



crop2dLayer
2-D crop layer

Description
A 2-D crop layer applies 2-D cropping to the input.

There are two inputs to this layer:

• 'in' — The feature map that will be cropped
• 'ref' — A reference layer used to determine the size, [height width], of the cropped output

Once you create this layer, you can add it to a layerGraph to make serial connections between
layers. To connect the crop layer to other layers, call connectLayers and specify the input names.
The connectLayers function returns a connected LayerGraph object ready to train a network.
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Creation

Syntax
layer = crop2dLayer(Mode)
layer = crop2dLayer(Location)
layer = crop2dLayer( ___ ,'Name',Name)

Description

layer = crop2dLayer(Mode) returns a layer that crops an input feature map, and sets the Mode
property.

layer = crop2dLayer(Location) returns a layer that crops an input feature map using a
rectangular window, and sets the Location property that indicates the position of the window.

layer = crop2dLayer( ___ ,'Name',Name) creates a layer for cropping and sets the optional
Name property.

Properties
Mode — Cropping mode
'centercrop' (default) | 'custom'

Cropping mode, specified as 'centercrop' or 'custom'.

Mode Description
'centercrop' The location of the cropping window is the center of the input

feature map.
'custom' The location of the cropping window is based on the Location

property. This value is automatically set when the Location
property is specified as a 2-element row vector.

Data Types: char

Location — Cropping window location
'auto' (default) | 2-element row vector

Cropping window location, specified as 'auto' or a 2-element row vector.

Location Description
2-element row vector in the format
[x y]

The upper-left corner of the cropping window is at the location
[x y] of the input feature map. x indicates the location in the
horizontal direction and y is the vertical direction.

'auto' The cropping window is located at the center of the input
feature map. This value is automatically set when the Mode
property is specified as 'centercrop'.

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'in' 'ref'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'ref'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 2-D Crop Layer

Create a 2-D crop layer and connect both of the inputs using a layerGraph object.

Create the layers.

layers = [
     imageInputLayer([32 32 3],'Name','image')
     crop2dLayer('centercrop','Name','crop')]

layers = 
  2x1 Layer array with layers:

     1   'image'   Image Input   32x32x3 images with 'zerocenter' normalization
     2   'crop'    Crop 2D       center crop

Create a layerGraph. The first input of crop2dLayer is automatically connected to the first output
of the image input layer.

lgraph = layerGraph(layers)
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lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {'image'}
    OutputNames: {1x0 cell}

Connect the image input layer to the "ref" input of the 2-D crop layer.

lgraph = connectLayers(lgraph,'image','crop/ref')  

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [2x2 table]
     InputNames: {'image'}
    OutputNames: {1x0 cell}

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
deeplabv3plusLayers | fcnLayers | layerGraph | pixelClassificationLayer |
segnetLayers | semanticseg | trainNetwork | unetLayers

Topics
“Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
“Deep Learning in MATLAB”

Introduced in R2017b
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crop3dLayer
3-D crop layer

Description
A 3-D crop layer crops a 3-D volume to the size of the input feature map.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in' and 'ref'. Use the input names when connecting or disconnecting the layer by using
connectLayers or disconnectLayers. All inputs to a 3-D crop layer must have the same number
of dimensions.

Creation

Syntax
layer = crop3dLayer
layer = crop3dLayer([X Y Z])
layer = crop3dLayer( ___ ,'Name',Name)

Description

layer = crop3dLayer creates a 3-D crop layer that crops an input feature map from the center of
the feature map. The size of the cropped region is equal to the size of a second reference input
feature map.

layer = crop3dLayer([X Y Z]) also sets the cropLocation property with the (X,Y,Z) coordinate
of the crop window. X is the coordinate in the horizontal direction, Y is the coordinate in the vertical
direction, and Z is the coordinate in the depth direction.

layer = crop3dLayer( ___ ,'Name',Name) also sets the Name property. To create a network
containing a 3-D crop layer, you must specify a layer name.

Properties
Crop

cropLocation — Crop location
'centercrop' (default) | three-element numeric vector

Crop location, specified as 'centercrop' or a three-element numeric vector representing the (x,y,z)
coordinate of the crop window.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer accepts two inputs.
Data Types: double

InputNames — Input names
{'in','ref'} (default)

Input names of the layer, specified as {'in','ref'}. This layer accepts two inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect 3-D Crop Layer

Create a 3-D crop layer and connect both of its inputs using a layerGraph object.

layers = [
    image3dInputLayer([32 32 32 3],'Name','image')
    convolution3dLayer(3,16,'Padding','same','Name','conv')
    crop3dLayer('Name','crop')
    concatenationLayer(4,2,'Name','concat')
    ]

layers = 
  4x1 Layer array with layers:

     1   'image'    3-D Image Input   32x32x32x3 images with 'zerocenter' normalization
     2   'conv'     Convolution       16 3x3x3 convolutions with stride [1  1  1] and padding 'same'
     3   'crop'     Crop 3D           center crop
     4   'concat'   Concatenation     Concatenation of 2 inputs along dimension 4

Create a layer graph. The first input of the 3-D crop layer is automatically connected to the output of
the 3-D convolutional layer.
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lgraph = layerGraph(layers);

Add a max pooling layer to the layer graph.

maxPool = maxPooling3dLayer(2,'stride',2,'Name','pool');
lgraph = addLayers(lgraph,maxPool);
lgraph = connectLayers(lgraph,'image','pool');

Connect the second input of the crop layer to the output of the max pooling layer.

lgraph = connectLayers(lgraph,'pool','crop/ref');

Concatenate the crop layer output and the max pooling layer output.

lgraph = connectLayers(lgraph,'pool','concat/in2');

Display the layer graph.

plot(lgraph)

See Also
crop2dLayer | layerGraph | trainNetwork

Topics
“Deep Learning in MATLAB”
“Set Up Parameters and Train Convolutional Neural Network”
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“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019b
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crossChannelNormalizationLayer
Channel-wise local response normalization layer

Description
A channel-wise local response (cross-channel) normalization layer carries out channel-wise
normalization.

Creation
Syntax
layer = crossChannelNormalizationLayer(windowChannelSize)
layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value)

Description

layer = crossChannelNormalizationLayer(windowChannelSize) creates a channel-wise
local response normalization layer and sets the WindowChannelSize property.

layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value) sets the
optional properties WindowChannelSize, Alpha, Beta, K, and Name using name-value pairs. For
example, crossChannelNormalizationLayer(5,'K',1) creates a local response normalization
layer for channel-wise normalization with a window size of 5 and K hyperparameter 1. You can specify
multiple name-value pairs. Enclose each property name in single quotes.

Properties
Cross-Channel Normalization

WindowChannelSize — Size of the channel window
positive integer

Size of the channel window, which controls the number of channels that are used for the
normalization of each element, specified as a positive integer.

If WindowChannelSize is even, then the window is asymmetric. The software looks at the previous
floor((w-1)/2) channels and the following floor(w/2) channels. For example, if
WindowChannelSize is 4, then the layer normalizes each element by its neighbor in the previous
channel and by its neighbors in the next two channels.
Example: 5

Alpha — α hyperparameter in normalization
0.0001 (default) | numeric scalar

α hyperparameter in the normalization (the multiplier term), specified as a numeric scalar.
Example: 0.0002
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Beta — β hyperparameter in normalization
0.75 (default) | numeric scalar

β hyperparameter in the normalization, specified as a numeric scalar. The value of Beta must be
greater than or equal to 0.01.
Example: 0.8

K — K hyperparameter in the normalization
2 (default) | numeric scalar

K hyperparameter in the normalization, specified as a numeric scalar. The value of K must be greater
than or equal to 10-5.
Example: 2.5

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples
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Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where a window of five
channels normalizes each element, and the additive constant for the normalizer K is 1.

layer = crossChannelNormalizationLayer(5,'K',1)

layer = 
  CrossChannelNormalizationLayer with properties:

                 Name: ''

   Hyperparameters
    WindowChannelSize: 5
                Alpha: 1.0000e-04
                 Beta: 0.7500
                    K: 1

Include a local response normalization layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    crossChannelNormalizationLayer(3)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input                   28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution                   20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                          ReLU
     4   ''   Cross Channel Normalization   cross channel normalization with 3 channels per element
     5   ''   Fully Connected               10 fully connected layer
     6   ''   Softmax                       softmax
     7   ''   Classification Output         crossentropyex

Limitations
• This layer does not support 3-D image inputs or vector sequence inputs.

More About
Local Response Normalization

A channel-wise local response (cross-channel) normalization layer carries out channel-wise
normalization.

This layer performs a channel-wise local response normalization. It usually follows the ReLU
activation layer. This layer replaces each element with a normalized value it obtains using the
elements from a certain number of neighboring channels (elements in the normalization window).
That is, for each element x in the input, trainNetwork computes a normalized value x′ using
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x′ = x
K + α * ss

windowChannelSize
β ,

where K, α, and β are the hyperparameters in the normalization, and ss is the sum of squares of the
elements in the normalization window [1]. You must specify the size of the normalization window
using the windowChannelSize argument of the crossChannelNormalizationLayer function.
You can also specify the hyperparameters using the Alpha, Beta, and K name-value pair arguments.

The previous normalization formula is slightly different than what is presented in [1]. You can obtain
the equivalent formula by multiplying the alpha value by the windowChannelSize.

References
[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional

Neural Networks." Advances in Neural Information Processing Systems. Vol 25, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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crosschannelnorm
Cross channel square-normalize using local responses

Syntax
dlY = crosschannelnorm(dlX,windowSize)
dlY = crosschannelnorm(dlX,windowSize,'DataFormat',FMT)
dlY = crosschannelnorm( ___ ,Name,Value)

Description
The cross-channel normalization operation uses local responses in different channels to normalize
each activation. Cross-channel normalization typically follows a relu operation. Cross-channel
normalization is also known as local response normalization.

Note This function applies the cross-channel normalization operation to dlarray data. If you want
to apply cross-channel normalization within a layerGraph object or Layer array, use the following
layer:

• crossChannelNormalizationLayer

dlY = crosschannelnorm(dlX,windowSize) normalizes each element of dlX with respect to
local values in the same position in nearby channels. The normalized elements in dlY are calculated
from the elements in dlX using the following formula.

y = x
K + α * ss

windowSize
β

where y is an element of dlY, x is the corresponding element of dlX, ss is the sum of the squares of
the elements in the channel region defined by windowSize, and α, β, and K are hyperparameters in
the normalization.

dlY = crosschannelnorm(dlX,windowSize,'DataFormat',FMT) also specifies the dimension
format FMT when dlX is an unformatted dlarray, in addition to the input arguments the previous
syntax. The output dlY is an unformatted dlarray with the same dimension order as dlX.

dlY = crosschannelnorm( ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in previous syntaxes. For example, 'Beta',0.8
sets the value of the β contrast constant to 0.8.

Examples

Normalize Data Using Values of Adjacent Channels

Use crosschannelnorm to normalize each observation of a mini-batch using values from adjacent
channels.
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Create the input data as ten observations of random values with a height and width of eight and six
channels.

height = 8;
width = 8;
channels = 6;
observations = 10;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Compute the cross-channel normalization using a channel window size of three.

dlY = crosschannelnorm(dlX,3);

Each value in each observation of dlX is normalized using the element in the previous channel and
the element in the next channel.

Compare Normalized and Original Data

Values at the edges of an array are normalized using contributions from fewer channels, depending
on the size of the channel window.

Create the input data as an array of ones with a height and width of two and three channels.

height = 2;
width = 2;
channels = 3;

X = ones(height,width,channels);
dlX = dlarray(X);

Normalize the data using a channel-window size of 3, an α of 1, a β of 1, and a K of 1e-5. Specify a
data format of 'SSC'.

dlY = crosschannelnorm(dlX,3,'Alpha',1,'Beta',1,'K',1e-5,'DataFormat','SSC');

Compare the values in the original and the normalized data by reshaping the three-channel arrays
into 2-D matrices.

dlX = reshape(dlX,2,6)

dlX = 
  2x6 dlarray

     1     1     1     1     1     1
     1     1     1     1     1     1

dlY = reshape(dlY,2,6)

dlY = 
  2x6 dlarray

    1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
    1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
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For the first and last channels, the sum of squares is calculated using only two values. For the middle
channel, the sum of squares contains the values of all three channels.

Use Cross-Channel Normalization in a Model Function

Typically, the cross-channel normalization operation follows a ReLU operation. For example, the
GoogLeNet architecture contains convolutional operations followed by ReLU and cross-channel
normalization operations.

The function modelFunction defined at the end of this example shows how you can use cross-
channel normalization in a model. Use modelFunction to find the grouped convolution and ReLU
activation of some input data and then normalize the result using cross-channel normalization with a
window size of 5.

Create the input data as a single observation of random values with a height and width of ten and
four channels.

height = 10;
width = 10;
channels = 4;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the parameters for the grouped convolution operation. For the weights, use a filter height and
width of three, two channels per group, three filters per group, and two groups. Use a value of zero
for the bias.

filterSize = [3 3];
numChannelsPerGroup = 2;
numFiltersPerGroup = 3 ;
numGroups = 2;

params = struct;
params.conv.weights = rand(filterSize(1),filterSize(2),numChannelsPerGroup,numFiltersPerGroup,numGroups);
params.conv.bias = 0;

Apply the modelFunction to the data dlX.

dlY = modelFunction(dlX,params);

function dlY = modelFunction(dlX,params)

dlY = dlconv(dlX,params.conv.weights,params.conv.bias);
dlY = relu(dlY);
dlY = crosschannelnorm(dlY,5);

end
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Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without data format. When dlX is an unformatted
dlarray, you must specify the data format using the 'DataFormat',FMT name-value pair.

You can specify up to two dimensions in dlX as 'S' dimensions.
Data Types: single | double

windowSize — Size of channel window
scalar integer

Size of the channel window, which controls the number of channels that are used for the
normalization of each element, specified as a positive integer.

If windowSize is even, then the window is asymmetric. The software looks at the previous
floor((windowSize-1)/2) channels and the following floor((windowSize)/2) channels. For
example, if windowSize is 4, then the function normalizes each element by its neighbor in the
previous channel and by its neighbors in the next two channels.
Example: 3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Alpha',2e-4,'Beta',0.8 sets the multiplicative normalization constant to 0.0002 and
the contrast constant exponent to 0.8.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
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Data Types: char | string

Alpha — Normalization constant (α)
1e-4 (default) | numeric scalar

Normalization constant (α) that multiplies the sum of the squared values, specified as the comma-
separated pair consisting of 'Alpha' and a numeric scalar. The default value is 1e-4.
Example: 'Alpha',2e-4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Beta — Contrast constant (β)
0.75 (default) | numeric scalar greater than or equal to 0.01

Contrast constant (β), specified as the comma-separated pair consisting of 'Beta' and a numeric
scalar greater than or equal to 0.01. The default value is 0.75.
Example: 'Beta',0.8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

K — Normalization hyperparameter (K)
2 (default) | numeric scalar greater than or equal to 1e-5

Normalization hyperparameter (K) used to avoid singularities in the normalization, specified as the
comma-separated pair consisting of 'K' and a numeric scalar greater than or equal to 1e-5. The
default value is 2.
Example: 'K',2.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Output Arguments
dlY — Normalized data
dlarray

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the
input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is an unformatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

More About
Cross-Channel Normalization

The crosschannelnorm function normalizes each activation response based on the local responses
in a specified channel window. For more information, see the definition of “Local Response
Normalization” on page 1-284 on the crossChannelNormalizationLayer reference page.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
avgpool | dlarray | dlconv | dlfeval | dlgradient | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2020a
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crossentropy
Cross-entropy loss for classification tasks

Syntax
dlY = crossentropy(dlX,targets)
dlY = crossentropy(dlX,targets,'DataFormat',FMT)
dlY = crossentropy( ___ ,Name,Value)

Description
The cross-entropy operation computes the cross-entropy loss between network predictions and target
values for single-label and multi-label classification tasks.

Note This function computes the cross-entropy loss between predictions and targets stored as
dlarray data. If you want to calculate the cross-entropy loss within a layerGraph object or Layer
array for use with trainNetwork, use the following layer:

• classificationLayer

dlY = crossentropy(dlX,targets) computes the categorical cross-entropy loss between the
predictions dlX and the target values targets for single-label classification tasks. The input dlX is a
formatted dlarray with dimension labels. The output dlY is an unformatted scalar dlarray with no
dimension labels.

dlY = crossentropy(dlX,targets,'DataFormat',FMT) also specifies the dimension format
FMT when dlX is not a formatted dlarray.

dlY = crossentropy( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example,
'TargetCategories','independent' computes the cross-entropy loss for a multi-label
classification task.

Examples

Find Cross-Entropy Loss Between Predicted and Target Labels

The cross-entropy loss evaluates how well the network predictions correspond to the target
classification.

Create the input classification data as a matrix of random variables. The data contains 12
observations that can be in any of 10 categories.

numCategories = 10;
observations = 12;
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X = rand(numCategories,observations);
dlX = dlarray(X,'CB');

Convert the category values in the data to probability scores for each category.

dlX = softmax(dlX);

Create the target data, which holds the correct category for each observation in dlX.

targetsIdx = randi(10,1,12);
targets = zeros(10,12);
for i = 1:numel(targetsIdx)
    targets(targetsIdx(i),i) = 1;
end

Compute the cross-entropy loss between the predictions and the targets.

dlY = crossentropy(dlX,targets)

dlY = 
  1x1 dlarray

    2.3343

Input Arguments
dlX — Predictions
dlarray | numeric array

Predictions, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension format using 'DataFormat',FMT. If dlX
is a numeric array, targets must be a dlarray.
Data Types: single | double

targets — Target classification labels
dlarray | numeric array

Target classification labels, specified as a formatted or unformatted dlarray or a numeric array.

If targets is a formatted dlarray, its dimension format must be the same as the format of X, or the
same as 'DataFormat' if X is unformatted

If targets is an unformatted dlarray or a numeric array, the size of targets must exactly match
the size of X. The format of X or the value of 'DataFormat' is implicitly applied to targets.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'TargetCategories','independent','DataFormat','CB' evaluates the cross-
entropy loss for multi-label classification tasks and specifies the dimension order of the input data as
'CB'

TargetCategories — Type of classification task
'exclusive' (default) | 'independent'

Type of classification task, specified as the comma-separated pair consisting of
'TargetCategories' and one of the following:

• 'exclusive' — Single-label classification. Each observation in the predictions dlX is exclusively
assigned to one category. The function computes the loss between the target value for the single
category specified by targets and the corresponding prediction in dlX, averaged over the
number of observations.

• 'independent'— Multi-label classification. Each observation in the predictions dlX can be
assigned to one or more independent categories. The function computes the sum of the loss
between each category specified by targets and the predictions in dlx for those categories,
averaged over the number of observations. Cross-entropy loss for this type of classification task is
also known as binary cross-entropy loss.

The default value is 'exclusive'.

For single-label classification, the loss is calculated using the following formula:

loss = − 1
N ∑i = 1

M
Tilog(Xi)

where Xi is the network response, Ti is the target value, M is the total number of responses in X
(across all observations and categories), and N is the total number of observations in X.

For multi-label classification, the loss is calculated using the following formula:

loss = − 1
N ∑i = 1

N
∑

j = 1

C
Ti, jlog(Xi, j) + (1− Ti, j)log(1− Xi, j)

where here Xi,j is the network response for a given category, Ti,j is the target value of that category,
and C is the total number of categories. In this case, the cross-entropy loss is calculated as the
probability of a given observation being assigned to a given category, summed over all categories and
observations and normalized by the number of observations.
Example: 'TargetCategories','independent'

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
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• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Cross-entropy loss
dlarray scalar

Cross-entropy loss, returned as a dlarray scalar without dimension labels. The output dlY has the
same underlying data type as the input dlX.

The cross-entropy loss dlY is the average logarithmic loss across the 'B' batch dimension of dlX.

More About
Cross-Entropy Loss

The crossentropy function computes the cross-entropy loss for classification problems. For more
information, see the definition of “Classification Output Layer” on page 1-182 on the
ClassificationOutputLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• targets

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | mse | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”
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Introduced in R2019b
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DAGNetwork
Directed acyclic graph (DAG) network for deep learning

Description
A DAG network is a neural network for deep learning with layers arranged as a directed acyclic
graph. A DAG network can have a more complex architecture in which layers have inputs from
multiple layers and outputs to multiple layers.

Creation
There are several ways to create a DAGNetwork object:

• Load a pretrained network such as squeezenet, googlenet, resnet50, resnet101, or
inceptionv3. For an example, see “Load SqueezeNet Network” on page 1-947. For more
information about pretrained networks, see “Pretrained Deep Neural Networks”.

• Train or fine-tune a network using trainNetwork. For an example, see “Train Deep Learning
Network to Classify New Images”.

• Import a pretrained network from TensorFlow™-Keras, Caffe, or the ONNX (Open Neural Network
Exchange) model format.

• For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras
Network” on page 1-606.

• For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on
page 1-586.

• For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network”
on page 1-639.

Note To learn about other pretrained networks, see “Pretrained Deep Neural Networks”.

Properties
Layers — Network layers
Layer array

Network layers, specified as a Layer array.

Connections — Layer connections
table

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
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Data Types: table

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
activations Compute deep learning network layer activations
classify Classify data using a trained deep learning neural network
predict Predict responses using a trained deep learning neural network
plot Plot neural network layer graph

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names
and all names must be unique.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
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    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the
'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv'
and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To
check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9930

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, predict, and classify methods are supported.
• To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (GPU Coder).

See Also
SeriesNetwork | analyzeNetwork | assembleNetwork | classify | googlenet |
importKerasNetwork | inceptionresnetv2 | inceptionv3 | layerGraph | plot | predict |
resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Classify Image Using GoogLeNet”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”

Introduced in R2017b
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darknet19
DarkNet-19 convolutional neural network

Syntax
net = darknet19
net = darknet19('Weights','imagenet')

layers = darknet19('Weights','none')

Description
DarkNet-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 256-by-256. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DarkNet-19 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DarkNet-19 instead of GoogLeNet.

DarkNet-19 is often used as the foundation for object detection problems and YOLO workflows [2].
For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection
Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use
other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending
on application requirements.

net = darknet19 returns a DarkNet-19 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DarkNet-19 Network support package. If
this support package is not installed, then the function provides a download link.

net = darknet19('Weights','imagenet') returns a DarkNet-19 network trained on the
ImageNet data set. This syntax is equivalent to net = darknet19.

layers = darknet19('Weights','none') returns the untrained DarkNet-19 network
architecture. The untrained model does not require the support package.

Examples

Download DarkNet-19 Support Package

Download and install the Deep Learning Toolbox Model for DarkNet-19 Network support package.

Type darknet19 at the command line.
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darknet19

If the Deep Learning Toolbox Model for DarkNet-19 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing darknet19 at the command line. If the required support package is installed, then the
function returns a SeriesNetwork object.

darknet19

ans = 

  SeriesNetwork with properties:

         Layers: [64×1 nnet.cnn.layer.Layer]
     InputNames: {'input'}
    OutputNames: {'output'}

Transfer Learning with DarkNet-19

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the DarkNet-19 network instead of GoogLeNet.

net = darknet19

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained DarkNet-19 convolutional network
SeriesNetwork

Pretrained DarkNet-19 convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained DarkNet-19 convolutional neural network architecture
Layer array

Untrained DarkNet-19 convolutional neural network architecture, returned as a Layer array.

References
[1] ImageNet. http://www.image-net.org

[2] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = darknet19 or by passing
the darknet19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet19').

The syntax darknet19('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = darknet19 or by
passing the darknet19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet19').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax darknet19('Weights','none') is not supported for GPU code generation.

See Also
SeriesNetwork | darknet53 | densenet201 | googlenet | inceptionresnetv2 | layerGraph |
nasnetlarge | nasnetmobile | plot | resnet101 | resnet50 | squeezenet | trainNetwork |
vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020a
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darknet53
DarkNet-53 convolutional neural network

Syntax
net = darknet53
net = darknet53('Weights','imagenet')

lgraph = darknet53('Weights','none')

Description
DarkNet-53 is a convolutional neural network that is 53 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 256-by-256. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DarkNet-53 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-53.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DarkNet-53 instead of GoogLeNet.

DarkNet-53 is often used as the foundation for object detection problems and YOLO workflows [2].
For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection
Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use
other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending
on application requirements.

net = darknet53 returns a DarkNet-53 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DarkNet-53 Network support package. If
this support package is not installed, then the function provides a download link.

net = darknet53('Weights','imagenet') returns a DarkNet-53 network trained on the
ImageNet data set. This syntax is equivalent to net = darknet53.

lgraph = darknet53('Weights','none') returns the untrained DarkNet-53 network
architecture. The untrained model does not require the support package.

Examples

Download DarkNet-53 Support Package

Download and install the Deep Learning Toolbox Model for DarkNet-53 Network support package.

Type darknet53 at the command line.
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darknet53

If the Deep Learning Toolbox Model for DarkNet-53 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing darknet53 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

darknet53

ans = 

  DAGNetwork with properties:

         Layers: [184×1 nnet.cnn.layer.Layer]
    Connections: [206×2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Transfer Learning with DarkNet-53

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the DarkNet-53 network instead of GoogLeNet.

net = darknet53

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained DarkNet-53 convolutional network
DAGNetwork

Pretrained DarkNet-53 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained DarkNet-53 convolutional neural network architecture
LayerGraph object

Untrained DarkNet-53 convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = darknet53 or by passing
the darknet53 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet53')

The syntax darknet53('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = darknet53 or by
passing the darknet53 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet53').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax darknet53('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | darknet19 | densenet201 | googlenet | inceptionresnetv2 | layerGraph |
nasnetlarge | nasnetmobile | plot | resnet101 | resnet50 | squeezenet | trainNetwork |
vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020a
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deepDreamImage
Visualize network features using deep dream

Syntax
I = deepDreamImage(net,layer,channels)
I = deepDreamImage(net,layer,channels,Name,Value)

Description
I = deepDreamImage(net,layer,channels) returns an array of images that strongly activate
the channels channels within the network net of the layer with numeric index or name given by
layer. These images highlight the features learned by a network.

I = deepDreamImage(net,layer,channels,Name,Value) returns an image with additional
options specified by one or more Name,Value pair arguments.

Examples

Visualize Convolutional Neural Network Features

Load a pretrained AlexNet network.

net = alexnet;

Visualize the first 25 features learned by the first convolutional layer ('conv1') using
deepDreamImage. Set 'PyramidLevels' to 1 so that the images are not scaled.

layer = 'conv1';
channels = 1:25;

I = deepDreamImage(net,layer,channels, ...
    'PyramidLevels',1, ...
    'Verbose',0);

figure
for i = 1:25
    subplot(5,5,i)
    imshow(I(:,:,:,i))
end
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Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork object or a DAGNetwork object. You can get a
trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

deepDreamImage only supports networks with an image input layer.

layer — Layer index or name
positive integer | character vector | string scalar

Layer to visualize, specified as a positive integer, a character vector, or a string scalar. If net is a
DAGNetwork object, specify layer as a character vector or string scalar only. Specify layer as the
index or the name of the layer you want to visualize the activations of. To visualize classification layer
features, select the last fully connected layer before the classification layer.

Tip Selecting ReLU or dropout layers for visualization may not produce useful images because of the
effect that these layers have on the network gradients.
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channels — Channel index
numeric index | vector of numeric indices

Queried channels, specified as scalar or vector of channel indices. If channels is a vector, the layer
activations for each channel are optimized independently. The possible choices for channels depend
on the selected layer. For convolutional layers, the NumFilters property specifies the number of
output channels. For fully connected layers, the OutputSize property specifies the number of output
channels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
deepDreamImage(net,layer,channels,'NumItetations',100,'ExecutionEnvironment',
'gpu') generates images using 100 iterations per pyramid level and uses the GPU.

InitialImage — Image to initialize Deep Dream
array

Image to initialize Deep Dream. Use this syntax to see how an image is modified to maximize network
layer activations. The minimum height and width of the initial image depend on all the layers up to
and including the selected layer:

• For layers towards the end of the network, the initial image must be at least the same height and
width as the image input layer.

• For layers towards the beginning of the network, the height and width of the initial image can be
smaller than the image input layer. However, it must be large enough to produce a scalar output at
the selected layer.

• The number of channels of the initial image must match the number of channels in the image
input layer of the network.

If you do not specify an initial image, the software uses a random image with pixels drawn from a
standard normal distribution. See also 'PyramidLevels' on page 1-0 .

PyramidLevels — Number of pyramid levels
3 (default) | positive integer

Number of multi-resolution image pyramid levels to use to generate the output image, specified as a
positive integer. Increase the number of pyramid levels to produce larger output images at the
expense of additional computation. To produce an image of the same size as the initial image, set the
number of levels to 1.
Example: 'PyramidLevels',3

PyramidScale — Scale between pyramid levels
1.4 (default) | scalar with value > 1

Scale between each pyramid level, specified as a scalar with value > 1. Reduce the pyramid scale to
incorporate fine grain details into the output image. Adjusting the pyramid scale can help generate
more informative images for layers at the beginning of the network.
Example: 'PyramidScale',1.4
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NumIterations — Number of iterations per pyramid level
10 (default) | positive integer

Number of iterations per pyramid level, specified as a positive integer. Increase the number of
iterations to produce more detailed images at the expense of additional computation.
Example: 'NumIterations',10

OutputScaling — Type of scaling to apply to output
'linear' (default) | 'none'

Type of scaling to apply to output image, specified as the comma-separated pair consisting of
'OutputScaling' and one of the following:

Value Description
'linear' Scale output pixel values in the interval [0,1]. The

output image corresponding to each layer
channel, I(:,:,:,channel), is scaled
independently.

'none' Disable output scaling.

Scaling the pixel values can cause the network to misclassify the output image. If you want to classify
the output image, set the 'OutputScaling' value to 'none'.
Example: 'OutputScaling','linear'

Verbose — Indicator to display progress information
1 (default) | 0

Indicator to display progress information in the command window, specified as the comma-separated
pair consisting of 'Verbose' and either 1 (true) or 0 (false). The displayed information includes
the pyramid level, iteration, and the activation strength.
Example: 'Verbose',0
Data Types: logical

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled

NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
I — Output image
array
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Output image, specified by a sequence of grayscale or truecolor (RGB) images stored in a 4–D array.
Images are concatenated along the fourth dimension of I such that the image that maximizes the
output of channels(k) is I(:,:,:,k). You can display the output image using imshow.

Algorithms
This function implements a version of deep dream that uses a multi-resolution image pyramid and
Laplacian Pyramid Gradient Normalization to generate high-resolution images. For more information
on Laplacian Pyramid Gradient Normalization, see this blog post: DeepDreaming with TensorFlow.

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

References
[1] DeepDreaming with TensorFlow. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/

examples/tutorials/deepdream/deepdream.ipynb

See Also
activations | alexnet | googlenet | squeezenet | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Deep Dream Images Using GoogLeNet”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”

Introduced in R2017a
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densenet201
DenseNet-201 convolutional neural network

Syntax
net = densenet201
net = densenet201('Weights','imagenet')

lgraph = densenet201('Weights','none')

Description
DenseNet-201 is a convolutional neural network that is 201 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DenseNet-201 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DenseNet-201.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DenseNet-201 instead of GoogLeNet.

net = densenet201 returns a DenseNet-201 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DenseNet-201 Network support package.
If this support package is not installed, then the function provides a download link.

net = densenet201('Weights','imagenet') returns a DenseNet-201 network trained on the
ImageNet data set. This syntax is equivalent to net = densenet201.

lgraph = densenet201('Weights','none') returns the untrained DenseNet-201 network
architecture. The untrained model does not require the support package.

Examples

Download DenseNet-201 Support Package

Download and install the Deep Learning Toolbox Model for DenseNet-201 Network support package.

Type densenet201 at the command line.

densenet201

If the Deep Learning Toolbox Model for DenseNet-201 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing densenet201 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

densenet201

ans = 

  DAGNetwork with properties:

         Layers: [709×1 nnet.cnn.layer.Layer]
    Connections: [806×2 table]

Output Arguments
net — Pretrained DenseNet-201 convolutional neural network
DAGNetwork object

Pretrained DenseNet-201 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained DenseNet-201 convolutional neural network architecture
LayerGraph object

Untrained DenseNet-201 convolutional neural network architecture, returned as a LayerGraph
object.

References
[1] ImageNet. http://www.image-net.org

[2] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely Connected
Convolutional Networks." In CVPR, vol. 1, no. 2, p. 3. 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = densenet201 or by
passing the densenet201 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('densenet201')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax densenet201('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = densenet201 or by
passing the densenet201 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('densenet201').
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For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax densenet201('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph | plot |
resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2018a

 densenet201

1-317



depthConcatenationLayer
Depth concatenation layer

Description
A depth concatenation layer takes inputs that have the same height and width and concatenates them
along the third dimension (the channel dimension).

Specify the number of inputs to the layer when you create it. The inputs have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax
layer = depthConcatenationLayer(numInputs)
layer = depthConcatenationLayer(numInputs,'Name',name)

Description

layer = depthConcatenationLayer(numInputs) creates a depth concatenation layer that
concatenates numInputs inputs along the third (channel) dimension. This function also sets the
NumInputs property.

layer = depthConcatenationLayer(numInputs,'Name',name) also sets the Name property.
To create a network containing a depth concatenation layer, you must specify a layer name.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1','in2',...,'inN', where N equals NumInputs. For example, if
NumInputs equals 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input
names when connecting or disconnecting the layer by using connectLayers or
disconnectLayers.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph,
you must specify a layer name.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Depth Concatenation Layer

Create a depth concatenation layer with two inputs and the name 'concat_1'.

concat = depthConcatenationLayer(2,'Name','concat_1')

concat = 
  DepthConcatenationLayer with properties:

          Name: 'concat_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the depth concatenation layer. The depth concatenation
layer concatenates the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,concat);

lgraph = connectLayers(lgraph,'relu_1','concat_1/in1');
lgraph = connectLayers(lgraph,'relu_2','concat_1/in2');

plot(lgraph)
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
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dims
Dimension labels of dlarray

Syntax
d = dims(dlX)

Description
d = dims(dlX) returns the labels of dlX as a character array.

Examples

Obtain Dimension Labels

Obtain the dimension labels of a dlarray.

dlX = dlarray(randn(3,4),'TS');
d = dims(dlX)

d = 
'ST'

Obtain the labels of an unlabeled dlarray.

y = stripdims(dlX);
d = dims(y)

d =

  0x0 empty char array

Input Arguments
dlX — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: dlX = dlarray(randn(3,4),'ST')

Output Arguments
d — Dimension labels
character vector

Dimension labels, returned as a character vector. If the input dlX is unlabeled, d is empty.
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See Also
dlarray | finddim | stripdims

Introduced in R2019b
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dlarray
Deep learning array for custom training loops

Description
A deep learning array stores data with optional data format labels for custom training loops, and
enables functions to compute and use derivatives through automatic differentiation.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

Creation

Syntax
dlX = dlarray(X)
dlX = dlarray(X,fmt)
dlX = dlarray(v,dim)

Description

dlX = dlarray(X) returns a dlarray object representing X. If X is a dlarray, dlX is a copy of X.

dlX = dlarray(X,fmt) labels the data in dlX according to the data format in fmt. Labels help in
passing deep learning data between functions. See “Usage” on page 1-325. If X is a labeled dlarray,
then fmt replaces the existing labels.

dlX = dlarray(v,dim) accepts a vector v and a single character format dim, and returns a
column vector dlarray. The first dimension of dlX has the label dim, and the second (singleton)
dimension has the label 'U'.

Input Arguments

X — Data array
numeric array of data type double or single | logical array | gpuArray object | dlarray object

Data array, specified as a numeric array of data type double or single, logical array, gpuArray object,
or dlarray object. X must be full, not sparse, and must be real, not complex.
Example: rand(31*23,23)
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fmt — Data format
character vector | string scalar

Data format, specified as a character vector or string scalar. Each character in fmt must be one of
these labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified

You can specify any number of S and U labels. You can specify at most one of each of the C, B, and T
labels.

Each element of fmt labels the matching dimension of dlX. If fmt is not in the listed order ('S'
followed by 'C' and so on), then dlarray implicitly permutes both fmt and the data to match the
order, but without changing the storage of the data.

fmt must have at least the same number of labels as the number of dimensions of dlX. If you specify
more than that number of labels, dlarray creates empty (singleton) dimensions for the additional
labels.

For information on fmt, see “Usage” on page 1-325.
Example: "SSB"
Example: 'CBUSS', which dlarray reorders to 'SSCBU'

v — Data vector
numeric vector of data type double or single | logical vector | dlarray vector object

Data vector, specified as a numeric vector of data type double or single, logical vector, gpuArray
vector object, or dlarray vector object. Here, "vector" means any array with exactly one
nonsingleton dimension.
Example: rand(100,1)

dim — Dimension label
single character

Dimension label, specified as a single character of the type allowed for fmt.
Example: "S"
Example: 'S'

Output Arguments

dlX — Deep learning array
dlarray object

Deep learning array, returned as a dlarray object. dlX enables automatic differentiation using
dlgradient and dlfeval. If you supply the fmt argument, dlX has labels.
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• If X is a numeric or logical array, dlX contains its data, possibly reordered because of labels in
fmt.

• If X is a gpuArray, the data in dlX is also on the GPU. Subsequent calculations using dlX are
performed on the GPU.

Usage
dlarray labels enable you to use the functions in this table to execute with assurance that the data
has the appropriate format.

Function Operation Validates Input
Dimension

Affects Size of Input
Dimension

avgpool Compute the average of the
input data over moving
rectangular (or cuboidal)
spatial ('S') regions defined
by a pool size parameter.

'S' 'S'

batchnorm Normalize the values contained
in each channel ('C') of the
input data.

'C'  

crossentropy Compute the cross-entropy
between estimates and target
values, averaged by the size of
the batch ('B') dimension.

'S', 'C', 'B', 'T',
'U' (Estimates and
target arrays must have
the same sizes.)

'S', 'C', 'B', 'T',
'U' (The output is an
unlabeled scalar.)

dlconv Compute the deep learning
convolution of the input data
using an array of filters,
matching the number of spatial
('S') and (a function of the)
channel ('C') dimensions of
the input, and adding a
constant bias.

'S', 'C' 'S', 'C'

dltranspconv Compute the deep learning
transposed convolution of the
input data using an array of
filters, matching the number of
spatial ('S') and (a function of
the) channel ('C') dimensions
of the input, and adding a
constant bias.

'S', 'C' 'S', 'C'

fullyconnect Compute a weighted sum of
the input data and apply a bias
for each batch ('B') and time
('T') dimension.

'S', 'C', 'U' 'S', 'C', 'B', 'T',
'U' (The output
always has labels
'CB', 'CT', or
'CTB'.)

gru Apply a gated recurrent unit
calculation to the input data.

'S', 'C', 'T' 'C'
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Function Operation Validates Input
Dimension

Affects Size of Input
Dimension

lstm Apply a long short-term
memory calculation to the
input data.

'S', 'C', 'T' 'C'

maxpool Compute the maximum of the
input data over moving
rectangular spatial ('S')
regions defined by a pool size
parameter.

'S' 'S'

maxunpool Compute the unpooling
operation over the spatial
('S') dimensions.

'S' 'S'

mse Compute the half mean
squared error between
estimates and target values,
averaged by the size of the
batch ('B') dimension.

'S', 'C', 'B', 'T',
'U' (Estimates and
target arrays must have
the same sizes.)

'S', 'C', 'B', 'T',
'U' (The output is an
unlabeled scalar.)

softmax Apply the softmax activation to
each channel ('C') of the input
data.

'C'  

These functions require each dimension to have a label, specified either as the labels of their first
dlarray input, or as the 'DataFormat' name-value pair argument containing dimension labels.

dlarray enforces the order of labels 'SCBTU'. This enforcement eliminates ambiguous semantics in
operations, which implicitly match labels between inputs. dlarray also enforces that the labels 'C',
'B', and 'T' can each appear at most once. The functions that use these labels accept at most one
dimension for each label.

dlarray provides functions for removing labels (stripdims), obtaining the dimensions associated
with labels (finddim), and listing the labels associated with a dlarray (dims).

For more information on how a dlarray behaves with labels, see “Notable dlarray Behaviors”.

Object Functions
avgpool Pool data to average values over spatial dimensions
batchnorm Normalize each channel of mini-batch
crossentropy Cross-entropy loss for classification tasks
dims Dimension labels of dlarray
dlconv Deep learning convolution
dlgradient Compute gradients for custom training loops using automatic differentiation
dltranspconv Deep learning transposed convolution
extractdata Extract data from dlarray
finddim Find dimensions with specified label
fullyconnect Sum all weighted input data and apply a bias
gru Gated recurrent unit
leakyrelu Apply leaky rectified linear unit activation
lstm Long short-term memory
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maxpool Pool data to maximum value
maxunpool Unpool the output of a maximum pooling operation
mse Half mean squared error
relu Apply rectified linear unit activation
sigmoid Apply sigmoid activation
softmax Apply softmax activation to channel dimension
stripdims Remove dlarray labels

A dlarray also allows functions for numeric, matrix, and other operations. See the full list in “List of
Functions with dlarray Support”.

Examples

Create Unlabeled dlarray

Create an unlabeled dlarray from a matrix.

rng default % For reproducibility
X = randn(3,5);
dlX = dlarray(X)

dlX = 
  3x5 dlarray

    0.5377    0.8622   -0.4336    2.7694    0.7254
    1.8339    0.3188    0.3426   -1.3499   -0.0631
   -2.2588   -1.3077    3.5784    3.0349    0.7147

Create Labeled dlarray

Create a dlarray that has a data format with the labels 'S' and 'C'.

rng default % For reproducibility
X = randn(3,5);
dlX = dlarray(X,'SC')

dlX = 
  3(S) x 5(C) dlarray

    0.5377    0.8622   -0.4336    2.7694    0.7254
    1.8339    0.3188    0.3426   -1.3499   -0.0631
   -2.2588   -1.3077    3.5784    3.0349    0.7147

If you specify the labels in the opposite order, dlarray implicitly reorders the underlying data.

dlX = dlarray(X,'CS')

dlX = 
  5(S) x 3(C) dlarray

    0.5377    1.8339   -2.2588
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    0.8622    0.3188   -1.3077
   -0.4336    0.3426    3.5784
    2.7694   -1.3499    3.0349
    0.7254   -0.0631    0.7147

Create Labeled dlarray Vector

Create a dlarray vector with the first label 'T'. The second label, which dlarray creates
automatically, is 'U'.

rng default % For reproducibility
X = randn(6,1);
dlX = dlarray(X,'T')

dlX = 
  6(T) x 1(U) dlarray

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077

If you specify a row vector for X, dlarray implicitly reorders the result to be a column vector.

X = X';
dlX = dlarray(X,'T')

dlX = 
  6(T) x 1(U) dlarray

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077

Tips
• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must

evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.

• To enable the correct evaluation of gradients, dlfeval must call functions that use only
supported functions for dlarray. See “List of Functions with dlarray Support”.

See Also
dims | dlfeval | dlgradient | dlnetwork | finddim | stripdims
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Topics
“Train Generative Adversarial Network (GAN)”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Define Custom Training Loops, Loss Functions, and Networks”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”

Introduced in R2019b

 dlarray

1-329



dlconv
Deep learning convolution

Syntax
dlY = dlconv(dlX,weights,bias)
dlY = dlconv(dlX,weights,bias,'DataFormat',FMT)
dlY = dlconv( ___ Name,Value)

Description
The convolution operation applies sliding filters to the input data. Use 1-D and 2-D filters with
ungrouped or grouped convolutions and 3-D filters with ungrouped convolutions.

Use grouped convolution for channel-wise separable (also known as depth-wise separable)
convolution. For each group, the operation convolves the input by moving filters along spatial
dimensions of the input data, computing the dot product of the weights and the data and adding a
bias. If the number of groups is equal to the number of channels, then this function performs channel-
wise convolution. If the number of groups is equal to 1, this function performs ungrouped
convolution.

Note This function applies the deep learning convolution operation to dlarray data. If you want to
apply convolution within a layerGraph object or Layer array, use one of the following layers:

• convolution2dLayer
• groupedConvolution2dLayer
• convolution3dLayer

dlY = dlconv(dlX,weights,bias) computes the deep learning convolution of the input dlX
using sliding convolutional filters defined by weights, and adds a constant bias. The input dlX is a
formatted dlarray with dimension labels. Convolution acts on dimensions that you specify as 'S'
dimensions. The output dlY is a formatted dlarray with the same dimension labels as dlX.

dlY = dlconv(dlX,weights,bias,'DataFormat',FMT) also specifies dimension format FMT
when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with the same
dimension order as dlX.

dlY = dlconv( ___ Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in previous syntaxes. For example, 'Stride',3 sets the stride of
the convolution operation.

Examples

Perform Ungrouped Convolution

Convolve all channels of an image input using a single filter.
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Import the image data and convert it to a dlarray.

X = imread('sherlock.jpg');
dlX = dlarray(single(X),'SSC');

Display the image.

imshow(X,'DisplayRange',[])

Initialize the convolutional filters. Specify an ungrouped convolution that applies a single filter to all
three channels of the input data.

filterHeight = 10;
filterWidth = 10;
numChannelsPerGroup = 3;
numFiltersPerGroup = 1;
numGroups = 1;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution. Use a 'Stride' value of 2 and a 'DilationFactor' value of 2.

dlY = dlconv(dlX,weights,bias,'Stride',2,'DilationFactor',2);
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Display the convolved image.

Y = extractdata(dlY);
imshow(Y,'DisplayRange',[])

Perform Grouped Convolution

Convolve the input data in three groups of two channels each. Apply four filters per group.

Create the input data as 10 observations of size 100-by-100 with six channels.

height = 100;
width = 100;
channels = 6;
numObservations = 10;

X = rand(height,width,channels,numObservations);
dlX = dlarray(X,'SSCB');

Initialize the convolutional filters. Specify three groups of convolutions that each apply four
convolution filters to two channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 2;
numFiltersPerGroup = 4;
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numGroups = 3;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution.

dlY = dlconv(dlX,weights,bias);
size(dlY)

ans = 1×4

    93    93    12    10

dims(dlY)

ans = 
'SSCB'

The 12 channels of the convolution output represent the three groups of convolutions with four filters
per group.

Perform Channel-Wise Separable Convolution

Separate the input data into channels and perform convolution on each channel separately.

Create the input data as a single observation with a size of 64-by-64 and 10 channels. Create the data
as an unformatted dlarray.

height = 64;
width = 64;
channels = 10;

X = rand(height,width,channels);
dlX = dlarray(X);

Initialize the convolutional filters. Specify an ungrouped convolution that applies a single convolution
to all three channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 1;
numFiltersPerGroup = 1;
numGroups = channels;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);
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Perform the convolution. Specify the dimension labels of the input data using the 'DataFormat'
option.

dlY = dlconv(dlX,weights,bias,'DataFormat','SSC');
size(dlY)

ans = 1×3

    57    57    10

Each channel is convolved separately, so there are 10 channels in the output.

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of weights or bias must be a dlarray.

Convolution acts on dimensions that you specify as spatial dimensions using the 'S' dimension label.
You can specify up to three dimensions in dlX as 'S' dimensions.
Data Types: single | double

weights — Convolutional filters
dlarray | numeric array

Convolutional filters, specified as a dlarray with or without labels or a numeric array. The weights
argument specifies the size and values of the filters, as well as the number of filters and the number
of groups for grouped convolutions.

Specify weights as a filterSize-by-numChannelsPerGroup-by-numFiltersPerGroup-by-
numGroups array.

• filterSize — Size of the convolutional filters. filterSize can have up to three dimensions,
depending on the number of spatial dimensions in the input data.

Input Data 'S' Dimensions filterSize
1-D h, where h corresponds to the height of the

filter
2-D h-by-w, where h and w correspond to the

height and width of the filter, respectively
3-D h-by-w-by-d, where h, w, and d correspond to

the height, width, and depth of the filter,
respectively

• numChannelsPerGroup — Number of channels to convolve within each group.
numChannelsPerGroup must equal the number of channels in the input data divided by
numGroups, the number of groups. For ungrouped convolutions, where numGroups = 1,
numChannelsPerGroup must equal the number of channels in the input data.
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• numFiltersPerGroup — Number of filters to apply within each group.
• numGroups — Number of groups (optional). When numGroups > 1, the function performs

grouped convolutions. Grouped convolutions are not supported for input data with more than two
'S' dimensions. When numGroups = 1, the function performs ungrouped convolutions; in this
case, this dimension is singleton and can be omitted.

If weights is a formatted dlarray, it can have multiple spatial dimensions labeled 'S', one channel
dimension labeled 'C', and up to two other dimensions labeled 'U'. The number of 'S' dimensions
must match the number of 'S' dimensions of the input data. The labeled dimensions correspond to
the filter specifications as follows.

Filter Specification Dimension Labels
filterSize Up to three 'S' dimensions
numChannelsPerGroup 'C' dimension
numFiltersPerGroup First 'U' dimension
numGroups (optional) Second 'U' dimension

Data Types: single | double

bias — Bias constant
dlarray vector | dlarray scalar | numeric vector | numeric scalar | 0

Bias constant, specified as a dlarray vector or dlarray scalar with or without labels, a numeric
vector, or a numeric scalar.

• If bias is a scalar or has only singleton dimensions, the same bias is applied to each output.
• If bias has a nonsingleton dimension, each element of bias is the bias applied to the

corresponding convolutional filter specified by weights. The number of elements of bias must
match the number of filters specified by weights.

• If bias is a scalar numeric array with value 0, the bias term is disabled and no bias is added
during the convolution operation.

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled
'C'.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DilationFactor',2 sets the dilation factor for each convolutional filter to 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:
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• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1.
Example: 'Stride',3
Data Types: single | double

DilationFactor — Filter dilation factor
1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as the comma-separated pair consisting of 'DilationFactor' and
one of the following.

• Numeric scalar — The same dilation factor value is applied for all spatial dimensions.
• Numeric vector — A different dilation factor value is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the dilation factor applied to the ith spatial dimension.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter
can see) on the input data. Using a dilation factor corresponds to an effective filter size of
filterSize + (filterSize-1)*(dilationFactor-1).
Example: 'DilationFactor',2
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
'Padding' and one of the following:
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• 'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

In each case, the input data is padded with zeros.
Example: 'Padding','same'
Data Types: single | double

Output Arguments
dlY — Convolved feature map
dlarray

Convolved feature map, returned as a dlarray. The output dlY has the same underlying data type
as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

The size of the 'C' channel dimension of dlY depends on the size of the weights input. The size of
the 'C' dimension of output Y is the product of the size of the dimensions numFiltersPerGroup
and numGroups in the weights argument. If weights is a formatted dlarray, this product is the
same as the product of the size of the 'U' dimensions.

More About
Deep Learning Convolution

The dlconv function applies sliding convolution filters to the spatial dimensions of the input data.
The dlconv function supports convolution in one, two, or three spatial dimensions. For more
information, see the definition of convolutional layer on page 1-257 on the convolution2dLayer
reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• dlX
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlfeval | dlgradient | fullyconnect | maxpool | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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dlfeval
Evaluate deep learning model for custom training loops

Syntax
[y1,...,yk] = dlfeval(fun,x1,...,xn)

Description
Use dlfeval to evaluate custom deep learning models for custom training loops.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

[y1,...,yk] = dlfeval(fun,x1,...,xn) evaluates the deep learning array function fun at the
input arguments x1,…,xn. Functions passed to dlfeval can contain calls to dlgradient, which
compute gradients from the inputs x by using automatic differentiation.

Examples

Compute Gradient Using Automatic Differentiation

Rosenbrock's function is a standard test function for optimization. The rosenbrock.m helper
function computes the function value and uses automatic differentiation to compute its gradient.

type rosenbrock.m

function [y,dydx] = rosenbrock(x)

y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
dydx = dlgradient(y,x);

end

To evaluate Rosenbrock's function and its gradient at the point [–1,2], create a dlarray of the
point and then call dlfeval on the function handle @rosenbrock.

x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)

fval = 
  1x1 dlarray
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   104

gradval = 
  1x2 dlarray

   396   200

Alternatively, define Rosenbrock's function as a function of two inputs, x1 and x2.

type rosenbrock2.m

function [y,dydx1,dydx2] = rosenbrock2(x1,x2)

y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = dlgradient(y,x1,x2);

end

Call dlfeval to evaluate rosenbrock2 on two dlarray arguments representing the inputs –1 and
2.

x1 = dlarray(-1);
x2 = dlarray(2);
[fval,dydx1,dydx2] = dlfeval(@rosenbrock2,x1,x2)

fval = 
  1x1 dlarray

   104

dydx1 = 
  1x1 dlarray

   396

dydx2 = 
  1x1 dlarray

   200

Plot the gradient of Rosenbrock's function for several points in the unit square. First, initialize the
arrays representing the evaluation points and the output of the function.

[X1 X2] = meshgrid(linspace(0,1,10));
X1 = dlarray(X1(:));
X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));
DYDX1 = Y;
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));
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quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))
xlabel('x1')
ylabel('x2')

Input Arguments
fun — Function to evaluate
function handle

Function to evaluate, specified as a function handle. If fun includes a dlgradient call, then
dlfeval evaluates the gradient by using automatic differentiation. In this gradient evaluation, each
argument of the dlgradient call must be a dlarray or a cell array, structure, or table containing a
dlarray. The number of input arguments to dlfeval must be the same as the number of input
arguments to fun.
Example: @rosenbrock
Data Types: function_handle

x — Function argument
any MATLAB data type

Function argument, specified as any MATLAB data type.
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An input argument xj that is a variable of differentiation in a dlgradient call must be a traced
dlarray or a cell array, structure, or table containing a traced dlarray. An extra variable such as a
hyperparameter or constant data array does not have to be a dlarray.
Example: dlarray([1 2;3 4])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

Output Arguments
y — Function output
any data type | dlarray

Function output, returned as any data type. If the output results from a dlgradient call, the output
is a dlarray.

Tips
• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must

evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.

• dlgradient does not support higher order derivatives. In other words, you cannot pass the
output of a dlgradient call into another dlgradient call.

• To enable the correct evaluation of gradients, the function fun must use only supported functions
for dlarray. See “List of Functions with dlarray Support”.

See Also
dlarray | dlgradient

Topics
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Generative Adversarial Network (GAN)”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”

Introduced in R2019b
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dlgradient
Compute gradients for custom training loops using automatic differentiation

Syntax
[dydx1,...,dydxk] = dlgradient(y,x1,...,xk)
[dydx1,...,dydxk] = dlgradient(y,x1,...,xk,'RetainData',true)

Description
Use dlgradient to compute derivatives using automatic differentiation for custom training loops.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

[dydx1,...,dydxk] = dlgradient(y,x1,...,xk) returns the gradients of y with respect to
the variables x1 through xk.

Call dlgradient from inside a function passed to dlfeval. See “Compute Gradient Using
Automatic Differentiation” on page 1-343 and “Use Automatic Differentiation In Deep Learning
Toolbox”.

[dydx1,...,dydxk] = dlgradient(y,x1,...,xk,'RetainData',true) causes the gradient
to retain intermediate values for reuse in subsequent dlgradient calls. This syntax can save time,
but uses more memory. See “Tips” on page 1-346.

Examples

Compute Gradient Using Automatic Differentiation

Rosenbrock's function is a standard test function for optimization. The rosenbrock.m helper
function computes the function value and uses automatic differentiation to compute its gradient.

type rosenbrock.m

function [y,dydx] = rosenbrock(x)

y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
dydx = dlgradient(y,x);

end
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To evaluate Rosenbrock's function and its gradient at the point [–1,2], create a dlarray of the
point and then call dlfeval on the function handle @rosenbrock.

x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)

fval = 
  1x1 dlarray

   104

gradval = 
  1x2 dlarray

   396   200

Alternatively, define Rosenbrock's function as a function of two inputs, x1 and x2.

type rosenbrock2.m

function [y,dydx1,dydx2] = rosenbrock2(x1,x2)

y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = dlgradient(y,x1,x2);

end

Call dlfeval to evaluate rosenbrock2 on two dlarray arguments representing the inputs –1 and
2.

x1 = dlarray(-1);
x2 = dlarray(2);
[fval,dydx1,dydx2] = dlfeval(@rosenbrock2,x1,x2)

fval = 
  1x1 dlarray

   104

dydx1 = 
  1x1 dlarray

   396

dydx2 = 
  1x1 dlarray

   200

Plot the gradient of Rosenbrock's function for several points in the unit square. First, initialize the
arrays representing the evaluation points and the output of the function.

[X1 X2] = meshgrid(linspace(0,1,10));
X1 = dlarray(X1(:));
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X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));
DYDX1 = Y;
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));
end
quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))
xlabel('x1')
ylabel('x2')

Input Arguments
y — Variable to differentiate
scalar dlarray object

Variable to differentiate, specified as a scalar dlarray object. For differentiation, y must be a traced
function of dlarray inputs (see “Traced dlarray” on page 1-346) and must consist of supported
functions for dlarray (see “List of Functions with dlarray Support”).
Example: 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2
Example: relu(X)
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x1,...,xk — Variable in function
dlarray object | cell array containing dlarray objects | structure containing dlarray objects |
table containing dlarray objects

Variable in the function, specified as a dlarray object, a cell array, structure, or table containing
dlarray objects, or any combination of such arguments recursively. For example, an argument can
be a cell array containing a cell array that contains a structure containing dlarray objects.

If you specify x1,...,xk as a table, the table must contain the following variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

Example: dlarray([1 2;3 4])
Data Types: single | double | logical | struct | cell

'RetainData' — Indicator for retaining trace data during function call
false (default) | true

Indicator for retaining trace data during the function call, specified as false or true. When this
argument is false, a dlarray discards the derivative trace immediately after computing a
derivative. When this argument is true, a dlarray retains the derivative trace until the end of the
dlfeval function call that evaluates the dlgradient. The true setting is useful only when the
dlfeval call contains more than one dlgradient call. The true setting causes the software to use
more memory, but can save time when multiple dlgradient calls use at least part of the same trace.
Example: dydx = dlgradient(y,x,'RetainData',true)
Data Types: logical

Output Arguments
dydx1,...,dydxk — Gradient
dlarray object | cell array containing dlarray objects | structure containing dlarray objects |
table containing dlarray objects

Gradient, returned as a dlarray object, or a cell array, structure, or table containing dlarray
objects, or any combination of such arguments recursively. The size and data type of
dydx1,...,dydxk are the same as those of the associated input variable x1,…,xk.

More About
Traced dlarray

During the computation of a function, a dlarray internally records the steps taken in a trace,
enabling reverse mode automatic differentiation. The trace occurs within a dlfeval call. See
“Automatic Differentiation Background”.

Tips
• dlgradient does not support higher order derivatives. In other words, you cannot pass the

output of a dlgradient call into another dlgradient call.
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• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must
evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.

• To enable the correct evaluation of gradients, the y argument must use only supported functions
for dlarray. See “List of Functions with dlarray Support”.

• If you set the 'RetainData' name-value pair argument to true, the software preserves tracing
for the duration of the dlfeval function call instead of erasing the trace immediately after the
derivative computation. This preservation can cause a subsequent dlgradient call within the
same dlfeval call to be executed faster, but uses more memory. For example, in training an
adversarial network, the 'RetainData' setting is useful because the two networks share data
and functions during training. See “Train Generative Adversarial Network (GAN)”.

See Also
dlarray | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Train Generative Adversarial Network (GAN)”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”

Introduced in R2019b
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dlmtimes
(Not recommended) Batch matrix multiplication for deep learning

Note dlmtimes is not recommended. Use pagemtimes instead. For more information, see
“Compatibility Considerations”

Syntax
dlC = dlmtimes(dlA,dlB)

Description
dlC = dlmtimes(dlA,dlB) computes matrix multiplication for each page of dlA and dlB. For 3-D
inputs dlA and dlB, dlC is calculated as

dlC(:,:,i) = dlA(:,:,i) * dlB(:,:,i)

Similarly, for n-dimensional inputs dlA and dlB, dlC is calculated as

dlC(:,:,i1,...,in) = dlA(:,:,i1,...,in) * dlB(:,:,i1,...,in)

If one of dlA or dlB is a two-dimensional matrix, this matrix multiplies each page of the other input.

Examples

Multiply Two 4-D Arrays

Create two 4-D arrays.

A = rand(3,4,8,2);
B = rand(4,5,8,2);

dlA = dlarray(A);
dlB = dlarray(B);

Calculate the batch matrix multiplication of dlA and dlB.

dlC = dlmtimes(dlA,dlB);
size(dlC)

ans = 1×4    
     3     5     8     2

Multiply Two Inputs Using Scalar Expansion

If one of the inputs is a 2-D matrix, the function uses scalar expansion to expand this matrix to the
same size as the other input in the third and higher dimensions. The function then performs batch
matrix multiplication to the expanded matrix and the input array.
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Create a random array of size 15-by-20-by-3-by-128. Convert to dlarray.

A = rand(15,20,3,128);
dlA = dlarray(A);

Create a random matrix of size 20-by-15.

B = rand(20,15);

Multiply dlA and B using dlmtimes.

dlC = dlmtimes(dlA,B);
size(dlC)

ans = 1×4    
    15    15     3   128

Input Arguments
dlA,dlB — Operands
scalars | vectors | matrices | arrays

Operands, specified as scalars, vectors, matrices, or N-D arrays. At least one of dlA or dlB must be a
dlarray. The inputs dlA or dlB must not be formatted unless one of dlA or dlB is an unformatted
scalar.

The number of columns of dlA must match the number of rows of dlB. If one of dlA or dlB is a two-
dimensional matrix, this matrix multiplies each page of the other input. Otherwise, the size of dlA
and dlB for each dimension greater than two must match.

Output Arguments
dlC — Product
scalar | vector | matrix | array

Product, returned as a scalar, vector, matrix, or an N-D array.

Array dlC has the same number of rows as input dlA and the same number of columns as input dlB,
unless one of dlA or dlB is a scalar. The size of the other dimensions of dlC match the size of the
dimensions greater than two of both dlA and dlB. If dlA or dlB is a matrix, the size of the other
dimensions matches the size of the other (non-matrix) input. If one of dlA or dlB is a scalar, dlC has
the same size as the non-scalar input.

Compatibility Considerations
dlmtimes is not recommended
Not recommended starting in R2020b

dlmtimes is not recommended. Use pagemtimes instead. The two-input syntax of pagemtimes
performs the same functionality as dlmtimes. For information on how to use pagemtimes with
dlarray inputs, see the pagemtimes entry in “List of Functions with dlarray Support”

See Also
dlarray | mtimes | pagefun | pagemtimes
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Topics
“Sequence-to-Sequence Translation Using Attention”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”

Introduced in R2020a
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dlnetwork
Deep learning network for custom training loops

Description
A dlnetwork object enables support for custom training loops using automatic differentiation.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

Creation

Syntax
dlnet = dlnetwork(lgraph)

Description

dlnet = dlnetwork(lgraph) converts a layer graph to a dlnetwork object representing a deep
neural network for custom training loops.

Input Arguments

lgraph — Network architecture
layerGraph object

Network architecture, specified as a layer graph.

The layer graph must not contain output layers. When training the network, calculate the loss
separately.

For a list of layers supported by dlnetwork, see “Supported Layers” on page 1-360.

Properties
Layers — Network layers
Layer array

Network layers, specified as a Layer array.
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Connections — Layer connections
table

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: table

Learnables — Network learnable parameters
table

Network learnable parameters, specified as a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a dlarray.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.
Data Types: table

State — Network state
table

Network state, specified as a table.

The network state is a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and
predict functions.
Data Types: table

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array
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Network output layer names, specified as a cell array of character vectors. This property includes all
layers with disconnected outputs. If a layer has multiple outputs, then the disconnected outputs are
specified as 'layerName/outputName'.
Data Types: cell

Object Functions
forward Compute deep learning network output for training
predict Compute deep learning network output for inference
layerGraph Graph of network layers for deep learning
setL2Factor Set L2 regularization factor of layer learnable parameter
setLearnRateFactor Set learn rate factor of layer learnable parameter
getLearnRateFactor Get learn rate factor of layer learnable parameter
getL2Factor Get L2 regularization factor of layer learnable parameter

Examples

Convert Pretrained Network to dlnetwork Object

To implement a custom training loop for your network, first convert it to a dlnetwork object. Do not
include output layers in a dlnetwork object. Instead, you must specify the loss function in the
custom training loop.

Load a pretrained GoogLeNet model using the googlenet function. This function requires the Deep
Learning Toolbox™ Model for GoogLeNet Network support package. If this support package is not
installed, then the function provides a download link.

net = googlenet;

Convert the network to a layer graph and remove the layers used for classification using
removeLayers.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,["prob" "output"]);

Convert the network to a dlnetwork object.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [142x1 nnet.cnn.layer.Layer]
    Connections: [168x2 table]
     Learnables: [116x3 table]
          State: [0x3 table]
     InputNames: {'data'}
    OutputNames: {'loss3-classifier'}
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Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning
rate schedule.

If trainingOptions does not provide the options you need (for example, a custom learning rate
schedule), then you can define your own custom training loop using automatic differentiation.

This example trains a network to classify handwritten digits with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.

Load Training Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ....
    'LabelSource','foldernames');

Partition the data into training and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,'randomize');

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training images, use an augmented image datastore. Specify additional augmentation operations
to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and
vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the
exact details of the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','input')
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    convolution2dLayer(5,20,'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20,'Padding','same','Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding','same','Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'input'}
    OutputNames: {'softmax'}

Define Model Gradients Function

Create the function modelGradients, listed at the end of the example, that takes a dlnetwork
object, a mini-batch of input data with corresponding labels and returns the gradients of the loss with
respect to the learnable parameters in the network and the corresponding loss.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01,
and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.
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• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

mbq = minibatchqueue(augimdsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB',''});

Initialize the training progress plot.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model gradients, state, and loss using the dlfeval and modelGradients functions
and update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Display the training progress.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq)
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [dlX, dlY] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function and update the network state.
        [gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);
        dlnet.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);
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        % Display the training progress.
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial,

channel, batch).

numOutputs = 1;
mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    'MiniBatchSize',miniBatchSize, ...
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    'MiniBatchFcn',@preprocessMiniBatchPredictors, ...
    'MiniBatchFormat','SSCB');

Loop over the mini-batches and classify the images using modelPredictions function, listed at the
end of the example.

predictions = modelPredictions(dlnet,mbqTest,classes);

Evaluate the classification accuracy.

YTest = imdsValidation.Labels;
accuracy = mean(predictions == YTest)

accuracy = 0.9530

Model Gradients Function

The modelGradients function takes a dlnetwork object dlnet, a mini-batch of input data dlX
with corresponding labels Y and returns the gradients of the loss with respect to the learnable
parameters in dlnet, the network state, and the loss. To compute the gradients automatically, use
the dlgradient function.

function [gradients,state,loss] = modelGradients(dlnet,dlX,Y)

[dlYPred,state] = forward(dlnet,dlX);

loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);

loss = double(gather(extractdata(loss)));

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object dlnet, a minibatchqueue of input
data mbq, and the network classes, and computes the model predictions by iterating over all data in
the minibatchqueue object. The function uses the onehotdecode function to find the predicted
class with the highest score.

function predictions = modelPredictions(dlnet,mbq,classes)

predictions = [];

while hasdata(mbq)
    
    dlXTest = next(mbq);
    dlYPred = predict(dlnet,dlXTest);
    
    YPred = onehotdecode(dlYPred,classes,1)';
    
    predictions = [predictions; YPred];
end

end
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Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate.
Y = cat(2,YCell{1:end});

% One-hot encode labels.
Y = onehotencode(Y,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

end

Freeze Learnable Parameters of dlnetwork Object

Load a pretrained network.

net = squeezenet;

Convert the network to a layer graph, remove the output layer, and convert it to a dlnetwork object.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the first few
rows of the learnables table.
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learnables = dlnet.Learnables;
head(learnables)

ans=8×3 table
          Layer           Parameter           Value       
    __________________    _________    ___________________

    "conv1"               "Weights"    {3x3x3x64  dlarray}
    "conv1"               "Bias"       {1x1x64    dlarray}
    "fire2-squeeze1x1"    "Weights"    {1x1x64x16 dlarray}
    "fire2-squeeze1x1"    "Bias"       {1x1x16    dlarray}
    "fire2-expand1x1"     "Weights"    {1x1x16x64 dlarray}
    "fire2-expand1x1"     "Bias"       {1x1x64    dlarray}
    "fire2-expand3x3"     "Weights"    {3x3x16x64 dlarray}
    "fire2-expand3x3"     "Bias"       {1x1x64    dlarray}

To freeze the learnable parameters of the network, loop over the learnable parameters and set the
learn rate to 0 using the setLearnRateFactor function.

factor = 0;

numLearnables = size(learnables,1);
for i = 1:numLearnables
    layerName = learnables.Layer(i);
    parameterName = learnables.Parameter(i);
    
    dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end

To use the updated learn rate factors when training, you must pass the dlnetwork object to the
update function in the custom training loop. For example, use the command

[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity);

More About
Supported Layers

The dlnetwork function supports the layers listed below and custom layers without forward
functions returning a nonempty memory value.

Input Layers

Layer Description

 imageInputLayer
An image input layer inputs 2-D images to a
network and applies data normalization.

 image3dInputLayer
A 3-D image input layer inputs 3-D images or
volumes to a network and applies data
normalization.

 sequenceInputLayer
A sequence input layer inputs sequence data to a
network.
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Layer Description

 featureInputLayer
A feature input layer inputs feature data into a
network and applies data normalization. Use this
layer when you have a data set of numeric scalars
representing features (data without spatial or
time dimensions).

Convolution and Fully Connected Layers

Layer Description

 convolution2dLayer
A 2-D convolutional layer applies sliding
convolutional filters to the input.

 convolution3dLayer
A 3-D convolutional layer applies sliding cuboidal
convolution filters to three-dimensional input.

 groupedConvolution2dLayer
A 2-D grouped convolutional layer separates the
input channels into groups and applies sliding
convolutional filters. Use grouped convolutional
layers for channel-wise separable (also known as
depth-wise separable) convolution.

 transposedConv2dLayer
A transposed 2-D convolution layer upsamples
feature maps.

 transposedConv3dLayer
A transposed 3-D convolution layer upsamples
three-dimensional feature maps.

 fullyConnectedLayer
A fully connected layer multiplies the input by a
weight matrix and then adds a bias vector.

Sequence Layers

Layer Description

 sequenceInputLayer
A sequence input layer inputs sequence data to a
network.

 lstmLayer
An LSTM layer learns long-term dependencies
between time steps in time series and sequence
data.

 bilstmLayer
A bidirectional LSTM (BiLSTM) layer learns
bidirectional long-term dependencies between
time steps of time series or sequence data. These
dependencies can be useful when you want the
network to learn from the complete time series at
each time step.

 gruLayer
A GRU layer learns dependencies between time
steps in time series and sequence data.

For lstmLayer, bilstmLayer, and gruLayer objects, dlnetwork objects support layers with the
default values for the StateActivationFunction and GateActivationFunction properties.

 dlnetwork

1-361



Activation Layers

Layer Description

 reluLayer
A ReLU layer performs a threshold operation to
each element of the input, where any value less
than zero is set to zero.

 leakyReluLayer
A leaky ReLU layer performs a threshold
operation, where any input value less than zero is
multiplied by a fixed scalar.

 clippedReluLayer
A clipped ReLU layer performs a threshold
operation, where any input value less than zero is
set to zero and any value above the clipping
ceiling is set to that clipping ceiling.

 eluLayer
An ELU activation layer performs the identity
operation on positive inputs and an exponential
nonlinearity on negative inputs.

 tanhLayer
A hyperbolic tangent (tanh) activation layer
applies the tanh function on the layer inputs.

 softmaxLayer
A softmax layer applies a softmax function to the
input.

Normalization, Dropout, and Cropping Layers

Layer Description

 batchNormalizationLayer
A batch normalization layer normalizes each
input channel across a mini-batch. To speed up
training of convolutional neural networks and
reduce the sensitivity to network initialization,
use batch normalization layers between
convolutional layers and nonlinearities, such as
ReLU layers.

 groupNormalizationLayer
A group normalization layer divides the channels
of the input data into groups and normalizes the
activations across each group. To speed up
training of convolutional neural networks and
reduce the sensitivity to network initialization,
use group normalization layers between
convolutional layers and nonlinearities, such as
ReLU layers. You can perform instance
normalization and layer normalization by setting
the appropriate number of groups.

 crossChannelNormalizationLayer
A channel-wise local response (cross-channel)
normalization layer carries out channel-wise
normalization.

 dropoutLayer
A dropout layer randomly sets input elements to
zero with a given probability.
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Layer Description

 crop2dLayer
A 2-D crop layer applies 2-D cropping to the
input.

Pooling and Unpooling Layers

Layer Description

 averagePooling2dLayer
An average pooling layer performs down-
sampling by dividing the input into rectangular
pooling regions and computing the average
values of each region.

 averagePooling3dLayer
A 3-D average pooling layer performs down-
sampling by dividing three-dimensional input into
cuboidal pooling regions and computing the
average values of each region.

 globalAveragePooling2dLayer
A global average pooling layer performs down-
sampling by computing the mean of the height
and width dimensions of the input.

 globalAveragePooling3dLayer
A 3-D global average pooling layer performs
down-sampling by computing the mean of the
height, width, and depth dimensions of the input.

 maxPooling2dLayer
A max pooling layer performs down-sampling by
dividing the input into rectangular pooling
regions, and computing the maximum of each
region.

 maxPooling3dLayer
A 3-D max pooling layer performs down-sampling
by dividing three-dimensional input into cuboidal
pooling regions, and computing the maximum of
each region.

 globalMaxPooling2dLayer
A global max pooling layer performs down-
sampling by computing the maximum of the
height and width dimensions of the input.

 globalMaxPooling3dLayer
A 3-D global max pooling layer performs down-
sampling by computing the maximum of the
height, width, and depth dimensions of the input.

 maxUnpooling2dLayer
A max unpooling layer unpools the output of a
max pooling layer.

Combination Layers

Layer Description

 additionLayer
An addition layer adds inputs from multiple
neural network layers element-wise.

 multiplicationLayer
A multiplication layer multiplies inputs from
multiple neural network layers element-wise.
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Layer Description

 depthConcatenationLayer
A depth concatenation layer takes inputs that
have the same height and width and concatenates
them along the third dimension (the channel
dimension).

 concatenationLayer
A concatenation layer takes inputs and
concatenates them along a specified dimension.
The inputs must have the same size in all
dimensions except the concatenation dimension.

See Also
dlarray | dlfeval | dlgradient | forward | layerGraph | predict

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2019b
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predict
Compute deep learning network output for inference

Syntax
dlY = predict(dlnet,dlX)
dlY = predict(dlnet,dlX1,...,dlXM)
[dlY1,...,dlYN] = predict( ___ )
[dlY1,...,dlYK] = predict( ___ ,'Outputs',layerNames)
[ ___ ,state] = predict( ___ )

Description
Some deep learning layers behave differently during training and inference (prediction). For example,
during training, dropout layers randomly set input elements to zero to help prevent overfitting, but
during inference, dropout layers do not change the input.

To compute network outputs for inference, use the predict function. To compute network outputs
for training, use the forward function. For prediction with SeriesNetwork and DAGNetwork
objects, see predict.

dlY = predict(dlnet,dlX) returns the network output dlY during inference given the input data
dlX and the network dlnet with a single input and a single output.

dlY = predict(dlnet,dlX1,...,dlXM) returns the network output dlY during inference given
the M inputs dlX1, ...,dlXM and the network dlnet that has M inputs and a single output.

[dlY1,...,dlYN] = predict( ___ ) returns the N outputs dlY1, …, dlYN during inference for
networks that have N outputs using any of the previous syntaxes.

[dlY1,...,dlYK] = predict( ___ ,'Outputs',layerNames) returns the outputs dlY1, …,
dlYK during inference for the specified layers using any of the previous syntaxes.

[ ___ ,state] = predict( ___ ) also returns the updated network state using any of the previous
syntaxes.

Tip For prediction with SeriesNetwork and DAGNetwork objects, see predict.

Examples

Make Predictions Using dlnetwork Object

This example shows how to make predictions using a dlnetwork object by splitting data into mini-
batches.

For large data sets, or when predicting on hardware with limited memory, make predictions by
splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork
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objects, the predict function automatically splits the input data into mini-batches. For dlnetwork
objects, you must split the data into mini-batches manually.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet = s.dlnet;
classes = s.classes;

Load Data for Prediction

Load the digits data for prediction.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true);

Make Predictions

Loop over the mini-batches of the test data and make predictions using a custom prediction loop.

Use minibatchqueue to process and manage the mini-batches of images. Specify a mini-batch size
of 128. Set the read size property of the image datastore to the mini-batch size.

For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to concatenate the data into a batch and normalize the images.

• Format the images with the dimensions 'SSCB' (spatial, spatial, channel, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single.

• Make predictions on a GPU if one is available. By default, the minibatchqueue object converts
the output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(imds,...
    "MiniBatchSize",miniBatchSize,...
    "MiniBatchFcn", @preprocessMiniBatch,...
    "MiniBatchFormat","SSCB");

Loop over the minibatches of data and make predictions using the predict function. Use the
onehotdecode function to determing the class labels. Store the predicted class labels.

numObservations = numel(imds.Files);
YPred = strings(1,numObservations);

predictions = [];

% Loop over mini-batches.
while hasdata(mbq)
    
    % Read mini-batch of data.
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    dlX = next(mbq);
       
    % Make predictions using the predict function.
    dlYPred = predict(dlnet,dlX);
   
    % Determine corresponding classes.
    predBatch = onehotdecode(dlYPred,classes,1);
    predictions = [predictions predBatch];
  
end

Visualize some of the predictions.

idx = randperm(numObservations,9);

figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});    
    label = predictions(idx(i));
    imshow(I)
    title("Label: " + string(label))
  
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:
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1 Extract the data from the incoming cell array and concatenate into a numeric array.
Concatenating over the fourth dimension adds a third dimension to each image, to be used as a
singleton channel dimension.

2 Normalize the pixel values between 0 and 1.

function X = preprocessMiniBatch(data)    
    % Extract image data from cell and concatenate
    X = cat(4,data{:});
    
    % Normalize the images.
    X = X/255;
end

Input Arguments
dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

dlX — Input data
formatted dlarray

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the
fmt input argument of dlarray.

layerNames — Layers to extract outputs from
string array | cell array of character vectors

Layers to extract outputs from, specified as a string array or a cell array of character vectors
containing the layer names.

• If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name
of the layer.

• If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the
layer name followed by the character "/" and the name of the layer output: 'layerName/
outputName'.

Output Arguments
dlY — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see
the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:
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• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

Update the state of a dlnetwork using the State property.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function runs on the GPU if either or both of the following conditions are met:

• Any of the values of the network learnable parameters inside dlnet.Learnables.Value are
dlarray objects with underlying data of type gpuArray

• The input argument dlX is a dlarray with underlying data of type gpuArray

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | dlnetwork | forward

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2019b
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dlquantizationOptions
Options for quantizing a trained deep neural network

Description
The dlquantizationOptions object provides options for quantizing a trained deep neural network
to scaled 8-bit integer data types. Use the dlquantizationOptions object to define the metric
function to use that compares the accuracy of the network before and after quantization.

To learn about the products required to quantize a deep neural network, see “Quantization Workflow
Prerequisites”.

Creation

Syntax
quantOpts = dlquantizationOptions
quantOpts = dlquantizationOptions(Name, Value)

Description

quantOpts = dlquantizationOptions creates a dlquantizationOptions object with default
property values.

quantOpts = dlquantizationOptions(Name, Value) creates a dlquantizationOptions
object with additional properties specified as Name, Value pair arguments.

Properties
MetricFcn — Function to use for calculating validation metrics
cell array of function handles

Cell array of function handles specifying the functions for calculating validation metrics of quantized
network.
Example: options = dlquantizationOptions('MetricFcn',
{@(x)hComputeModelAccuracy(x, net, groundTruth)});

Data Types: cell

FPGA Execution Environment Options

Bitstream — Bitstream name
'zcu102_int8' | 'zc706_int8' | 'arria10soc_int8'

This property affects FPGA targeting only.

Name of the FPGA bitstream specified as a character vector.
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Example: 'Bitstream', 'zcu102_int8'

Target — Name of the dlhdl.Target object
hT

This property affects FPGA targeting only.

Name of the dlhdl.Target object that has the board name and board interface information.
Example: 'Target', hT

Examples

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
squeezenet neural network after retraining the network to classify new images according to the
“Train Deep Learning Network to Classify New Images” example. In this example, the memory
required for the network is reduced approximately 75% through quantization while the accuracy of
the network is not affected.

Load the pretrained network.

net

net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
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Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults =

  95x5 table

                   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue  
    __________________________________________________    _________________________    ________________________    __________    ___________

    {'conv1_relu_conv1_Weights'                      }    {'relu_conv1'           }         "Weights"                -0.91985        0.88489
    {'conv1_relu_conv1_Bias'                         }    {'relu_conv1'           }         "Bias"                   -0.07925        0.26343
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Weights'}    {'fire2-relu_squeeze1x1'}         "Weights"                   -1.38         1.2477
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Bias'   }    {'fire2-relu_squeeze1x1'}         "Bias"                   -0.11641        0.24273
    {'fire2-expand1x1_fire2-relu_expand1x1_Weights'  }    {'fire2-relu_expand1x1' }         "Weights"                 -0.7406        0.90982
    {'fire2-expand1x1_fire2-relu_expand1x1_Bias'     }    {'fire2-relu_expand1x1' }         "Bias"                  -0.060056        0.14602
    {'fire2-expand3x3_fire2-relu_expand3x3_Weights'  }    {'fire2-relu_expand3x3' }         "Weights"                -0.74397        0.66905
    {'fire2-expand3x3_fire2-relu_expand3x3_Bias'     }    {'fire2-relu_expand3x3' }         "Bias"                  -0.051778       0.074239
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Weights'}    {'fire3-relu_squeeze1x1'}         "Weights"                -0.77263        0.68897
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Bias'   }    {'fire3-relu_squeeze1x1'}         "Bias"                   -0.10141        0.32678
    {'fire3-expand1x1_fire3-relu_expand1x1_Weights'  }    {'fire3-relu_expand1x1' }         "Weights"                -0.72131        0.97287
    {'fire3-expand1x1_fire3-relu_expand1x1_Bias'     }    {'fire3-relu_expand1x1' }         "Bias"                  -0.067043        0.30424
    {'fire3-expand3x3_fire3-relu_expand3x3_Weights'  }    {'fire3-relu_expand3x3' }         "Weights"                -0.61196        0.77431
    {'fire3-expand3x3_fire3-relu_expand3x3_Bias'     }    {'fire3-relu_expand3x3' }         "Bias"                  -0.053612        0.10329
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Weights'}    {'fire4-relu_squeeze1x1'}         "Weights"                -0.74145         1.0888
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Bias'   }    {'fire4-relu_squeeze1x1'}         "Bias"                   -0.10886        0.13882
...

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)
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valResults = 

  struct with fields:

       NumSamples: 20
    MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

valResults.MetricResults.Result

ans =

  2x3 table

    NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
    _____________________    ____________    _______________________________

     {'Floating-Point'}           1                    2.9003e+06           
     {'Quantized'     }           1                    7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 
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  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an
augmentedImageDatastore object to resize the data for the network. Then, split the data into
calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
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hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
%% hComputeAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

To compile and deploy the quantized network, run the validate function of the dlquantizer
object. Use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. This function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then
starts programming the FPGA device by using the sof file, displays progress messages, and the time it
takes to deploy the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
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        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
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    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
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        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

See Also
Apps
Deep Network Quantizer

Functions
calibrate | dlquantizer | validate

Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
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dlquantizer
Quantize a deep neural network to 8-bit scaled integer data types

Description
Use the dlquantizer object to reduce the memory requirement of a deep neural network by
quantizing weights, biases, and activations to 8-bit scaled integer data types.

Creation

Syntax
quantObj = dlquantizer(net)
quantObj = dlquantizer(net,Name,Value)

Description

quantObj = dlquantizer(net) creates a dlquantizer object for the specified network.

quantObj = dlquantizer(net,Name,Value) creates a dlquantizer object for the specified
network, with additional options specified by one or more name-value pair arguments.

Use dlquantizer to create an quantized network for FPGA or GPU deployment. To learn about the
products required to quantize and deploy the deep learning network to an FPGA or GPU environment,
see “Quantization Workflow Prerequisites” .

Input Arguments

net — Pretrained neural network
DAGNetwork object | SeriesNetwork object | yolov2ObjectDetector object |
ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, SeriesNetwork, yolov2ObjectDetector,
or a ssdObjectDetector object.

Quantization of ssdObjectDetector networks requires the ExecutionEnvironment property to
be set to 'FPGA'.

Properties
NetworkObject — Pretrained neural network
DAGNetwork object | SeriesNetwork object | yolov2ObjectDetector object |
ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, SeriesNetwork, yolov2ObjectDetector,
or a ssdObjectDetector object.
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Quantization of ssdObjectDetector networks requires the ExecutionEnvironment property to
be set to 'FPGA'.

ExecutionEnvironment — Execution environment
'GPU' (default) | 'FPGA'

Specify the execution environment for the quantized network. When this parameter is not specified
the default execution environment is GPU. To learn about the products required to quantize and
deploy the deep learning network to an FPGA or GPU environment, see “Quantization Workflow
Prerequisites” .
Example: 'ExecutionEnvironment','FPGA'

Object Functions
calibrate Simulate and collect ranges of a deep neural network
validate Quantize and validate a deep neural network

Examples

Specify FPGA Execution Environment

• This example shows how to specify an FPGA execution environment.

net = vgg19;
quantobj = dlquantizer(net,'ExecutionEnvironment','FPGA');

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
squeezenet neural network after retraining the network to classify new images according to the
“Train Deep Learning Network to Classify New Images” example. In this example, the memory
required for the network is reduced approximately 75% through quantization while the accuracy of
the network is not affected.

Load the pretrained network.

net

net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
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layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults =

  95x5 table

                   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue  
    __________________________________________________    _________________________    ________________________    __________    ___________

    {'conv1_relu_conv1_Weights'                      }    {'relu_conv1'           }         "Weights"                -0.91985        0.88489
    {'conv1_relu_conv1_Bias'                         }    {'relu_conv1'           }         "Bias"                   -0.07925        0.26343
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    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Weights'}    {'fire2-relu_squeeze1x1'}         "Weights"                   -1.38         1.2477
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Bias'   }    {'fire2-relu_squeeze1x1'}         "Bias"                   -0.11641        0.24273
    {'fire2-expand1x1_fire2-relu_expand1x1_Weights'  }    {'fire2-relu_expand1x1' }         "Weights"                 -0.7406        0.90982
    {'fire2-expand1x1_fire2-relu_expand1x1_Bias'     }    {'fire2-relu_expand1x1' }         "Bias"                  -0.060056        0.14602
    {'fire2-expand3x3_fire2-relu_expand3x3_Weights'  }    {'fire2-relu_expand3x3' }         "Weights"                -0.74397        0.66905
    {'fire2-expand3x3_fire2-relu_expand3x3_Bias'     }    {'fire2-relu_expand3x3' }         "Bias"                  -0.051778       0.074239
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Weights'}    {'fire3-relu_squeeze1x1'}         "Weights"                -0.77263        0.68897
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Bias'   }    {'fire3-relu_squeeze1x1'}         "Bias"                   -0.10141        0.32678
    {'fire3-expand1x1_fire3-relu_expand1x1_Weights'  }    {'fire3-relu_expand1x1' }         "Weights"                -0.72131        0.97287
    {'fire3-expand1x1_fire3-relu_expand1x1_Bias'     }    {'fire3-relu_expand1x1' }         "Bias"                  -0.067043        0.30424
    {'fire3-expand3x3_fire3-relu_expand3x3_Weights'  }    {'fire3-relu_expand3x3' }         "Weights"                -0.61196        0.77431
    {'fire3-expand3x3_fire3-relu_expand3x3_Bias'     }    {'fire3-relu_expand3x3' }         "Bias"                  -0.053612        0.10329
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Weights'}    {'fire4-relu_squeeze1x1'}         "Weights"                -0.74145         1.0888
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Bias'   }    {'fire4-relu_squeeze1x1'}         "Bias"                   -0.10886        0.13882
...

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = 

  struct with fields:

       NumSamples: 20
    MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

valResults.MetricResults.Result

ans =

  2x3 table

    NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
    _____________________    ____________    _______________________________

     {'Floating-Point'}           1                    2.9003e+06           
     {'Quantized'     }           1                    7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.
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Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an
augmentedImageDatastore object to resize the data for the network. Then, split the data into
calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
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    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
%% hComputeAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

To compile and deploy the quantized network, run the validate function of the dlquantizer
object. Use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. This function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then
starts programming the FPGA device by using the sof file, displays progress messages, and the time it
takes to deploy the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
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    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
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    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
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        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

See Also
Apps
Deep Network Quantizer

Functions
calibrate | dlquantizationOptions | validate
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Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
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dlupdate
Update parameters using custom function

Syntax
dlnet = dlupdate(fun,dlnet)
params = dlupdate(fun,params)
[ ___ ] = dlupdate(fun, ___ A1,...,An)
[ ___ ,X1,...,Xm] = dlupdate(fun, ___ )

Description
dlnet = dlupdate(fun,dlnet) updates the learnable parameters of the dlnetwork object
dlnet by evaluating the function fun with each learnable parameter as an input. fun is a function
handle to a function that takes one parameter array as an input argument and returns an updated
parameter array.

params = dlupdate(fun,params) updates the learnable parameters in params by evaluating the
function fun with each learnable parameter as an input.

[ ___ ] = dlupdate(fun, ___ A1,...,An) also specifies additional input arguments, in addition
to the input arguments in previous syntaxes, when fun is a function handle to a function that
requires n+1 input values.

[ ___ ,X1,...,Xm] = dlupdate(fun, ___ ) returns multiple outputs X1,...,Xm when fun is a
function handle to a function that returns m+1 output values.

Examples

L1 Regularization with dlupdate

Perform L1 regularization on a structure of parameter gradients.

Create the sample input data.

dlX = dlarray(rand(100,100,3),'SSC');

Initialize the learnable parameters for the convolution operation.

params.Weights = dlarray(rand(10,10,3,50));
params.Bias = dlarray(rand(50,1));

Calculate the gradients for the convolution operation using the helper function convGradients,
defined at the end of this example.

gradients = dlfeval(@convGradients,dlX,params);

Define the regularization factor.

L1Factor = 0.001;
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Create an anonymous function that regularizes the gradients. By using an anonymous function to
pass a scalar constant to the function, you can avoid having to expand the constant value to the same
size and structure as the parameter variable.

L1Regularizer = @(grad,param) grad + L1Factor.*sign(param);

Use dlupdate to apply the regularization function to each of the gradients.

gradients = dlupdate(L1Regularizer,gradients,params);

The gradients in grads are now regularized according to the function L1Regularizer.

convGradients Function

The convGradients helper function takes the learnable parameters of the convolution operation
and a mini-batch of input data dlX, and returns the gradients with respect to the learnable
parameters.

function gradients = convGradients(dlX,params)
dlY = dlconv(dlX,params.Weights,params.Bias);
dlY = sum(dlY,'all');
gradients = dlgradient(dlY,params);
end

Use dlupdate to Train Network Using Custom Update Function

Use dlupdate to train a network using a custom update function that implements the stochastic
gradient descent algorithm (without momentum).

Load Training Data

Load the digits training data.

[XTrain,YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
numClasses = numel(classes);

Define the Network

Define the network architecture and specify the average image value using the 'Mean' option in the
image input layer.

layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);
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Define Model Gradients Function

Create the helper function modelGradients, listed at the end of this example. The function takes a
dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and
returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet.

Define Stochastic Gradient Descent Function

Create the helper function sgdFunction, listed at the end of this example. The function takes param
and paramGradient, a learnable parameter and the gradient of the loss with respect to that
parameter, respectively, and returns the updated parameter using the stochastic gradient descent
algorithm, expressed as

θl + 1 = θ− α∇E θl

where l is the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 30;
numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Specify the learning rate.

learnRate = 0.01;

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU with compute capability 3.0 or higher.

executionEnvironment = "auto";

Visualize the training progress in a plot.

plots = "training-progress";

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters by calling dlupdate with the function
sgdFunction defined at the end of this example. At the end of each epoch, display the training
progress.

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end
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Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(idx);
    
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);
        
        Y = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y(c,YTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to dlarray.
        dlX = dlarray(single(X),'SSCB');
        
        % If training on a GPU, then convert data to a gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients helper function.
        [gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);
        
        % Update the network parameters using the SGD algorithm defined in
        % the sgdFunction helper function.
        updateFcn = @(dlnet,gradients) sgdFunction(dlnet,gradients,learnRate);
        dlnet = dlupdate(updateFcn,dlnet,gradients);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
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Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest, YTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format 'SSCB'. For GPU prediction, also convert
the data to a gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YPred==YTest)

accuracy = 0.9386
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Model Gradients Function

The helper function modelGradients takes a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect
to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient
function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)

dlYPred = forward(dlnet,dlX);

loss = crossentropy(dlYPred,Y);

gradients = dlgradient(loss,dlnet.Learnables);

end

Stochastic Gradient Descent Function

The helper function sgdFunction takes the learnable parameter parameter, the gradients of that
parameter with respect to the loss gradient, and the learning rate learnRate, and returns the
updated parameter using the stochastic gradient descent algorithm, expressed as

θl + 1 = θ− α∇E θl

where l is the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function.

function parameter = sgdFunction(parameter,gradient,learnRate)

parameter = parameter - learnRate .* gradient;

end

Input Arguments
fun — Function to apply
function handle

Function to apply to the learnable parameters, specified as a function handle.

dlupate evaluates fun with each network learnable parameter as an input. fun is evaluated as
many times as there are arrays of learnable parameters in dlnet or params.

dlnet — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.
dlnet.Learnables is a table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
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• Value — Value of parameter, specified as a cell array containing a dlarray.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

A1,...,An — Additional input arguments
dlarray | numeric array | cell array | structure | table

Additional input arguments to fun, specified as dlarray objects, numeric arrays, cell arrays,
structures, or tables with a Value variable.

The exact form of A1,...,An depends on the input network or learnable parameters. The following
table shows the required format for A1,...,An for possible inputs to dlupdate.

Input Learnable Parameters A1,...,An
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables.
A1,...,An must have a Value
variable consisting of cell arrays
that contain the additional input
arguments for the function fun
to apply to each learnable
parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params
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Input Learnable Parameters A1,...,An
Structure Structure with the same data

types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables and ordering as
params. A1,...,An must have
a Value variable consisting of
cell arrays that contain the
additional input argument for
the function fun to apply to
each learnable parameter.

Output Arguments
dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

X1,...,Xm — Additional output arguments
dlarray | numeric array | cell array | structure | table

Additional output arguments from the function fun, where fun is a function handle to a function that
returns multiple outputs, returned as dlarray objects, numeric arrays, cell arrays, structures, or
tables with a Value variable.

The exact form of X1,...,Xm depends on the input network or learnable parameters. The following
table shows the returned format of X1,...,Xm for possible inputs to dlupdate.

Input Learnable parameters X1,...,Xm
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables.
X1,...,Xm has a Value
variable consisting of cell arrays
that contain the additional
output arguments of the
function fun applied to each
learnable parameter.
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Input Learnable parameters X1,...,Xm
params dlarray dlarray with the same data

type and ordering as params
Numeric array Numeric array with the same

data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables. and ordering as
params. X1,...,Xm has a
Value variable consisting of cell
arrays that contain the
additional output argument of
the function fun applied to each
learnable parameter.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• params
• A1,...,An

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
adamupdate | dlarray | dlfeval | dlgradient | dlnetwork | rmspropupdate | sgdmupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Translation Using Attention”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2019b
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dltranspconv
Deep learning transposed convolution

Syntax
dlY = dltranspconv(dlX,weights,bias)
dlY = dltranspconv(dlX,weights,bias,'DataFormat',FMT)
dlY = dltranspconv( ___ Name,Value)

Description
The transposed convolution operation upsamples feature maps.

Note This function applies the deep learning transposed convolution operation to dlarray data. If
you want to apply transposed convolution within a layerGraph object or Layer array, use one of the
following layers:

• transposedConv2dLayer
• transposedConv3dLayer

dlY = dltranspconv(dlX,weights,bias) computes the deep learning transposed convolution
of the input dlX using the filters defined by weights, and adds a constant bias. The input dlX is a
formatted dlarray with dimension labels. Transposed convolution acts on dimensions that you
specify as 'S' and 'C' dimensions. The output dlY is a formatted dlarray with the same dimension
labels as dlX.

dlY = dltranspconv(dlX,weights,bias,'DataFormat',FMT) also specifies the dimension
format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with
the same dimension order as dlX.

dlY = dltranspconv( ___ Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'Stride',3 sets
the stride of the convolution operation.

Examples

Upsample Image Using Transposed Convolution

Convolve an image and then use transposed convolution to resize the convolved image to the same
size as the original image.

Import the image data and convert it to a dlarray.

X = imread('sherlock.jpg');
dlX = dlarray(single(X),'SSC');

Display the image.
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imshow(X)

Initialize the convolutional filters and bias term. Specify an ungrouped convolution that applies a
single filter to all three channels of the input data.

filterHeight = 10;
filterWidth = 10;
numChannelsPerGroup = 3;
numFiltersPerGroup = 1;
numGroups = 1;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);
bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution. Use a 'Stride' value of 2 and a 'DilationFactor' value of 2.

dlY = dlconv(dlX,weights,bias,'Stride',2,'DilationFactor',3);

Display the convolved image.

Y = extractdata(dlY);
imshow(rescale(Y))
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Initialize the transposed convolutional filters and bias. Specify an ungrouped transposed convolution
that applies three filters to the input. Use the same filter height and filter width as for the convolution
operation.

numChannelsPerGroupTC = 1;
numFiltersPerGroupTC = 3;

weightsTC = rand(filterHeight,filterWidth,numFiltersPerGroupTC,numChannelsPerGroupTC,numGroups);
biasTC = rand(numFiltersPerGroupTC*numGroups,1);

Perform the transposed convolution. Use the same stride and dilation factor as for the convolution
operation.

dlZ = dltranspconv(dlY,weightsTC,biasTC,'Stride',2,'DilationFactor',3);

Display the image after the transposed convolution.

Z = extractdata(dlZ);
imshow(rescale(Z))
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Compare the size of the original image, the convolved image, and the image after the transposed
convolution.

sizeX = size(X)

sizeX = 1×3

   640   960     3

sizeY = size(Y)

sizeY = 1×2

   307   467

sizeZ = size(Z)

sizeZ = 1×3

   640   960     3

The transposed convolution upsamples the convolved data to the size of the original input data.
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Perform Grouped Transposed Convolution

Apply transposed convolution to the input data in three groups of two channels each. Apply four
filters per group.

Create the input data as ten observations of size 100-by-100 with six channels.

height = 100;
width = 100;
channels = 6;
numObservations = 10;

X = rand(height,width,channels,numObservations);
dlX = dlarray(X,'SSCB');

Initialize the filters for the transposed convolution operation. Specify three groups of transposed
convolutions that each apply four filters to two channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 2;
numFiltersPerGroup = 4;
numGroups = 3;

weights = rand(filterHeight,filterWidth,numFiltersPerGroup,numChannelsPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the transposed convolution.

dlY = dltranspconv(dlX,weights,bias);
size(dlY)

ans = 1×4

   107   107    12    10

dims(dlY)

ans = 
'SSCB'

The 12 channels of the convolution output represent the three groups of transposed convolutions with
four filters per group.

Input Arguments
dlX — Input data
dlarray | numeric array

1 Deep Learning Functions

1-402



Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of weights or bias must be a dlarray.

Convolution acts on dimensions that you specify as spatial dimensions using the 'S' dimension label.
You can specify up to three dimensions in dlX as 'S' dimensions.
Data Types: single | double

weights — Filters
dlarray | numeric array

Filters, specified as a dlarray with or without labels or a numeric array. The weights argument
specifies the size and values of the filters, as well as the number of filters and the number of groups
for grouped transposed convolutions.

Specify weights as a filterSize-by-numFiltersPerGroup-by-numChannelsPerGroup-by-
numGroups array.

• filterSize — Size of the convolutional filters. filterSize can have up to three dimensions,
depending on the number of spatial dimensions in the input data.

Input Data 'S' Dimensions filterSize
1-D h, where h corresponds to the height of the

filter
2-D h-by-w, where h and w correspond to the

height and width of the filter, respectively
3-D h-by-w-by-d, where h, w, and d correspond to

the height, width, and depth of the filter,
respectively

• numFiltersPerGroup — Number of filters to apply within each group.
• numChannelsPerGroup — Number of channels within each group for grouped transposed

convolutions. numChannelsPerGroup must equal the number of channels in the input data
divided by numGroups, the number of groups. For ungrouped convolutions, where numGroups =
1, numChannelsPerGroup must equal the number of channels in the input data.

• numGroups — Number of groups (optional). When numGroups > 1, the function performs
grouped transposed convolutions. When numGroups = 1, the function performs ungrouped
transposed convolutions; in this case, this dimension is singleton and can be omitted.

If weights is a formatted dlarray, it can have multiple spatial dimensions labeled 'S', one channel
dimension labeled 'C', and up to two other dimensions labeled 'U'. The number of 'S' dimensions
must match the number of 'S' dimensions of the input data. The labeled dimensions correspond to
the filter specifications as follows.

Filter Specification Dimension Labels
filterSize Up to three 'S' dimensions
numFiltersPerGroup 'C' dimension
numChannelsPerGroup First 'U' dimension
numGroups (optional) Second 'U' dimension

Data Types: single | double
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bias — Bias constant
dlarray vector | dlarray scalar | numeric vector | numeric scalar

Bias constant, specified as a dlarray vector or dlarray scalar with or without labels, a numeric
vector, or a numeric scalar.

• If bias is a scalar or has only singleton dimensions, the same bias is applied to each entry of the
output.

• If bias has a nonsingleton dimension, each element of bias is the bias applied to the
corresponding convolutional filter specified by weights. The number of elements of bias must
match the number of filters specified by weights.

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled
'C'.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Stride',2 sets the stride of each filter to 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.
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The default value of 'Stride' is 1.
Example: 'Stride',3
Data Types: single | double

DilationFactor — Filter dilation factor
1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as the comma-separated pair consisting of 'DilationFactor' and
one of the following.

• Numeric scalar — The same dilation factor value is applied for all spatial dimensions.
• Numeric vector — A different dilation factor value is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the dilation factor applied to the ith spatial dimension.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter
can see) on the input data. Using a dilation factor corresponds to an effective filter size of
filterSize + (filterSize-1)*(dilationFactor-1).
Example: 'DilationFactor',2
Data Types: single | double

Cropping — Cropping applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Cropping applied to edges of data, specified as the comma-separated pair consisting of 'Cropping'
and one of the following.

• 'same' — Cropping is set so that the output size is the same as the input size when the stride is
1. More generally, the output size of each spatial dimension is inputSize*stride, where
inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same cropping value is applied to both ends of all spatial dimensions.
• Numeric vector — A different cropping value is applied along each spatial dimension. Use a vector

of size d, where d is the number of spatial dimensions of the input data. The ith element of the
vector specifies the cropping applied to the start and the end along the ith spatial dimension.

• Numeric matrix — A different cropping value is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the cropping applied to the start of spatial dimension d. The
element (2,d) specifies the cropping applied to the end of spatial dimension d. For example, in 2-
D the format is [top, left; bottom, right].

Example: 'Cropping','same'
Data Types: single | double

Output Arguments
dlY — Feature map
dlarray

Feature map, returned as a dlarray. The output dlY has the same underlying data type as the input
dlX.

 dltranspconv

1-405



If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray or numeric array with the same
dimension order as the input data.

The size of the 'C' channel dimension of dlY depends on the size of the weights input. The size of
the 'C' dimension of output Y is the product of the size of the dimensions numFiltersPerGroup
and numGroups in the weights argument. If weights is a formatted dlarray, this product is the
same as the product of the size of the 'C' dimension and the second 'U' dimension.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• dlX
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
avgpool | dlarray | dlconv | dlfeval | dlgradient | maxpool | maxunpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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disconnectLayers
Disconnect layers in layer graph

Syntax
newlgraph = disconnectLayers(lgraph,s,d)

Description
newlgraph = disconnectLayers(lgraph,s,d) disconnects the source layer s from the
destination layer d in the layer graph lgraph. The new layer graph, newlgraph, contains the same
layers as lgraph, but excludes the connection between s and d.

Examples

Disconnect Layers in Layer Graph

Create a layer graph from an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Disconnect the 'conv_1' layer from the 'BN_1' layer.

lgraph = disconnectLayers(lgraph,'conv_1','BN_1');
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

s — Connection source
character vector | string scalar

Connection source, specified as a character vector or a string scalar.

• If the source layer has a single output, then s is the name of the layer.
• If the source layer has multiple outputs, then s is the layer name followed by the character / and

the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

d — Connection destination
character vector | string scalar

Connection destination, specified as a character vector or a string scalar.
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• If the destination layer has a single input, then d is the name of the layer.
• If the destination layer has multiple inputs, then d is the layer name followed by the character /

and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments
newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also
addLayers | assembleNetwork | connectLayers | layerGraph | plot | removeLayers |
replaceLayer

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
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dropoutLayer
Dropout layer

Description
A dropout layer randomly sets input elements to zero with a given probability.

Creation

Syntax
layer = dropoutLayer
layer = dropoutLayer(probability)
layer = dropoutLayer( ___ ,'Name',Name)

Description

layer = dropoutLayer creates a dropout layer.

layer = dropoutLayer(probability) creates a dropout layer and sets the Probability
property.

layer = dropoutLayer( ___ ,'Name',Name) sets the optional Name property using a name-value
pair and any of the arguments in the previous syntaxes. For example,
dropoutLayer(0.4,'Name','drop1') creates a dropout layer with dropout probability 0.4 and
name 'drop1'. Enclose the property name in single quotes.

Properties
Dropout

Probability — Probability to drop out input elements
0.5 (default) | numeric scalar in the range 0 to 1

Probability for dropping out input elements, specified as a numeric scalar in the range 0–1.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

For image input, the layer applies a different mask for each channel of each image. For sequence
input, the layer applies a different dropout mask for each time step of each sequence.
Example: 0.4
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Dropout Layer

Create a dropout layer with name 'drop1'.

layer = dropoutLayer('Name','drop1')

layer = 
  DropoutLayer with properties:

           Name: 'drop1'

   Hyperparameters
    Probability: 0.5000

Include a dropout layer in a Layer array.
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layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    dropoutLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Dropout                 50% dropout
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Dropout Layer

A dropout layer randomly sets input elements to zero with a given probability.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

Similar to max or average pooling layers, no learning takes place in this layer.

For image input, the layer applies a different mask for each channel of each image. For sequence
input, the layer applies a different dropout mask for each time step of each sequence.

References
[1] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A Simple Way to

Prevent Neural Networks from Overfitting." Journal of Machine Learning Research. Vol. 15,
pp. 1929-1958, 2014.

[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional
Neural Networks." Advances in Neural Information Processing Systems. Vol. 25, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
imageInputLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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efficientnetb0
EfficientNet-b0 convolutional neural network

Syntax
net = efficientnetb0
net = efficientnetb0('Weights','imagenet')

lgraph = efficientnetb0('Weights','none')

Description
EfficientNet-b0 is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the EfficientNet-b0 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with EfficientNet-b0.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load EfficientNet-b0 instead of GoogLeNet.

net = efficientnetb0 returns an EfficientNet-b0 model network trained on the ImageNet data
set.

This function requires the Deep Learning Toolbox Model for EfficientNet-b0 Network support
package. If this support package is not installed, then the function provides a download link.

net = efficientnetb0('Weights','imagenet') returns a EfficientNet-b0 model network
trained on the ImageNet data set. This syntax is equivalent to net = efficientnetb0.

lgraph = efficientnetb0('Weights','none') returns the untrained EfficientNet-b0 model
network architecture. The untrained model does not require the support package.

Examples

Download EfficientNet-b0 Support Package

Download and install the Deep Learning Toolbox Model for EfficientNet-b0 Network support package.

Type efficientnetb0 at the command line.

efficientnetb0

If the Deep Learning Toolbox Model for EfficientNet-b0 Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
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typing efficientnetb0 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

efficientnetb0

ans = 

  DAGNetwork with properties:

         Layers: [290×1 nnet.cnn.layer.Layer]
    Connections: [363×2 table]
     InputNames: {'ImageInput'}
    OutputNames: {'classification'}

Output Arguments
net — Pretrained EfficientNet-b0 convolutional neural network
DAGNetwork object

Pretrained EfficientNet-b0 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained EfficientNet-b0 convolutional neural network architecture
LayerGraph object

Untrained EfficientNet-b0 convolutional neural network architecture, returned as a LayerGraph
object.

References
[1] ImageNet. http://www.image-net.org

[2] Mingxing Tan and Quoc V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks,” ArXiv Preprint ArXiv:1905.1194, 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = efficientnetb0 or by
passing the efficientnetb0 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('efficientnetb0')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax efficientnetb0('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For code generation, you can load the network by using the syntax net = efficientnetb0 or
by passing the efficientnetb0 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('efficientnetb0')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax efficientnetb0('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph |
plot | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020b
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eluLayer
Exponential linear unit (ELU) layer

Description
An ELU activation layer performs the identity operation on positive inputs and an exponential
nonlinearity on negative inputs.

The layer performs the following operation:

f x =
x, x ≥ 0

α(exp(x) ‐ 1), x < 0

The default value of α is 1. Specify a value of α for the layer by setting the Alpha property.

Creation

Syntax
layer = eluLayer
layer = eluLayer(alpha)
layer = eluLayer( ___ ,'Name',Name)

Description

layer = eluLayer creates an ELU layer.

layer = eluLayer(alpha) creates an ELU layer and specifies the Alpha property.

layer = eluLayer( ___ ,'Name',Name) additionally sets the optional Name property using any of
the previous syntaxes. For example, eluLayer('Name','elu1') creates an ELU layer with the
name 'elu1'.

Properties
ELU

Alpha — Nonlinearity parameter
1 (default) | numeric scalar

Nonlinearity parameter α, specified as a numeric scalar. The minimum value of the output of the ELU
layer equals -α and the slope at negative inputs approaching 0 is α.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create ELU Layer

Create an exponential linear unit (ELU) layer with the name 'elu1' and a default value of 1 for the
nonlinearity parameter Alpha.

layer = eluLayer('Name','elu1')

layer = 
  ELULayer with properties:

     Name: 'elu1'
    Alpha: 1

  Show all properties

Include an ELU layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
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    batchNormalizationLayer
    eluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    eluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   ELU                     ELU with Alpha 1
     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Convolution             32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   ELU                     ELU with Alpha 1
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

References
[1] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network

learning by exponential linear units (ELUs)." arXiv preprint arXiv:1511.07289 (2015).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
batchNormalizationLayer | clippedReluLayer | leakyReluLayer | reluLayer |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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embed
Embed discrete data

Syntax
dlY = embed(dlX,weights)
dlY = embed(dlX,weights,'DataFormat',FMT)

Description
The embed operation converts numeric indices to numeric vectors, where the indices correspond to
discrete data. Use embeddings to map discrete data such as categorical values or words to numeric
vectors.

Note This function applies the embed operation to dlarray data. If you want to apply the embed
operation within a layerGraph object or Layer array, use a wordEmbeddingLayer object.

dlY = embed(dlX,weights) returns the embedding vectors in weights corresponding to the
numeric indices in the formatted dlarray object dlX.

dlY = embed(dlX,weights,'DataFormat',FMT)also specifies dimension format FMT when dlX
is not a formatted dlarray object. The output dlY is an unformatted dlarray with the same
dimension order as dlX.

Examples

Embed Categorical Data

Embed a mini-batch of categorical features.

Create an array of categorical features containing 5 observations with values "Male" or "Female".

X = categorical(["Male" "Female" "Male" "Female" "Female"])';

Initialize the embedding weights. Specify an embedding dimension of 10, and a vocabulary
corresponding to the number of categories of the input data plus one.

embeddingDimension = 10;
vocabularySize = numel(categories(X));
weights = rand(embeddingDimension,vocabularySize+1);

To embed the categorical data, first convert it to mini-batch of numeric indices.

X = double(X)

X = 5×1

     2
     1
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     2
     1
     1

For formatted dlarray input, the embed function expands into a singleton 'C' (channel) dimension
with size 1. Create a formatted dlarray object containing the data. To specify that the rows
correspond to observations, specify the format 'BC' (batch, channel).

dlX = dlarray(X,'BC')

dlX = 
  1(C) x 5(B) dlarray

     2     1     2     1     1

Embed the numeric indices using the embed function. The embed function expands into the 'C'
dimension.

dlY = embed(dlX,weights)

dlY = 
  10(C) x 5(B) dlarray

    0.1576    0.8147    0.1576    0.8147    0.8147
    0.9706    0.9058    0.9706    0.9058    0.9058
    0.9572    0.1270    0.9572    0.1270    0.1270
    0.4854    0.9134    0.4854    0.9134    0.9134
    0.8003    0.6324    0.8003    0.6324    0.6324
    0.1419    0.0975    0.1419    0.0975    0.0975
    0.4218    0.2785    0.4218    0.2785    0.2785
    0.9157    0.5469    0.9157    0.5469    0.5469
    0.7922    0.9575    0.7922    0.9575    0.9575
    0.9595    0.9649    0.9595    0.9649    0.9649

In this case, the output is an embeddingDimension-by-N matrix with format 'CB' (channel, batch),
where N is the number of observations. Each column contains the embedding vectors.

Embed Text Data

Embed a mini-batch of text data.

textData = [
    "Items are occasionally getting stuck in the scanner spools."
    "Loud rattling and banging sounds are coming from assembler pistons."];

Create an array of tokenized documents.

documents = tokenizedDocument(textData);

To encode text data as sequences of numeric indices, create a wordEncoding object.

enc = wordEncoding(documents);
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Initialize the embedding weights. Specify an embedding dimension of 100, and a vocabulary size to
be consistent with the vocabulary size corresponding to the number of words in the word encoding
plus one.

embeddingDimension = 100;
vocabularySize = enc.NumWords;
weights = rand(embeddingDimension,vocabularySize+1);

Convert the tokenized documents to sequences of word vectors using the doc2sequence function.
The doc2sequence function, by default, discards out-of-vocabulary tokens in the input data. To map
out-of-vocabulary tokens to the last vector of embedding weights, set the 'UnknownWord' option to
'nan'. The doc2sequence function, by default, left-pads the input sequences with zeros to have the
same length

sequences = doc2sequence(enc,documents,'UnknownWord','nan')

sequences=2×1 cell array
    {1x11 double}
    {1x11 double}

The output is a cell array, where each element corresponds to an observation. Each element is a row
vector with elements representing the individual tokens in the corresponding observation including
the padding values.

Convert the cell array to a numeric array by vertically concatenating the rows.

X = cat(1,sequences{:})

X = 2×11

     0     1     2     3     4     5     6     7     8     9    10
    11    12    13    14    15     2    16    17    18    19    10

Convert the numeric indices to dlarray. Because the rows and columns of X correspond to
observations and time steps, respectively, specify the format 'BT'.

dlX = dlarray(X,'BT')

dlX = 
  2(B) x 11(T) dlarray

     0     1     2     3     4     5     6     7     8     9    10
    11    12    13    14    15     2    16    17    18    19    10

Embed the numeric indices using the embed function. The embed function maps the padding tokens
(tokens with index 0) and any other out-of-vocabulary tokens to the same out-of-vocabulary
embedding vector.

dlY = embed(dlX,weights);

In this case, the output is an embeddingDimension-by-N-by-S matrix with format 'CBT', where N
and S are the number of observations and the number of time steps, respectively. The vector
dlY(:,n,t) corresponds to the embedding vector of time-step t of observation n.

 embed

1-423



Input Arguments
dlX — Input data
dlarray object | numeric array

Input data, specified as a dlarray object with or without dimension labels, or a numeric array. The
elements of dlX must be nonnegative integers or NaN.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX.
If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the
out-of-vocabulary vector for that element.

When dlX is not a formatted dlarray object, you must specify the dimension label format using the
'DataFormat' option. Also, if dlX is a numeric array, then weights must be a dlarray object.

The embed operation expands into a singleton channel dimension of the input data specified by the
'C' dimension label. If the data has no specified channel dimension, then the function assumes an
unspecified singleton channel dimension.

weights — Embedding weights
dlarray object | numeric array

Embedding weights, specified as a dlarray object with or without dimension labels or a numeric
array.

The matrix weights specifies the dimension of the embedding, the vocabulary size, and the
embedding vectors.

The embedding dimension is the number of components K of the embedding. That is, the embedding
maps numeric indices to vectors of length K. The vocabulary size is the number of discrete elements V
in the embedding. That is, the number of discrete elements of the underlying data that the
embedding supports. The embedding maps out-of-vocabulary indices to the same out-of-vocabulary
embedding vector.

If weights is a formatted dlarray object, then it must have format 'CU' or 'UC'. The dimensions
corresponding to the labels 'C' and 'U' must have size K and V+1, respectively, where K and V
represent the embedding dimension and the vocabulary size, respectively. The extra vector
corresponds to the out-of-vocabulary embedding vector.

If weights is not a formatted dlarray object, then weights must be a K-by-(V+1) matrix, where K
and V represent the embedding dimension and vocabulary size, respectively.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX.
If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the
out-of-vocabulary vector for that element.

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
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• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Embedding vectors
dlarray

Embedding vectors, returned as a dlarray object. The output dlY has the same underlying data
type as the input dlX.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX.
If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the
out-of-vocabulary vector for that element.

The embedding vectors have K elements, where K is the embedding dimension. The size of
dimensions dlY depend on the input data:

• If dlX is a formatted dlarray with a 'C' dimension label, then the embed operation expands into
that dimension. That is, the output has the same dimension labels as the input, the 'C' dimension
has size K, the other dimensions have the same size as the corresponding dimensions of the input.

• If dlX is a formatted dlarray without a 'C' dimension. Then the operation assumes a singleton
channel dimension. The output has a 'C' dimension and all other dimensions have the same size
and labels. That is, the output has the same dimension labels as the input and also a 'C'
dimension, the 'C' dimension has size K, the other dimensions have the same size as the
corresponding dimensions of the input.

• If dlX is not a formatted dlarray object and 'DataFormat' contains a 'C' dimension, then the
embed operation expands into that dimension. That is, the output has the number of dimensions
as the input, the dimension corresponding to the 'C' dimension has size K, the other dimensions
have the same size as the corresponding dimensions of the input.

• If dlX is not a formatted dlarray object and 'DataFormat' does not contain a 'C' dimension,
then the embed operation inserts a new dimension at the beginning. That is, the output has one
more dimension as the input, the first dimension corresponding to the 'C' dimension has size K,
the other dimensions have the same size as the corresponding dimensions of the input.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• dlX
• weights

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | lstm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020b
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exportONNXNetwork
Export network to ONNX model format

Syntax
exportONNXNetwork(net,filename)
exportONNXNetwork(net,filename,Name,Value)

Description
exportONNXNetwork(net,filename) exports the deep learning network net with weights to the
ONNX format file filename. If filename exists, then exportONNXNetwork overwrites the file.

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

exportONNXNetwork(net,filename,Name,Value) exports a network using additional options
specified by one or more name-value pair arguments.

Examples

Export Network in ONNX Format

Load a pretrained SqueezeNet convolutional neural network.

net = squeezenet

  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Export the network as an ONNX format file in the current folder called squeezenet.onnx. If the
Deep Learning Toolbox Converter for ONNX Model Format support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install.

filename = 'squeezenet.onnx';
exportONNXNetwork(net,filename)

Now, you can import the squeezenet.onnx file into any deep learning framework that supports
ONNX import.

Input Arguments
net — Trained network or graph of network layers
SeriesNetwork object | DAGNetwork object | dlnetwork object | layerGraph object
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Trained network or graph of network layers, specified as a SeriesNetwork, DAGNetwork,
dlnetwork, or layerGraph object.

You can get a trained network (SeriesNetwork, DAGNetwork, or dlnetwork) in these ways:

• Import a pretrained network. For example, use the googlenet function.
• Train your own network. Use trainNetwork to train a SeriesNetwork or DAGNetwork. Use a

custom training loop to train a dlnetwork.

A layerGraph object is a graph of network layers. Some of the layer parameters of this graph might
be empty (for example, the weights and bias of convolution layers, and the mean and variance of
batch normalization layers). Before using layerGraph as an input argument to
exportONNXNetwork, initialize the empty parameters by assigning random values. Alternatively, you
can do one of the following before exporting:

• Convert layerGraph to a dlnetwork by using layerGraph as an input argument to
dlnetwork. The empty parameters are automatically initialized.

• Convert layerGraph to a trained DAGNetwork by using trainNetwork. Use layerGraph as the
layers input argument to trainNetwork.

You can detect errors and issues in a trained network or graph of network layers before exporting to
an ONNX network by using analyzeNetwork. exportONNXNetwork requires SeriesNetwork,
DAGNetwork, and dlnetwork to be error free. exportONNXNetwork permits exporting a
layerGraph with a missing or unconnected output layer.

filename — Name of file
character vector | string scalar

Name of file, specified as a character vector or string scalar.
Example: 'network.onnx'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: exportONNXNetwork(net,filename,'NetworkName','my_net') exports a network
and specifies 'my_net' as the network name in the saved ONNX network.

NetworkName — Name of ONNX network
'Network' (default) | character vector | string scalar

Name of ONNX network to store in the saved file, specified as a character vector or a string scalar.
Example: 'my_squeezenet'

OpsetVersion — Version of ONNX operator set
8 (default) | 6 | 7 | 9

Version of ONNX operator set to use in the exported model. If the default operator set does not
support the network you are trying to export, then try using a later version. If you import the
exported network to another framework and you used an operator set during export that the importer
does not support, then the import can fail.
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To ensure that you use the appropriate operator set version, consult the ONNX operator
documentation [3]. For example, 'OpsetVersion',9 exports the maxUnpooling2dLayer to the
MaxUnpool-9 ONNX operator.
Example: 6

Limitations
• Because of architectural differences between MATLAB and ONNX, an exported network can have

a different structure compared to the original network.

Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.

Tips
• You can export a trained MATLAB deep learning network that includes multiple inputs and

multiple outputs to the ONNX model format. To learn about a multiple-input and multiple-output
deep learning network, see “Multiple-Input and Multiple-Output Networks”.

• exportONNXNetwork does not export settings or properties related to network training such as
training options, learning rate factors, or regularization factors.

• If you export a network that contains a layer that the ONNX format does not support, then
exportONNXNetwork saves a placeholder ONNX operator in place of the unsupported layer and
returns a warning. You cannot import an ONNX network with a placeholder operator into other
deep learning frameworks.

• exportONNXNetwork can export the following:

• Networks that have both convolutional and LSTM layers, for example, for video classification
applications.

• All custom layers (except nnet.onnx.layer.Flatten3dLayer) that are created when
importing networks from ONNX or TensorFlow-Keras using Deep Learning Toolbox Converter
for ONNX Model Format or Deep Learning Toolbox Importer for TensorFlow-Keras Models as
in the below table.

• The following layers:

ONNX Exporter Supported Layers
Deep Learning Toolbox Layers
additionLayer
averagePooling2dLayer
averagePooling3dLayer
batchNormalizationLayer
bilstmLayer
ClassificationOutputLayer
clippedReluLayer
concatenationLayer
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ONNX Exporter Supported Layers
convolution2dLayer
convolution3dLayer
crop2dLayer
CrossChannelNormalizationLayer
depthConcatenationLayer
dropoutLayer
eluLayer
fullyConnectedLayer
flattenLayer
globalAveragePooling2dLayer
globalMaxPooling2dLayer
groupedConvolution2dLayer
groupNormalizationLayer
gruLayer
imageInputLayer
image3dInputLayer
leakyReluLayer
lstmLayer
maxPooling2dLayer
maxPooling3dLayer
maxUnpooling2dLayer
multiplicationLayer
RegressionOutputLayer
reluLayer
sequenceInputLayer
sigmoidLayer
softmaxLayer
tanhLayer
transposedConv2dLayer
transposedConv3dLayer
 
ONNX Importer Custom Layers
nnet.onnx.layer.ClipLayer
nnet.onnx.layer.ElementwiseAffineLayer
nnet.onnx.layer.FlattenLayer
nnet.onnx.layer.GlobalAveragePooling2dLayer
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ONNX Exporter Supported Layers
nnet.onnx.layer.IdentityLayer
nnet.onnx.layer.PReluLayer
nnet.onnx.layer.TanhLayer
 
Keras Importer Custom Layers
nnet.keras.layer.FlattenCStyleLayer
nnet.keras.layer.GlobalAveragePooling2dLayer
nnet.keras.layer.TanhLayer
nnet.keras.layer.ZeroPadding2dLayer
 
Caffe Importer Custom Layers
nnet.caffe.layer.TanhLayer
 
Computer Vision Toolbox™ Layers
pixelClassificationLayer
rcnnBoxRegressionLayer
roiInputLayer
roiMaxPooling2dLayer
spaceToDepthLayer
 
Image Processing Toolbox™ Layers
resize2dLayer
resize3dLayer
 
Text Analytics Toolbox™ Layers
wordEmbeddingLayer

• For the groupNormalizationLayer, specify numGroups as "channel-wise" to map the
exported layer to the ONNX InstanceNormalization operator. GroupNormalization is
not a standard ONNX operator [3].

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

[3] ONNX Operators. https://github.com/onnx/onnx/blob/master/docs/Operators.md.

See Also
importCaffeLayers | importCaffeNetwork | importKerasLayers | importKerasNetwork |
importONNXLayers | importONNXNetwork
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Topics
“Pretrained Deep Neural Networks”
“Deep Learning in MATLAB”

Introduced in R2018a
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extractdata
Extract data from dlarray

Syntax
y = extractdata(dlX)

Description
y = extractdata(dlX) returns the data in the dlarray dlX. The output y has the same data type
as the data in dlX and is unlabeled

Examples

Extract Data from dlarray

Create a logical dlarray labeled 'SS'.

rng default % For reproducibility
dlX = dlarray(rand(4,3) > 0.5,'SS')

dlX = 
  4(S) x 3(S) logical dlarray

   1   1   1
   1   0   1
   0   0   0
   1   1   1

Extract the data from dlX.

y = extractdata(dlX)

y = 4x3 logical array

   1   1   1
   1   0   1
   0   0   0
   1   1   1

Input Arguments
dlX — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: dlX = dlarray(randn(50,3),'SC')
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Output Arguments
y — Data array
single array | double array | logical array | gpuArray

Data array, returned as a single, double, or logical array, or as a gpuArray of one of these array
types. The output y has the same data type as the underlying data type in dlX. The output y is
unlabeled.

Tips
• If dlX contains an implicit permutation because of labeling, y has that permutation explicitly.
• The output y has no tracing for the computation of derivatives. See “Derivative Trace”.

See Also
dlarray | gather

Introduced in R2019b
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featureInputLayer
Feature input layer

Description
A feature input layer inputs feature data into a network and applies data normalization. Use this layer
when you have a data set of numeric scalars representing features (data without spatial or time
dimensions).

For image input, use imageInputLayer.

Creation

Syntax
layer = featureInputLayer(numFeatures)
layer = featureInputLayer(numFeatures,Name,Value)

Description

layer = featureInputLayer(numFeatures) returns a feature input layer and sets the
InputSize property to the specified number of features.

layer = featureInputLayer(numFeatures,Name,Value) sets the optional properties using
name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Properties
Feature Input

InputSize — Number of features
positive integer

Number of features for each observation in the data, specified as a positive integer.

For image input, use imageInputLayer.
Example: 10

Normalization — Data normalization
'none' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' | function
handle

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.

 featureInputLayer

1-435



• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data, and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics at training time. To
save time when training, specify the required statistics for normalization and set the
'ResetInputNormalization' option in trainingOptions to false.

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization
[] (default) | column vector | numeric scalar

Mean for zero-center and z-score normalization, specified as a numFeatures-by-1 vector of means
per feature, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | column vector | numeric scalar

Standard deviation for z-score normalization, specified as a numFeatures-by-1 vector of means per
feature, a numeric scalar, or [].

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Min — Minimum value for rescaling
[] (default) | column vector | numeric scalar

Minimum value for rescaling, specified as a numFeatures-by-1 vector of minima per feature, a
numeric scalar, or [].

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | column vector | numeric scalar

Maximum value for rescaling, specified as a numFeatures-by-1 vector of maxima per feature, a
numeric scalar, or [].

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

 featureInputLayer

1-437



Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Feature Input Layer

Create a feature input layer with name 'input' for observations consisting of 21 features.

layer = featureInputLayer(21,'Name','input')

layer = 
  FeatureInputLayer with properties:

                      Name: 'input'
                 InputSize: 21

   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Include a feature input layer in a Layer array.

numFeatures = 21;
numClasses = 3;
 
layers = [
    featureInputLayer(numFeatures,'Name','input')
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','sm')
    classificationLayer('Name','classification')]

layers = 
  4x1 Layer array with layers:

     1   'input'            Feature Input           21 features
     2   'fc'               Fully Connected         3 fully connected layer
     3   'sm'               Softmax                 softmax
     4   'classification'   Classification Output   crossentropyex

Combine Image and Feature Input Layers

To train a network containing both an image input layer and a feature input layer, you must use a
dlnetwork object in a custom training loop.

Define the size of the input image, the number of features of each observation, the number of classes,
and the size and number of filters of the convolution layer.
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imageInputSize = [28 28 1];
numFeatures = 1;
numClasses = 10;
filterSize = 5;
numFilters = 16;

To create a network with two input layers, you must define the network in two parts and join them,
for example, by using a concatenation layer.

Define the first part of the network. Define the image classification layers and include a
concatenation layer before the last fully connected layer.

layers = [
    imageInputLayer(imageInputSize,'Normalization','none','Name','images')
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    reluLayer('Name','relu')
    fullyConnectedLayer(50,'Name','fc1')
    concatenationLayer(1,2,'Name','concat')
    fullyConnectedLayer(numClasses,'Name','fc2')
    softmaxLayer('Name','softmax')];

Convert the layers to a layer graph.

lgraph = layerGraph(layers);

For the second part of the network, add a feature input layer and connect it to the second input of the
concatenation layer.

featInput = featureInputLayer(numFeatures,'Name','features');
lgraph = addLayers(lgraph, featInput);
lgraph = connectLayers(lgraph, 'features', 'concat/in2');

Visualize the network.

plot(lgraph)
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Create a dlnetwork object.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [8x1 nnet.cnn.layer.Layer]
    Connections: [7x2 table]
     Learnables: [6x3 table]
          State: [0x3 table]
     InputNames: {'images'  'features'}
    OutputNames: {'softmax'}

See Also
Deep Network Designer | dlnetwork | fullyConnectedLayer | image3dInputLayer |
imageInputLayer | sequenceInputLayer | trainNetwork

Topics
“Train Network with Numeric Features”
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
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“List of Deep Learning Layers”

Introduced in R2020b
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finddim
Find dimensions with specified label

Syntax
dim = finddim(dlX,label)

Description
dim = finddim(dlX,label) returns the dimensions in dlX that have the label label. If no
dimension matches label, dim is empty.

Examples

Obtain Dimension with Specified Labels

Create a dlarray with some repeated labels. Specify the labels as 'TSSU'. The dlarray call
reorders the labels, because it enforces the order 'SCBTU'. See “Usage” on page 1-325.

dlX = dlarray(randn(5,4,3,2),'TSSU');

Obtain the dimensions with the label 'T'.

dimU = finddim(dlX,'T')

dimU = 3

Obtain the dimensions with the label 'S'.

dimS = finddim(dlX,'S')

dimS = 1×2

     1     2

Obtain the dimensions with the label 'B'.

dimB = finddim(dlX,'B')

dimB =

  1x0 empty double row vector

Obtain the size of the dlX dimensions labeled 'S'.

SSize = size(dlX,finddim(dlX,'S'))

SSize = 1×2

     4     3
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Input Arguments
dlX — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: dlX = dlarray(randn(3,4),'ST')

label — Single dlarray label
'S' | 'C' | 'B' | 'T' | 'U'

Single dlarray label, specified as one of these characters:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified

Example: "C"
Data Types: char | string

Output Arguments
dim — Dimension
real vector

Dimension, returned as a real vector. If no label in the input array dlX matches label, dim is empty.
So if dlX is unlabeled, dim is empty.

See Also
dims | dlarray | stripdims

Introduced in R2019b

 finddim

1-443



findPlaceholderLayers
Find placeholder layers in network architecture imported from Keras or ONNX

Syntax
placeholderLayers = findPlaceholderLayers(importedLayers)
[placeholderLayers,indices] = findPlaceholderLayers(importedLayers)

Description
placeholderLayers = findPlaceholderLayers(importedLayers) returns all placeholder
layers that exist in the network architecture importedLayers imported by the
importKerasLayers or importONNXLayers functions, or created by the functionToLayerGraph
function. Placeholder layers are the layers that these functions insert in place of layers that are not
supported by Deep Learning Toolbox.

To use with an imported network, this function requires either the Deep Learning Toolbox Importer
for TensorFlow-Keras Models support package or the Deep Learning Toolbox Converter for ONNX
Model Format support package.

[placeholderLayers,indices] = findPlaceholderLayers(importedLayers) also returns
the indices of the placeholder layers.

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by
Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a
placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not yet supported by the Deep Learning
Toolbox. They have been replaced by placeholder layers. To find these layers, call the function
findPlaceholderLayers on the returned object. 
> In nnet.internal.cnn.keras.importKerasLayers (line 26)
  In importKerasLayers (line 102) 

lgraph = 

  LayerGraph with properties:

         Layers: [15×1 nnet.cnn.layer.Layer]
    Connections: [15×2 table]

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers
in the Keras network.

lgraph.Layers
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ans = 

  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'gaussian_noise_1'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     7   'gaussian_noise_2'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1_softmax'               Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two
placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the
Keras network.

placeholders = findPlaceholderLayers(lgraph)

placeholders = 

  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration
gaussian2.KerasConfiguration

ans = 

  struct with fields:

    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = 

  struct with fields:

    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.
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Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:
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     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")
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Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex
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The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
importedLayers — Network architecture imported from Keras or ONNX or created by
functionToLayerGraph
Layer array | LayerGraph object

Network architecture imported from Keras or ONNX or created by functionToLayerGraph,
specified as a Layer array or LayerGraph object.
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Output Arguments
placeholderLayers — All placeholder layers in network architecture
array of PlaceholderLayer objects

All placeholder layers in the network architecture, returned as an array of PlaceholderLayer
objects.

indices — Indices of placeholder layers
vector

Indices of placeholder layers, returned as a vector.

• If importedLayers is a layer array, then indices are the indices of the placeholder layers in
importedLayers.

• If importedLayers is a LayerGraph object, then indices are the indices of the placeholder
layers in importedLayers.Layers.

If you remove a layer from or add a layer to a Layer array or LayerGraph object, then the indices of
the other layers in the object can change. You must use findPlaceholderLayers again to find the
updated indices of the rest of the placeholder layers.

Tips
• If you have installed Deep Learning Toolbox Importer for TensorFlow-Keras Models and

findPlaceholderLayers is unable to find placeholder layers created when importing an ONNX
network, then try updating the Deep Learning Toolbox Importer for TensorFlow-Keras Models
support package in the Add-On Explorer.

See Also
PlaceholderLayer | assembleNetwork | functionToLayerGraph | importKerasLayers |
importONNXLayers | replaceLayer

Topics
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”

Introduced in R2017b
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flattenLayer
Flatten layer

Description
A flatten layer collapses the spatial dimensions of the input into the channel dimension.

For example, if the input to the layer is an H-by-W-by-C-by-N-by-S array (sequences of images), then
the flattened output is an (H*W*C)-by-N-by-S array.

This layer supports sequence input only.

Creation

Syntax
layer = flattenLayer
layer = flattenLayer('Name',Name)

Description

layer = flattenLayer creates a flatten layer.

layer = flattenLayer('Name',Name) sets the optional Name property using a name-value pair.
For example, flattenLayer('Name','flatten1') creates a flatten layer with name
'flatten1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
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Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create Flatten Layer

Create a flatten layer with the name 'flatten1'.

layer = flattenLayer('Name','flatten1')

layer = 
  FlattenLayer with properties:

    Name: 'flatten1'

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.
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Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)
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Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bilstmLayer | classifyAndUpdateState | gruLayer | lstmLayer | predictAndUpdateState
| resetState | sequenceFoldingLayer | sequenceInputLayer | sequenceUnfoldingLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2019a
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forward
Compute deep learning network output for training

Syntax
dlY = forward(dlnet,dlX)
dlY = forward(dlnet,dlX1,...,dlXM)
[dlY1,...,dlYN] = forward( ___ )
[dlY1,...,dlYK] = forward( ___ ,'Outputs',layerNames)
[ ___ ,state] = forward( ___ )

Description
Some deep learning layers behave differently during training and inference (prediction). For example,
during training, dropout layers randomly set input elements to zero to help prevent overfitting, but
during inference, dropout layers do not change the input.

To compute network outputs for training, use the forward function. To compute network outputs for
inference, use the predict function.

dlY = forward(dlnet,dlX) returns the network output dlY during training given the input data
dlX.

dlY = forward(dlnet,dlX1,...,dlXM) returns the network output dlY during training given
the M inputs dlX1, ...,dlXM and the network dlnet that has M inputs and a single output.

[dlY1,...,dlYN] = forward( ___ ) returns the N outputs dlY1, …, dlYN during training for
networks that have N outputs using any of the previous syntaxes.

[dlY1,...,dlYK] = forward( ___ ,'Outputs',layerNames) returns the outputs dlY1, …,
dlYK during training for the specified layers using any of the previous syntaxes.

[ ___ ,state] = forward( ___ ) also returns the updated network state using any of the previous
syntaxes.

Examples

Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning
rate schedule.

If trainingOptions does not provide the options you need (for example, a custom learning rate
schedule), then you can define your own custom training loop using automatic differentiation.

This example trains a network to classify handwritten digits with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.
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Load Training Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ...
    'IncludeSubfolders',true, ....
    'LabelSource','foldernames');

Partition the data into training and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,'randomize');

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training images, use an augmented image datastore. Specify additional augmentation operations
to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and
vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the
exact details of the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','input')
    convolution2dLayer(5,20,'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20,'Padding','same','Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding','same','Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.
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dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'input'}
    OutputNames: {'softmax'}

Define Model Gradients Function

Create the function modelGradients, listed at the end of the example, that takes a dlnetwork
object, a mini-batch of input data with corresponding labels and returns the gradients of the loss with
respect to the learnable parameters in the network and the corresponding loss.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01,
and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

mbq = minibatchqueue(augimdsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'MiniBatchFormat',{'SSCB',''});

Initialize the training progress plot.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
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xlabel("Iteration")
ylabel("Loss")
grid on

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model gradients, state, and loss using the dlfeval and modelGradients functions
and update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Display the training progress.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq)
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [dlX, dlY] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelGradients function and update the network state.
        [gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);
        dlnet.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);
        
        % Display the training progress.
        D = duration(0,0,toc(start),'Format','hh:mm:ss');
        addpoints(lineLossTrain,iteration,loss)
        title("Epoch: " + epoch + ", Elapsed: " + string(D))
        drawnow
    end
end
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Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial,

channel, batch).

numOutputs = 1;
mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    'MiniBatchSize',miniBatchSize, ...
    'MiniBatchFcn',@preprocessMiniBatchPredictors, ...
    'MiniBatchFormat','SSCB');

Loop over the mini-batches and classify the images using modelPredictions function, listed at the
end of the example.

predictions = modelPredictions(dlnet,mbqTest,classes);
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Evaluate the classification accuracy.

YTest = imdsValidation.Labels;
accuracy = mean(predictions == YTest)

accuracy = 0.9530

Model Gradients Function

The modelGradients function takes a dlnetwork object dlnet, a mini-batch of input data dlX
with corresponding labels Y and returns the gradients of the loss with respect to the learnable
parameters in dlnet, the network state, and the loss. To compute the gradients automatically, use
the dlgradient function.

function [gradients,state,loss] = modelGradients(dlnet,dlX,Y)

[dlYPred,state] = forward(dlnet,dlX);

loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);

loss = double(gather(extractdata(loss)));

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object dlnet, a minibatchqueue of input
data mbq, and the network classes, and computes the model predictions by iterating over all data in
the minibatchqueue object. The function uses the onehotdecode function to find the predicted
class with the highest score.

function predictions = modelPredictions(dlnet,mbq,classes)

predictions = [];

while hasdata(mbq)
    
    dlXTest = next(mbq);
    dlYPred = predict(dlnet,dlXTest);
    
    YPred = onehotdecode(dlYPred,classes,1)';
    
    predictions = [predictions; YPred];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
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3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate.
Y = cat(2,YCell{1:end});

% One-hot encode labels.
Y = onehotencode(Y,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});

end

Input Arguments
dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

dlX — Input data
formatted dlarray

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the
fmt input argument of dlarray.

layerNames — Layers to extract outputs from
string array | cell array of character vectors

Layers to extract outputs from, specified as a string array or a cell array of character vectors
containing the layer names.

• If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name
of the layer.

• If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the
layer name followed by the character "/" and the name of the layer output: 'layerName/
outputName'.
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Output Arguments
dlY — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see
the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example,
the state of LSTM and batch normalization layers.

Update the state of a dlnetwork using the State property.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function runs on the GPU if either or both of the following conditions are met:

• Any of the values of the network learnable parameters inside dlnet.Learnables.Value are
dlarray objects with underlying data of type gpuArray

• The input argument dlX is a dlarray with underlying data of type gpuArray

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | dlnetwork | predict

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2019b

1 Deep Learning Functions

1-462



freezeParameters
Convert learnable network parameters in ONNXParameters to nonlearnable

Syntax
params = freezeParameters(params,names)

Description
params = freezeParameters(params,names) freezes the network parameters specified by
names in the ONNXParameters object params. The function moves the specified parameters from
params.Learnables in the input argument params to params.Nonlearnables in the output
argument params.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network
with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-0 .

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames',...
    'ReadSize', miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

AlexNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

params = 
  ONNXParameters with properties:
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             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a
model function that contains the network architecture. importONNXFunction saves alexnetFcn in
the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and
bias (B) of convolution and fully connected layers, are updated by the network during training.
Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The
parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the
parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

 freezeParameters

1-465



params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
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        params.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
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The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,'Training',false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss,onnxParams.Learnables);

end

The alexnetONNX function generates an ONNX model of the alexnet network. You need Deep
Learning Toolbox Model for AlexNet Network support to access this model.

function alexnetONNX()
    
exportONNXNetwork(alexnet,'alexnet.onnx');

end

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

names — Names of parameters to freeze
'all' | string array

Names of the parameters to freeze, specified as 'all' or a string array. Freeze all learnable
parameters by setting names to 'all'. Freeze k learnable parameters by defining the parameter
names in the 1-by-k string array names.
Example: 'all'
Example: ["gpu_0_sl_pred_b_0", "gpu_0_sl_pred_w_0"]
Data Types: char | string
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Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by freezeParameters.

See Also
ONNXParameters | importONNXFunction | unfreezeParameters

Introduced in R2020b
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fullyconnect
Sum all weighted input data and apply a bias

Syntax
dlY = fullyconnect(dlX,weights,bias)
dlY = fullyconnect(dlX,weights,bias,'DataFormat',FMT)

Description
The fully connect operation multiplies the input by a weight matrix and then adds a bias vector.

Note This function applies the fully connect operation to dlarray data. If you want to apply average
pooling within a layerGraph object or Layer array, use the following layer:

• fullyConnectedLayer

dlY = fullyconnect(dlX,weights,bias) computes the weighted sum of the spatial, channel,
and unspecified data in dlX using the weights specified by weights, and adds a bias. The input dlX
is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray.

dlY = fullyconnect(dlX,weights,bias,'DataFormat',FMT) also specifies the dimension
format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray.

Examples

Fully Connect All Input Data to Output Features

The fullyconnect function uses the weighted sum to connect all inputs of an observation to each
output feature.

Create the input data as a single observation of random values with a height and width of 12 and 32
channels.

height = 12;
width = 12;
channels = 32;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the learnable parameters. For this operation there are ten output features.

outputFeatures = 10;

weights = ones(outputFeatures,height,width,channels);
bias = ones(outputFeatures,1);
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Apply the fullyconnect operation.

dlY = fullyconnect(dlX,weights,bias);

dlY = 
  10(C) × 1(B) dlarray

   1.0e+03 *

    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266

The output dlY is a 2-D dlarray with one channel dimension of size ten and one singleton batch
dimension.

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of weights or bias must be a dlarray.

The fullyconnect operation sums over the 'S', 'C', and 'U' dimensions of dlX for each output
feature specified by weights. The size of each 'B' or 'T' dimension of dlX is preserved.
Data Types: single | double

weights — Weights
dlarray | numeric array

Weights, specified as a dlarray with or without labels or a numeric array.

If weights is an unformatted dlarray or a numeric array, the first dimension of weights must
match the number of output features. If weights is a formatted dlarray, the size of the 'C'
dimension must match the number of output features. weights must contain the same number of
elements as the combined size of the 'S', 'C', and 'U' dimensions of input dlX multiplied by the
number of output features.
Data Types: single | double

bias — Bias constant
dlarray vector | numeric vector

Bias constant, specified as a dlarray vector with or without labels or a numeric vector.
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Each element of bias is the bias applied to the corresponding feature output. The number of
elements of bias must match the number of output features specified by the first dimension of
weights.

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled
'C'.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Weighted output features
dlarray

Weighted output features, returned as a dlarray. The output dlY has the same underlying data type
as the input dlX.

If the input dlX is a formatted dlarray, the output dlY has one dimension labeled 'C' representing
the output features, and the same number of 'B' or 'T' dimensions as the input dlX, if either or
both are present. If dlX has no 'B' or 'T' dimensions, dlY has the format 'CB', where the 'B'
dimension is singleton.

If the input dlX is not a formatted dlarray, output dlY is unformatted. The first dimension of dlY
contains the output features. Other dimensions of dlY correspond to the 'B' and 'T' dimensions of
dlX, if either or both are present, and are provided in the same order as in FMT. If dlX has no 'B' or
'T' dimensions, the first dimension of dlY contains the output features and the second dimension is
singleton.
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More About
Fully Connect Operation

The fullyconnect function connects all outputs of the previous operation to the outputs of the
fullyconnect function. For more information, see the definition of “Fully Connected Layer” on page
1-480 on the fullyConnectedLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlconv | dlfeval | dlgradient | relu | sigmoid | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Make Predictions Using Model Function”
“Train a Siamese Network to Compare Images”
“Train Network with Multiple Outputs”

Introduced in R2019b
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fullyConnectedLayer
Fully connected layer

Description
A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

Creation
Syntax
layer = fullyConnectedLayer(outputSize)
layer = fullyConnectedLayer(outputSize,Name,Value)

Description

layer = fullyConnectedLayer(outputSize) returns a fully connected layer and specifies the
OutputSize property.

layer = fullyConnectedLayer(outputSize,Name,Value) sets the optional “Parameters and
Initialization” on page 1-474, “Learn Rate and Regularization” on page 1-476, and Name properties
using name-value pairs. For example, fullyConnectedLayer(10,'Name','fc1') creates a fully
connected layer with an output size of 10 and the name 'fc1'. You can specify multiple name-value
pairs. Enclose each property name in single quotes.

Properties
Fully Connected

OutputSize — Output size
positive integer

Output size for the fully connected layer, specified as a positive integer.
Example: 10

InputSize — Input size
'auto' (default) | positive integer

Input size for the fully connected layer, specified as a positive integer or 'auto'. If InputSize is
'auto', then the software automatically determines the input size during training.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the weights, specified as one of the following:
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• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(InputSize + OutputSize).

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | matrix

Layer weights, specified as a matrix.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is an OutputSize-by-InputSize matrix.
Data Types: single | double

Bias — Layer biases
[] (default) | matrix
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Layer biases, specified as a matrix.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is an OutputSize-by-1 matrix.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
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Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Fully Connected Layer

Create a fully connected layer with an output size of 10 and the name 'fc1'.

layer = fullyConnectedLayer(10,'Name','fc1')

layer = 
  FullyConnectedLayer with properties:

          Name: 'fc1'

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10
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   Learnable Parameters
       Weights: []
          Bias: []

  Show all properties

Include a fully connected layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in Fully Connected Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Function

Create a fully connected layer with an output size of 10 and specify the weights initializer to be the
He initializer.

outputSize = 10;
layer = fullyConnectedLayer(outputSize,'WeightsInitializer','he')

layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
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          Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Function

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.

Create a fully connected layer with output size 10 and specify initializers that sample the weights and
biases from a Gaussian distribution with a standard deviation of 0.0001.

outputSize = 10;
weightsInitializationFcn = @(sz) rand(sz) * 0.0001;
biasInitializationFcn = @(sz) rand(sz) * 0.0001;

layer = fullyConnectedLayer(outputSize, ...
    'WeightsInitializer',@(sz) rand(sz) * 0.0001, ...
    'BiasInitializer',@(sz) rand(sz) * 0.0001)

layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a fully connected layer with an output size of 10 and set the weights and bias to W and b in the
MAT file FCWeights.mat respectively.

outputSize = 10;
load FCWeights

layer = fullyConnectedLayer(outputSize, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  FullyConnectedLayer with properties:
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          Name: ''

   Hyperparameters
     InputSize: 720
    OutputSize: 10

   Learnable Parameters
       Weights: [10x720 double]
          Bias: [10x1 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

More About
Fully Connected Layer

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

The convolutional (and down-sampling) layers are followed by one or more fully connected layers.

As the name suggests, all neurons in a fully connected layer connect to all the neurons in the previous
layer. This layer combines all of the features (local information) learned by the previous layers across
the image to identify the larger patterns. For classification problems, the last fully connected layer
combines the features to classify the images. This is the reason that the outputSize argument of the
last fully connected layer of the network is equal to the number of classes of the data set. For
regression problems, the output size must be equal to the number of response variables.

You can also adjust the learning rate and the regularization parameters for this layer using the
related name-value pair arguments when creating the fully connected layer. If you choose not to
adjust them, then trainNetwork uses the global training parameters defined by the
trainingOptions function. For details on global and layer training options, see “Set Up Parameters
and Train Convolutional Neural Network”.

A fully connected layer multiplies the input by a weight matrix W and then adds a bias vector b.

If the input to the layer is a sequence (for example, in an LSTM network), then the fully connected
layer acts independently on each time step. For example, if the layer before the fully connected layer
outputs an array X of size D-by-N-by-S, then the fully connected layer outputs an array Z of size
outputSize-by-N-by-S. At time step t, the corresponding entry of Z is WXt + b, where Xt denotes
time step t of X.

Compatibility Considerations
Default weights initialization is Glorot
Behavior changed in R2019a
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Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Deep Network Designer | batchNormalizationLayer | convolution2dLayer | reluLayer |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2016a
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functionToLayerGraph
Convert deep learning model function to a layer graph

Syntax
lgraph = functionToLayerGraph(fun,x)
lgraph = functionToLayerGraph(fun,x,Name,Value)

Description
lgraph = functionToLayerGraph(fun,x) returns a layer graph based on the deep learning
array function fun. functionToLayerGraph converts only those operations in fun that operate on
dlarray objects among the inputs in x. To include extra parameters or data in fun, see the topic
“Parameterizing Functions” or the example “Create Layer Graph from Function” on page 1-482.

functionToLayerGraph evaluates fun(x) and traces the execution to derive an equivalent layer
graph, to the extent possible. The steps in fun(x) that functionToLayerGraph can trace are both
based on dlarray arguments and are supported calls for dlarray. See “List of Functions with
dlarray Support”. For unsupported functions, functionToLayerGraph creates a
PlaceholderLayer.

lgraph = functionToLayerGraph(fun,x,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Create Layer Graph from Function

The simplemodel function at the end of this example creates fully connected outputs followed by a
softmax operation. To create a layer graph from this function based on dlarray data, create input
arrays as dlarray objects, and create a function handle to the simplemodel function including the
data.

rng default % For reproducibility
dlX1 = dlarray(rand(10),'CB');
dlX2 = dlarray(zeros(10,1),'CB');
fun = @(x)simplemodel(x,dlX1,dlX2);

Call functionToLayerGraph using a dlarray for the input data dlX.

dlX = dlarray(ones(10,1),'CB');
lgraph = functionToLayerGraph(fun,dlX)

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {1x0 cell}
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    OutputNames: {1x0 cell}

Examine the resulting layers in lgraph.

disp(lgraph.Layers)

  2x1 Layer array with layers:

     1   'fc_1'   Fully Connected   10 fully connected layer
     2   'sm_1'   Softmax           softmax

function y = simplemodel(x,w,b)
y = fullyconnect(x,w,b);
y = softmax(y);
end

Input Arguments
fun — Function to convert
function handle

Function to convert, specified as a function handle.
Example: @relu
Data Types: function_handle

x — Data for function
any data type

Data for the function, specified as any data type. Only dlarray data is traced and converted to a
layer graph.
Example: dlarray(zeros(12*50,23))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'GenerateLayer','placeholder-layer'

GenerateLayer — Type of layer to generate for unsupported operations
'custom-layer' (default) | 'placeholder-layer'

Type of layer to generate for unsupported operations in fun, specified as 'custom-layer' or
'placeholder-layer'.

When an operation in fun does not correspond to a layer in Deep Learning Toolbox, the software
generates a layer to represent that functionality. The 'GenerateLayer' option specifies the type of
layer as follows.
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• 'custom-layer' — The software generates a custom layer that performs the operation.
• 'placeholder-layer' — The software generates a PlaceholderLayer object. To create a

working network in this case, see “Define Custom Deep Learning Layers” or “Define Network as
Model Function”.

Example: 'GenerateLayer','placeholder-layer'

CustomLayerPrefix — Prefix for generated custom layers
'customLayer' (default) | char vector

Prefix for generate custom layers, specified as a char vector.

This option applies only when the 'GenerateLayer' option is 'custom-layer'. The name of each
generated custom layer starts with the specified prefix.
Example: 'CustomLayerPrefix','myGeneratedLayer'

Output Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, returned as a LayerGraph object.

See Also
PlaceholderLayer | dlarray | findPlaceholderLayers | layerGraph

Topics
“List of Functions with dlarray Support”

Introduced in R2019b
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getL2Factor
Package: nnet.cnn.layer

Get L2 regularization factor of layer learnable parameter

Syntax
factor = getL2Factor(layer,parameterName)
factor = getL2Factor(layer,parameterPath)

factor = getL2Factor(dlnet,layerName,parameterName)
factor = getL2Factor(dlnet,parameterPath)

Description
factor = getL2Factor(layer,parameterName) returns the L2 regularization factor of the
parameter with the name parameterName in layer.

For built-in layers, you can get the L2 regularization factor directly by using the corresponding
property. For example, for a convolution2dLayer layer, the syntax factor =
getL2Factor(layer,'Weights') is equivalent to factor = layer.WeightL2Factor.

factor = getL2Factor(layer,parameterPath) returns the L2 regularization factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a
dlnetwork object in a custom layer.

factor = getL2Factor(dlnet,layerName,parameterName) returns the L2 regularization
factor of the parameter with the name parameterName in the layer with name layerName for the
specified dlnetwork object.

factor = getL2Factor(dlnet,parameterPath) returns the L2 regularization factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a nested
layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create a layer array including a custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer];

Set the L2 regularization factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4),'Alpha',2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4),'Alpha')

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           224x224x64 images
     2   'conv1'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 64 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 64 channels split into 64 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2
using the setL2Factor function.

factor = 2;
layer = setL2Factor(layer,'Network/conv1/Weights',factor);
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Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(layer,'Network/conv1/Weights')

factor = 2

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2
using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'conv','Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'conv','Weights')

factor = 2

Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
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    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
    residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
    residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the learnable
parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx,:)

ans=8×3 table
    Layer            Parameter                  Value       
    ______    _______________________    ___________________

    "res1"    "Network/conv1/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv1/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Scale"        {1x1x32    dlarray}
    "res1"    "Network/conv2/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv2/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Scale"        {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the
layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar

1 Deep Learning Functions

1-488



Parameter name, specified as a character vector or a string scalar.

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to getL2Factor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the getL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to getL2Factor, the path "Network/conv1/Weights" specifies the
"Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to getL2Factor is a dlnetwork object and the desired parameter is in a nested layer,
then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the getL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to getL2Factor, the path "res1/Network/conv1/Weights"
specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given
by layer.Network, where layer is the layer with name "res1" in the input network dlnet.
Data Types: char | string

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string

 getL2Factor

1-489



Output Arguments
factor — L2 regularization factor
nonnegative scalar

L2 regularization factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the specified parameter. For example, if factor is 2, then the L2 regularization for
the specified parameter is twice the current global L2 regularization. The software determines the
global L2 regularization based on the settings specified with the trainingOptions function.

See Also
getLearnRateFactor | setL2Factor | setLearnRateFactor | trainNetwork |
trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
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getLearnRateFactor
Package: nnet.cnn.layer

Get learn rate factor of layer learnable parameter

Syntax
factor = getLearnRateFactor(layer,parameterName)
factor = getLearnRateFactor(layer,parameterPath)

factor = getLearnRateFactor(dlnet,layerName,parameterName)
factor = getLearnRateFactor(dlnet,parameterPath)

Description
factor = getLearnRateFactor(layer,parameterName) returns the learn rate factor of the
learnable parameter with the name parameterName in layer.

For built-in layers, you can get the learn rate factor directly by using the corresponding property. For
example, for a convolution2dLayer layer, the syntax factor =
getLearnRateFactor(layer,'Weights') is equivalent to factor =
layer.WeightLearnRateFactor.

factor = getLearnRateFactor(layer,parameterPath) returns the learn rate factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a
dlnetwork object in a custom layer.

factor = getLearnRateFactor(dlnet,layerName,parameterName) returns the learn rate
factor of the parameter with the name parameterName in the layer with name layerName for the
specified dlnetwork object.

factor = getLearnRateFactor(dlnet,parameterPath) returns the learn rate factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a nested
layer.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create a layer array including the custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
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    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the learn rate factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setLearnRateFactor(layers(4),'Alpha',2);

View the updated learn rate factor.

factor = getLearnRateFactor(layers(4),'Alpha')

factor = 2

Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           224x224x64 images
     2   'conv1'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 64 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 64 channels split into 64 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using
the setLearnRateFactor function.
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factor = 2;
layer = setLearnRateFactor(layer,'Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(layer,'Network/conv1/Weights')

factor = 2

Set and Get Learn Rate Factor of dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the learn rate factor of the 'Weights' learnable parameter of the convolution layer to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);

Get the updated learn rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'conv','Weights')

factor = 2

Set and Get Learning Rate Factor of Nested dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
    residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
    residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

View the layers of the nested network in the layer 'res1'.

dlnet.Layers(6).Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           56x56x32 images
     2   'conv1'   Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 32 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 32 channels split into 32 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.
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parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to getLearnRateFactor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the getLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to getLearnRateFactor, the path "Network/conv1/Weights" specifies
the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to getLearnRateFactor is a dlnetwork object and the desired parameter is in a
nested layer, then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the getLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to getLearnRateFactor, the path "res1/Network/conv1/
Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork
object given by layer.Network, where layer is the layer with name "res1" in the input network
dlnet.
Data Types: char | string

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string
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Output Arguments
factor — Learning rate factor
nonnegative scalar

Learning rate factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is
twice the current global learning rate. The software determines the global learning rate based on the
settings specified with the trainingOptions function.

See Also
getL2Factor | setL2Factor | setLearnRateFactor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
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globalAveragePooling2dLayer
Global average pooling layer

Description
A global average pooling layer performs down-sampling by computing the mean of the height and
width dimensions of the input.

Creation
Syntax
layer = globalAveragePooling2dLayer
layer = globalAveragePooling2dLayer('Name',name)

Description

layer = globalAveragePooling2dLayer creates a global average pooling layer.

layer = globalAveragePooling2dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
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Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Global Average Pooling Layer

Create a global average pooling layer with the name 'gap1'.

layer = globalAveragePooling2dLayer('Name','gap1')

layer = 
  GlobalAveragePooling2DLayer with properties:

    Name: 'gap1'

Include a global average pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    globalAveragePooling2dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input              28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution              20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                     ReLU
     4   ''   Global Average Pooling   Global average pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex

Tips
• In an image classification network, you can use a globalAveragePooling2dLayer before the
final fully connected layer to reduce the size of the activations without sacrificing performance.
The reduced size of the activations means that the downstream fully connected layers will have
fewer weights, reducing the size of your network.

• You can use a globalAveragePooling2dLayer towards the end of a classification network
instead of a fullyConnectedLayer. Since global pooling layers have no learnable parameters,
they can be less prone to overfitting and can reduce the size of the network. These networks can
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also be more robust to spatial translations of input data. You can also replace a fully connected
layer with a globalMaxPooling2dLayer instead. Whether a globalMaxPooling2dLayer or a
globalAveragePooling2dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalAveragePooling2dLayer must match the number of classes in the classification
problem

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | globalAveragePooling3dLayer |
globalMaxPooling2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019b
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globalAveragePooling3dLayer
3-D global average pooling layer

Description
A 3-D global average pooling layer performs down-sampling by computing the mean of the height,
width, and depth dimensions of the input.

Creation
Syntax
layer = globalAveragePooling3dLayer
layer = globalAveragePooling3dLayer('Name',name)

Description

layer = globalAveragePooling3dLayer creates a 3-D global average pooling layer.

layer = globalAveragePooling3dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
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Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Global Average Pooling Layer

Create a 3-D global average pooling layer with the name 'gap1'.

layer = globalAveragePooling3dLayer('Name','gap1')

layer = 
  GlobalAveragePooling3DLayer with properties:

    Name: 'gap1'

Include a 3-D global average pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalAveragePooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input              28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution                  20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                         ReLU
     4   ''   3-D Global Average Pooling   3-D global average pooling
     5   ''   Fully Connected              10 fully connected layer
     6   ''   Softmax                      softmax
     7   ''   Classification Output        crossentropyex

Tips
• In an image classification network, you can use a globalAveragePooling3dLayer before the
final fully connected layer to reduce the size of the activations without sacrificing performance.
The reduced size of the activations means that the downstream fully connected layers will have
fewer weights, reducing the size of your network.

• You can use a globalAveragePooling3dLayer towards the end of a classification network
instead of a fullyConnectedLayer. Since global pooling layers have no learnable parameters,
they can be less prone to overfitting and can reduce the size of the network. These networks can

 globalAveragePooling3dLayer

1-501



also be more robust to spatial translations of input data. You can also replace a fully connected
layer with a globalMaxPooling3dLayer instead. Whether a globalMaxPooling3dLayer or a
globalAveragePooling3dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalAveragePooling3dLayer must match the number of classes in the classification
problem

See Also
averagePooling3dLayer | convolution3dLayer | globalAveragePooling2dLayer |
globalMaxPooling3dLayer | maxPooling3dLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019b
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globalMaxPooling2dLayer
Global max pooling layer

Description
A global max pooling layer performs down-sampling by computing the maximum of the height and
width dimensions of the input.

Creation
Syntax
layer = globalMaxPooling2dLayer
layer = globalMaxPooling2dLayer('Name',name)

Description

layer = globalMaxPooling2dLayer creates a global max pooling layer.

layer = globalMaxPooling2dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
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Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create Global Max Pooling Layer

Create a global max pooling layer with the name 'gmp1'.

layer = globalMaxPooling2dLayer('Name','gmp1')

layer = 
  GlobalMaxPooling2DLayer with properties:

    Name: 'gmp1'

Include a global max pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    globalMaxPooling2dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Global Max Pooling      Global max pooling
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Tips
• In an image classification network, you can use a globalMaxPooling2dLayer before the final

fully connected layer to reduce the size of the activations without sacrificing performance. The
reduced size of the activations means that the downstream fully connected layers will have fewer
weights, reducing the size of your network.
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• You can use a globalMaxPooling2dLayer towards the end of a classification network instead of
a fullyConnectedLayer. Since global pooling layers have no learnable parameters, they can be
less prone to overfitting and can reduce the size of the network. These networks can also be more
robust to spatial translations of input data. You can also replace a fully connected layer with a
globalAveragePooling2dLayer instead. Whether a globalAveragePooling2dLayer or a
globalMaxPooling2dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalMaxPooling2dLayer must match the number of classes in the classification problem

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | globalAveragePooling2dLayer |
globalMaxPooling3dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020a
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globalMaxPooling3dLayer
3-D global max pooling layer

Description
A 3-D global max pooling layer performs down-sampling by computing the maximum of the height,
width, and depth dimensions of the input.

Creation
Syntax
layer = globalMaxPooling3dLayer
layer = globalMaxPooling3dLayer('Name',name)

Description

layer = globalMaxPooling3dLayer creates a 3-D global max pooling layer.

layer = globalMaxPooling3dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
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Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create 3-D Global Max Pooling Layer

Create a 3-D global max pooling layer with name 'gmp1'.

layer = globalMaxPooling3dLayer('Name','gmp1')

layer = 
  GlobalMaxPooling3DLayer with properties:

    Name: 'gmp1'

Include a 3-D max pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalMaxPooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input          28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution              20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                     ReLU
     4   ''   3-D Global Max Pooling   3-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex

Tips
• In an image classification network, you can use a globalMaxPooling3dLayer before the final

fully connected layer to reduce the size of the activations without sacrificing performance. The
reduced size of the activations means that the downstream fully connected layers will have fewer
weights, reducing the size of your network.
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• You can use a globalMaxPooling3dLayer towards the end of a classification network instead of
a fullyConnectedLayer. Since global pooling layers have no learnable parameters, they can be
less prone to overfitting and can reduce the size of the network. These networks can also be more
robust to spatial translations of input data. You can also replace a fully connected layer with a
globalAveragePooling3dLayer instead. Whether a globalAveragPooling3dLayer or a
globalMaxPooling3dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalMaxPooling3dLayer must match the number of classes in the classification problem

See Also
averagePooling3dLayer | convolution3dLayer | globalAveragePooling3dLayer |
globalMaxPooling2dLayer | maxPooling3dLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020a
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googlenet
GoogLeNet convolutional neural network

Syntax
net = googlenet
net = googlenet('Weights',weights)

lgraph = googlenet('Weights','none')

Description
GoogLeNet is a convolutional neural network that is 22 layers deep. You can load a pretrained version
of the network trained on either the ImageNet [1] or Places365 [2] [3] data sets. The network trained
on ImageNet classifies images into 1000 object categories, such as keyboard, mouse, pencil, and
many animals. The network trained on Places365 is similar to the network trained on ImageNet, but
classifies images into 365 different place categories, such as field, park, runway, and lobby. These
networks have learned different feature representations for a wide range of images. The pretrained
networks both have an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

To classify new images using GoogLeNet, use classify. For an example, see “Classify Image Using
GoogLeNet”.

You can retrain a GoogLeNet network to perform a new task using transfer learning. When
performing transfer learning, the most common approach is to use networks pretrained on the
ImageNet data set. If the new task is similar to classifying scenes, then using the network trained on
Places-365 can give higher accuracies. For an example showing how to retrain GoogLeNet on a new
classification task, see “Train Deep Learning Network to Classify New Images”

net = googlenet returns a GoogLeNet network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for GoogLeNet Network support package. If
this support package is not installed, then the function provides a download link.

net = googlenet('Weights',weights) returns a GoogLeNet network trained on either the
ImageNet or Places365 data set. The syntax googlenet('Weights','imagenet') (default) is
equivalent to googlenet.

The network trained on ImageNet requires the Deep Learning Toolbox Model for GoogLeNet Network
support package. The network trained on Places365 requires the Deep Learning Toolbox Model for
Places365-GoogLeNet Network support package. If the required support package is not installed,
then the function provides a download link.

lgraph = googlenet('Weights','none') returns the untrained GoogLeNet network
architecture. The untrained model does not require the support package.

Examples
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Download GoogLeNet Support Package

Download and install the Deep Learning Toolbox Model for GoogLeNet Network support package.

Type googlenet at the command line.

googlenet

If the Deep Learning Toolbox Model for GoogLeNet Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing googlenet at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

googlenet

ans = 

  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]

Input Arguments
weights — Source of network parameters
'imagenet' (default) | 'places365' | 'none'

Source of network parameters, specified as 'imagenet' ,'places365', or 'none'.

• If weights equals 'imagenet', then the network has weights trained on the ImageNet data set.
• If weights equals 'places365', then the network has weights trained on the Places365 data

set.
• If weights equals 'none', then the untrained network architecture is returned.

Example: 'places365'

Output Arguments
net — Pretrained GoogLeNet convolutional neural network
DAGNetwork object

Pretrained GoogLeNet convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained GoogLeNet convolutional neural network architecture
LayerGraph object

Untrained GoogLeNet convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org
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[2] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva. "Places: An image
database for deep scene understanding." arXiv preprint arXiv:1610.02055 (2016).

[3] Places. http://places2.csail.mit.edu/

[4] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with
convolutions." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9. 2015.

[5] BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = googlenet or by passing
the googlenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('googlenet')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax googlenet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = googlenet or by
passing the googlenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('googlenet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax googlenet('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | inceptionresnetv2 | inceptionv3 | layerGraph | plot |
resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Residual Network for Image Classification”

Introduced in R2017b
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groupedConvolution2dLayer
2-D grouped convolutional layer

Description
A 2-D grouped convolutional layer separates the input channels into groups and applies sliding
convolutional filters. Use grouped convolutional layers for channel-wise separable (also known as
depth-wise separable) convolution.

For each group, the layer convolves the input by moving the filters along the input vertically and
horizontally and computing the dot product of the weights and the input, and then adding a bias
term. The layer combines the convolutions for each group independently. If the number of groups is
equal to the number of channels, then this layer performs channel-wise convolution.

Creation
Syntax
layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-
wise')
layer = groupedConvolution2dLayer( ___ ,Name,Value)

Description

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
creates a 2-D grouped convolutional layer and sets the FilterSize, NumFiltersPerGroup, and
NumGroups properties.

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-
wise') creates a layer for channel-wise convolution (also known as depth-wise convolution). In this
case, the software determines the NumGroups property at training time. This syntax is equivalent to
setting NumGroups to the number of input channels.

layer = groupedConvolution2dLayer( ___ ,Name,Value) sets the optional Stride,
DilationFactor, “Parameters and Initialization” on page 1-515, “Learn Rate and Regularization”
on page 1-516, and Name properties using name-value pairs. To specify input padding, use the
'Padding' name-value pair argument. For example,
groupedConvolution2dLayer(5,128,2,'Padding','same') creates a 2-D grouped
convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output
has the same size. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride, DilationFactor, “Parameters and Initialization”
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on page 1-515, “Learn Rate and Regularization” on page 1-516, and Name properties. Enclose
names in single quotes.
Example: groupedConvolution2dLayer(5,128,2,'Padding','same') creates a 2-D grouped
convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output
has the same size.

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Grouped Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector [h w] of two positive integers, where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height
and width.
Example: [5 5] specifies filters with a height of 5 and a width of 5.

NumFiltersPerGroup — Number of filters per group
positive integer
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Number of filters per group, specified as a positive integer. This property determines the number of
channels in the output of the layer. The number of output channels is FiltersPerGroup *
NumGroups.
Example: 10

NumGroups — Number of groups
positive integer | 'channel-wise'

Number of groups, specified as a positive integer or 'channel-wise'.

If NumGroups is 'channel-wise', then the software creates a layer for channel-wise convolution
(also known as depth-wise convolution). In this case, the layer determines the NumGroups property at
training time. This value is equivalent to setting NumGroups to the number of input channels.

The number of groups must evenly divide the number of channels of the layer input.
Example: 2

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

DilationFactor — Factor for dilated convolution
[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w] of two
positive integers, where h is the vertical dilation and w is the horizontal dilation. When creating the
layer, you can specify DilationFactor as a scalar to use the same value for both horizontal and
vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.
Example: [2 3]

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.
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PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

NumChannelsPerGroup — Number of channels per group
'auto' (default) | positive integer

Number of channels per group, specified as 'auto' or a positive integer. The number of channels per
group is equal to the number of input channels divided by the number of groups.

The software automatically sets this property at training time.
Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannelsPerGroup and numOut =
FilterSize(1)*FilterSize(2)*NumFiltersPerGroup.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannelsPerGroup.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
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Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-NumChannelsPerGroup-by-
NumFiltersPerGroup-by-NumGroups array, where NumInputChannels is the number of channels
of the layer input.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFiltersPerGroup-by-NumGroups array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)
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Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Grouped Convolution Layer

Create a grouped convolutional layer with 3 groups of 10 filters, each with a height and width of 11,
and the name 'gconv1'.

layer = groupedConvolution2dLayer(11,10,3,'Name','gconv1')

layer = 
  GroupedConvolution2DLayer with properties:

                   Name: 'gconv1'

   Hyperparameters
             FilterSize: [11 11]
              NumGroups: 3
    NumChannelsPerGroup: 'auto'
     NumFiltersPerGroup: 10
                 Stride: [1 1]
         DilationFactor: [1 1]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

   Learnable Parameters
                Weights: []
                   Bias: []

  Show all properties
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Create Channel-Wise Convolution Layer

Create a channel-wise convolutional (also known as depth-wise convolutional) layer with groups of 10
filters, each with a height and width of 11, and the name 'cwconv1'.

layer = groupedConvolution2dLayer(11,10,'channel-wise','Name','cwconv1')

layer = 
  GroupedConvolution2DLayer with properties:

                   Name: 'cwconv1'

   Hyperparameters
             FilterSize: [11 11]
              NumGroups: 'channel-wise'
    NumChannelsPerGroup: 'auto'
     NumFiltersPerGroup: 10
                 Stride: [1 1]
         DilationFactor: [1 1]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

   Learnable Parameters
                Weights: []
                   Bias: []

  Show all properties

Create Layers for Channel-Wise Separable Convolution

A typical convolutional neural network contains blocks of convolution, batch normalization, and ReLU
layers. For example,

filterSize = 3;
numFilters = 16;

convLayers = [
    convolution2dLayer(filterSize,numFilters,'Stride',2,'Padding','same')
    batchNormalizationLayer
    reluLayer];

For channel-wise separable convolution (also known as depth-wise separable convolution), replace
the convolution block with channel-wise convolution and point-wise convolution blocks.

Specify the filter size and the stride in the channel-wise convolution and the number of filters in the
point-wise convolution. For the channel-wise convolution, specify one filter per group. For point-wise
convolution, specify filters of size 1 in convolution2dLayer.

cwsConvLayers = [
    groupedConvolution2dLayer(filterSize,1,'channel-wise','Stride',2,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    convolution2dLayer(1,numFilters,'Padding','same')
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    batchNormalizationLayer
    reluLayer];

Create a network containing layers for channel-wise separable convolution.

layers = [
    imageInputLayer([227 227 3])
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    groupedConvolution2dLayer(3,1,'channel-wise','Stride',2,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(1,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    fullyConnectedLayer(5)
    softmaxLayer
    classificationLayer];

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation for the ARM Compute Library is not supported for a 2-D grouped convolution
layer that has the NumGroups property set to an integer value greater than two.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Code generation for the ARM Mali GPU is not supported for a 2-D grouped convolution layer that
has the NumGroups property set as 'channel-wise' or a value greater than two.
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See Also
batchNormalizationLayer | convolution2dLayer | fullyConnectedLayer |
maxPooling2dLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2019a
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groupnorm
Normalize activations across groups of channels

Syntax
dlY = groupnorm(dlX,numGroups,offset,scaleFactor)
dlY = groupnorm( ___ ,'DataFormat',FMT)
dlY = groupnorm( ___ Name,Value)

Description
The group normalization operation divides the channels of the input data into groups and normalizes
the activations across each group. To speed up training of convolutional neural networks and reduce
the sensitivity to network initialization, use group normalization between convolution and nonlinear
operations such as relu. You can perform instance normalization and layer normalization by setting
the appropriate number of groups.

Note This function applies the group normalization operation to dlarray data. If you want to apply
batch normalization within a layerGraph object or Layer array, use the following layer:

• groupNormalizationLayer

dlY = groupnorm(dlX,numGroups,offset,scaleFactor) normalizes each observation in dlX
across groups of channels specified by numGroups, then applies a scale factor and offset to each
channel.

The normalized activation is calculated using the following formula:

x i =
xi− μg

σg
2 + ε

where xi is the input activation, μg and σg
2 are the per-group mean and variance, respectively, and ε is

a small constant. The mean and variance are calculated per-observation over all 'S' (spatial), 'T'
(time), and 'U' (unspecified) dimensions in dlX for each group of channels.

The normalized activation is offset and scaled according to the following formula:

yi = γx i + β .

The offset β and scale factor γ are specified with the offset and scaleFactor arguments.

The input dlX is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray
with the same dimension labels as dlX.

dlY = groupnorm( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when dlX
is not a formatted dlarray in addition to the input arguments in previous syntaxes. The output dlY
is an unformatted dlarray with the same dimension order as dlX.
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dlY = groupnorm( ___ Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'Epsilon',3e-5
sets the variance offset.

Examples

Normalize Data

Use groupnorm to normalize input data across channel groups.

Create the input data as a single observation of random values with a height and width of four and six
channels.

height = 4;
width = 4;
channels = 6;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the learnable parameters.

offset = zeros(channels,1);
scaleFactor = ones(channels,1);

Compute the group normalization. Divide the input into three groups of two channels each.

numGroups = 3;
dlY = groupnorm(dlX,numGroups,offset,scaleFactor);

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of offset or scaleFactor must be a dlarray.

dlX must have a 'C' channel dimension.
Data Types: single | double

numGroups — Channel groups
positive integer | "all-channels" | "channel-wise"

Channel groups to normalize across, specified as a positive integer, "all-channels", or "channel-
wise".
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numGroups Description
positive integer The function divides the number of channels in

dlX into the specified number of groups. The
specified number of groups must exactly divide
the number of channels in dlX.

"all-channels" All channels in dlX are combined into a single
group. The input data is normalized across all
channels. This type of normalization is also
known as layer normalization.

"channel-wise" Each channel in dlX is considered as a single
group and is normalized separately. This type of
normalization is also known as instance
normalization.

Data Types: single | double | char | string

offset — Channel offset
dlarray vector | numeric vector

Channel offset β, specified as a dlarray vector with or without dimension labels or a numeric vector.

If offset is a formatted dlarray, it must contain a 'C' dimension of the same size as the 'C'
dimension of the input data.
Data Types: single | double

scaleFactor — Channel scale factor
dlarray vector | numeric vector

Channel scale factor γ, specified as a dlarray vector with or without dimension labels or a numeric
vector.

If scaleFactor is a formatted dlarray, it must contain a 'C' dimension of the same size as the
'C' dimension of the input data.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Epsilon',3e-5 sets the variance offset to 3e-5 and 0.5, respectively.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
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• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Epsilon — Variance offset
numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar. The specified value must be greater than 1e-5. The default
value is 1e-5.
Data Types: single | double

Output Arguments
dlY — Normalized data
dlarray

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the
input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

More About
Group Normalization

The groupnorm function normalizes each input channel of a mini-batch of data. For more
information, see the definition of “Group Normalization Layer” on page 1-532 on the
groupNormalizationLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
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• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlconv | dlfeval | dlgradient | fullyconnect | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2020b
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groupNormalizationLayer
Group normalization layer

Description
A group normalization layer divides the channels of the input data into groups and normalizes the
activations across each group. To speed up training of convolutional neural networks and reduce the
sensitivity to network initialization, use group normalization layers between convolutional layers and
nonlinearities, such as ReLU layers. You can perform instance normalization and layer normalization
by setting the appropriate number of groups.

You can use a group normalization layer in place of a batch normalization layer. This is particularly
useful when training with small batch sizes as it can increase the stability of training.

The layer first normalizes the activations of each group by subtracting the group mean and dividing
by the group standard deviation. Then, the layer shifts the input by a learnable offset β and scales it
by a learnable scale factor γ.

Creation

Syntax
layer = groupNormalizationLayer(numGroups)
layer = groupNormalizationLayer(numGroups,Name,Value)

Description

layer = groupNormalizationLayer(numGroups) creates a group normalization layer that
divides the channels in the layer input into numGroups groups and normalizes across each group.

layer = groupNormalizationLayer(numGroups,Name,Value) creates a group normalization
layer and sets the optional “Normalization” on page 1-528, “Parameters and Initialization” on page
1-528, “Learn Rate and Regularization” on page 1-529, and Name properties using one or more
name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each
property name in quotes.

Input Arguments

numGroups — Number of groups
positive integer | "all-channels" | "channel-wise"

Number of groups into which to divide the channels of the input data, specified as a positive integer,
"all-channels" or "channel-wise".

If you specify numGroups as a positive integer, the layer divides the incoming channels in to the
specified number of groups. The specified number of groups must divide the number of channels
exactly.
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If you specify numGroups as "all-channels", the layer groups all incoming channels into a single
group. This is also known as layer normalization.

If you specify numGroups as a "channel-wise", the layer treats all incoming channels as separate
groups. This is also known as instance normalization.

Properties
Normalization

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.

NumChannels — Number of input channels
'auto' (default) | positive integer

Number of input channels, specified as 'auto' or a positive integer.

This property is always equal to the number of channels of the input to the layer. If NumChannels
equals 'auto', then the software infers the correct value for the number of channels at training
time.

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with zero mean and standard deviation 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:

• 'zeros' – Initialize the channel offsets with zeros.
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• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with zero mean and standard deviation 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric array

Channel scale factors γ, specified as a numeric array.

The channel scale factors are learnable parameters. When training a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Offset — Channel offsets
[] (default) | numeric array

Channel offsets β, specified as a numeric array.

The channel offsets are learnable parameters. When training a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Learn Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
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OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor equals 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.

ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Group Normalization Layer

Create a group normalization layer that normalizes incoming data across three groups of channels.
Name the layer 'groupnorm'.

layer = groupNormalizationLayer(3,'Name','groupnorm')

layer = 
  GroupNormalizationLayer with properties:

           Name: 'groupnorm'
    NumChannels: 'auto'

   Hyperparameters
      NumGroups: 3
        Epsilon: 1.0000e-05

   Learnable Parameters
         Offset: []
          Scale: []

  Show all properties

Include a group normalization layer in a Layer array. Normalize the incoming 20 channels in four
groups.

layers = [
    imageInputLayer([28 28 3])
    convolution2dLayer(5,20)
    groupNormalizationLayer(4)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  8x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Group Normalization     Group normalization
     4   ''   ReLU                    ReLU
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     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Fully Connected         10 fully connected layer
     7   ''   Softmax                 softmax
     8   ''   Classification Output   crossentropyex

More About
Group Normalization Layer

A group normalization layer divides the channels of the input data into groups and normalizes the
activations across each group. To speed up training of convolutional neural networks and reduce the
sensitivity to network initialization, use group normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

You can also use a group normalization layer to perform layer normalization or instance
normalization. Layer normalization combines and normalizes activations across all channels in a
single observation. Instance normalization normalizes the activations of each channel of the
observation separately.

The layer first normalizes the activations of each group by subtracting the group mean and dividing
by the group standard deviation. Then, the layer shifts the input by a learnable offset β and scales it
by a learnable scale factor γ.

Group normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L2 and dropout
regularization.

You can use a group normalization layer in place of a batch normalization layer. This is particularly
useful when training with small batch sizes as it can increase the stability of training.

Algorithms
A group normalization normalizes its inputs xi by first calculating the mean μg and variance σg

2 over
the specified groups of channels. Then, it calculates the normalized activations as

x i =
xi− μg

σg
2 + ε

Here, ϵ (the property Epsilon) improves numerical stability when the group variance is very small.
To allow for the possibility that inputs with zero mean and unit variance are not optimal for the layer
that follows the group normalization layer, the group normalization layer further shifts and scales the
activations as

yi = γx i + β .

Here, the offset β and scale factor γ (Offset and Scale properties) are learnable parameters that
are updated during network training.
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References
[1] Wu, Yuxin, and Kaiming He. “Group Normalization.” ArXiv:1803.08494 [Cs], June 11, 2018. http://

arxiv.org/abs/1803.08494.

See Also
batchNormalizationLayer | convolution2dLayer | fullyConnectedLayer | reluLayer |
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020b

 groupNormalizationLayer

1-533



gru
Gated recurrent unit

Syntax
dlY = gru(dlX,H0,weights,recurrentWeights,bias)
[dlY,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias)
[ ___ ] = gru( ___ ,'DataFormat',FMT)

Description
The gated recurrent unit (GRU) operation allows a network to learn dependencies between time steps
in time series and sequence data.

Note This function applies the deep learning GRU operation to dlarray data. If you want to apply
an GRU operation within a layerGraph object or Layer array, use the following layer:

• gruLayer

dlY = gru(dlX,H0,weights,recurrentWeights,bias) applies a gated recurrent unit (GRU)
calculation to input dlX using the initial hidden state H0, and parameters weights,
recurrentWeights, and bias. The input dlX is a formatted dlarray with dimension labels. The
output dlY is a formatted dlarray with the same dimension labels as dlX, except for any 'S'
dimensions.

The gru function updates the hidden state using the hyperbolic tangent function (tanh) as the state
activation function. The gru function uses the sigmoid function given by σ(x) = (1 + e−x)−1 as the
gate activation function.

[dlY,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias) also returns the
hidden state after the GRU operation.

[ ___ ] = gru( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when dlX is
not a formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order
as dlX, except for any 'S' dimensions.

Examples

Apply GRU Operation to Sequence Data

Perform a GRU operation using 100 hidden units.

Create the input sequence data as 32 observations with ten channels and a sequence length of 64.

numFeatures = 10;
numObservations = 32;
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sequenceLength = 64;

X = randn(numFeatures,numObservations,sequenceLength);
dlX = dlarray(X,'CBT');

Create the initial hidden state with 100 hidden units. Use the same initial hidden state for all
observations.

numHiddenUnits = 100;
H0 = zeros(numHiddenUnits,1);

Create the learnable parameters for the GRU operation.

weights = dlarray(randn(3*numHiddenUnits,numFeatures));
recurrentWeights = dlarray(randn(3*numHiddenUnits,numHiddenUnits));
bias = dlarray(randn(3*numHiddenUnits,1));

Perform the GRU calculation.

[dlY,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias);

View the size and dimension labels of dlY.

size(dlY)

ans = 1×3

   100    32    64

dlY.dims

ans = 
'CBT'

View the size of hiddenState.

size(hiddenState)

ans = 1×2

   100    32

You can use the hidden state to keep track of the state of the GRU operation and input further
sequential data.

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of H0, weights, recurrentWeights, or bias must be a
dlarray.
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dlX must contain a sequence dimension labeled 'T'. If dlX has any spatial dimensions labeled 'S',
they are flattened into the 'C' channel dimensions. If dlX has any unspecified dimensions labeled
'U', they must be singleton.
Data Types: single | double

H0 — Initial hidden state vector
dlarray | numeric array

Initial hidden state vector, specified as a dlarray with or without dimension labels or a numeric
array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of dlX. If H0 does not have a 'B'
dimension, the function uses the same hidden state vector for each observation in dlX.

If H0 is a formatted dlarray, then the size of the 'C' dimension determines the number of hidden
units. Otherwise, the size of the first dimension determines the number of hidden units.
Data Types: single | double

weights — Weights
dlarray | numeric array

Weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify weights as a matrix of size 3*NumHiddenUnits-by-InputSize, where NumHiddenUnits is
the size of the 'C' dimension of H0, and InputSize is the size of the 'C' dimension of dlX
multiplied by the size of each 'S' dimension of dlX, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size 3*NumHiddenUnits and
a 'U' dimension of size InputSize.
Data Types: single | double

recurrentWeights — Recurrent weights
dlarray | numeric array

Recurrent weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify recurrentWeights as a matrix of size 3*NumHiddenUnits-by-NumHiddenUnits, where
NumHiddenUnits is the size of the 'C' dimension of H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size
3*NumHiddenUnits and a 'U' dimension of size NumHiddenUnits.
Data Types: single | double

bias — Bias
dlarray vector | numeric vector

Bias, specified as a dlarray vector with or without dimension labels or a numeric vector.

Specify bias as a vector of length 3*NumHiddenUnits, where NumHiddenUnits is the size of the
'C' dimension of H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.
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Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — GRU output
dlarray

GRU output, returned as a dlarray. The output dlY has the same underlying data type as the input
dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX, except for
any 'S' dimensions. If the input data is not a formatted dlarray, dlY is an unformatted dlarray
with the same dimension order as the input data.

The size of the 'C' dimension of dlY is the same as the number of hidden units, specified by the size
of the 'C' dimension of H0.

hiddenState — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same
data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with
the format 'CB'.

Limitations
• functionToLayerGraph does not support the gru function. If you use functionToLayerGraph

with a function that contains the gru operation, the resulting LayerGraph contains placeholder
layers.
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More About
Gated Recurrent Unit

The GRU operation allows a network to learn dependencies between time steps in time series and
sequence data. For more information, see the “Gated Recurrent Unit Layer” on page 1-548
definition on the gruLayer reference page.

References
[1] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-
decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• H0
• weights
• recurrentWeights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | fullyconnect | lstm | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”

Introduced in R2020a

1 Deep Learning Functions

1-538



gruLayer
Gated recurrent unit (GRU) layer

Description
A GRU layer learns dependencies between time steps in time series and sequence data.

Creation

Syntax
layer = gruLayer(numHiddenUnits)
layer = gruLayer(numHiddenUnits,Name,Value)

Description

layer = gruLayer(numHiddenUnits) creates a GRU layer and sets the NumHiddenUnits
property.

layer = gruLayer(numHiddenUnits,Name,Value) sets additional OutputMode, “Activations”
on page 1-540, “State” on page 1-541, “Parameters and Initialization” on page 1-541, “Learn Rate
and Regularization” on page 1-543, and Name properties using one or more name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
quotes.

Properties
GRU

NumHiddenUnits — Number of hidden units
positive integer

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for training, use the 'SequenceLength' option in
trainingOptions.
Example: 200

OutputMode — Format of output
'sequence' (default) | 'last'
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Format of output, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

ResetGateMode — Reset gate mode
'after-multiplication' (default) | 'before-multiplication' | 'recurrent-bias-after-
multiplication'

Reset gate mode, specified as one of the following:

• 'after-multiplication' – Apply reset gate after matrix multiplication. This option is cuDNN
compatible.

• 'before-multiplication' – Apply reset gate before matrix multiplication.
• 'recurrent-bias-after-multiplication' – Apply reset gate after matrix multiplication and

use an additional set of bias terms for the recurrent weights.

For more information about the reset gate calculations, see “Gated Recurrent Unit Layer” on page 1-
548.

InputSize — Input size
'auto' (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Example: 100

Activations

StateActivationFunction — Activation function to update the hidden state
'tanh' (default) | 'softsign'

Activation function to update the hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σs in the calculations to update the hidden state.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.
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State

HiddenState — Initial value of the hidden state
numeric vector

Initial value of the hidden state, specified as a NumHiddenUnits-by-1 numeric vector. This value
corresponds to the hidden state at time step 0.

After setting this property, calls to the resetState function set the hidden state to this value.

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [2] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 3*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [3]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [4]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the recurrent weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [4]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [2] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
3*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [3]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.
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• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle – Initialize the recurrent weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• zeros' – Initialize the bias with zeros.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the three input weight matrices for the components in
the GRU layer. The three matrices are concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is a 3*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the three recurrent weight matrices for the
components in the GRU layer. The three matrices are vertically concatenated in the following order:
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1 Reset gate
2 Update gate
3 Candidate state

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time RecurrentWeights is a 3*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases
[] (default) | numeric vector

Layer biases for the GRU layer, specified as a numeric vector.

If ResetGateMode is 'after-multiplication' or 'before-multiplication', then the bias
vector is a concatenation of three bias vectors for the components in the GRU layer. The three vectors
are concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state

In this case, at training time, Bias is a 3*NumHiddenUnits-by-1 numeric vector.

If ResetGateMode is recurrent-bias-after-multiplication', then the bias vector is a
concatenation of six bias vectors for the components in the GRU layer. The six vectors are
concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state
4 Reset gate (recurrent bias)
5 Update gate (recurrent bias)
6 Candidate state (recurrent bias)

In this case, at training time, Bias is a 6*NumHiddenUnits-by-1 numeric vector.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

For more information about the reset gate calculations, see “Gated Recurrent Unit Layer” on page 1-
548.

Learn Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric vector.
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The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the three individual matrices in InputWeights,
specify a 1-by-3 vector. The entries of InputWeightsLearnRateFactor correspond to the learning
rate factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the three individual matrices in
RecurrentWeights, specify a 1-by-3 vector. The entries of RecurrentWeightsLearnRateFactor
correspond to the learning rate factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-3 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
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To control the value of the learning rate factor for the three individual vectors in Bias, specify a 1-
by-3 vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the
following:

1 Reset gate
2 Update gate
3 Candidate state

If ResetGateMode is 'recurrent-bias-after-multiplication', then the software uses the
same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the three individual matrices in
InputWeights, specify a 1-by-3 vector. The entries of InputWeightsL2Factor correspond to the
L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.
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To control the value of the L2 regularization factor for the three individual matrices in
RecurrentWeights, specify a 1-by-3 vector. The entries of RecurrentWeightsL2Factor
correspond to the L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-3 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the individual vectors in Bias, specify a 1-by-3
vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

If ResetGateMode is 'recurrent-bias-after-multiplication', then the software uses the
same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double
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InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create GRU Layer

Create a GRU layer with the name 'gru1' and 100 hidden units.

layer = gruLayer(100,'Name','gru1')

layer = 
  GRULayer with properties:

                       Name: 'gru1'

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'
              ResetGateMode: 'after-multiplication'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []

   State Parameters
                HiddenState: []

  Show all properties

Include a GRU layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
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numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    gruLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   GRU                     GRU with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

More About
Gated Recurrent Unit Layer

A GRU layer learns dependencies between time steps in time series and sequence data.

The hidden state of the layer at time step t contains the output of the GRU layer for this time step. At
each time step, the layer adds information to or removes information from the state. The layer
controls these updates using gates.

The following components control the hidden state of the layer.

Component Purpose
Reset gate (r) Control level of state reset
Update gate (z) Control level of state update

Candidate state (h) Control level of update added to hidden state

The learnable weights of a GRU layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). If the ResetGateMode property is
'recurrent-bias-after-multiplication', then the gate and state calculations require two
sets of bias values. The matrices W and R are concatenations of the input weights and the recurrent
weights of each component, respectively. These matrices are concatenated as follows:

W =
Wr
Wz
Wh

, R =
Rr
Rz
Rh

,

where r, z, and h denote the reset gate, update gate, and candidate state, respectively.

The bias vector depends on the ResetGateMode property. If ResetGateMode is 'after-
mutliplication' or 'before-multiplication', then the bias vector is a concatenation of three
vectors:
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b =

bWr
bWz
bWh

,

where the subscript W indicates that this is the bias corresponding to the input weights
multiplication.

If ResetGateMode is 'recurrent-bias-after-multiplication', then the bias vector is a
concatenation of six vectors:

b =

bWr
bWz
bWh
bRr
bRz
bRh

,

where the subscript R indicates that this is the bias corresponding to the recurrent weights
multiplication.

The hidden state at time step t is given by

ht = (1− zt)⊙ ht + zt ⊙ ht − 1 .

The following formulas describe the components at time step t.

Component ResetGateMode Formula
Reset gate 'after-

multiplication'
rt = σg Wrxt + bWr
+ Rrht − 1

'before-
multiplication'
'recurrent-bias-
after-
multiplication'

rt = σg Wrxt + bWr
+ Rrht − 1 + bRr

Update gate 'after-
multiplication'

zt = σg Wzxt + bWz
+ Rzht − 1

'before-
multiplication'
'recurrent-bias-
after-
multiplication'

zt = σg Wzxt + bWz
+ Rzht − 1 + bRz

Candidate state 'after-
multiplication'

ht = σs Whxt + bWh + rt
⊙ (Rhht − 1)
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Component ResetGateMode Formula
'before-
multiplication'

ht = σs Whxt + bWh + Rh
(rt ⊙ ht − 1)

'recurrent-bias-
after-
multiplication'

ht = σs Whxt + bWh + rt
⊙ Rhht − 1 + bRh

In these calculations, σg and σs denotes the gate and state activation functions, respectively. The
gruLayer function, by default, uses the sigmoid function given by σ(x) = (1 + e−x)−1 to compute the
gate activation function and the hyperbolic tangent function (tanh) to compute the state activation
function. To specify the state and gate activation functions, use the StateActivationFunction and
GateActivationFunction properties, respectively.
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Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, the ResetGateMode property must be set to 'after-multiplication' or
'recurrent-bias-after-multiplication'.

See Also
bilstmLayer | classifyAndUpdateState | flattenLayer | lstmLayer |
predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer |
sequenceUnfoldingLayer

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
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“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2020a
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hasdata
Determine if minibatchqueue can return a mini-batch

Syntax
tf = hasdata(mbq)

Description
tf = hasdata(mbq) returns 1 (true) if mbq can return a mini-batch using the next function, and 0
(false) otherwise.

Use hasdata in combination with next to iterate over all data in the minibatchqueue. You can call
next on a minibatchqueue until all data is returned. If there are still mini-batches of data available
in the minibatchqueue, hasdata returns 1. When you reach the end of the data, hasdata returns
0. Then, use reset or shuffle to reset the minibatchqueue and continue obtaining mini-batches
with next.

Examples

Iterate Over All Mini-Batches

Use hasdata with a while loop to iterate over all data in the minibatchqueue.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

While there is still data available in the minibatchqueue, obtain the next mini-batch.

while hasdata(mbq)
    X = next(mbq)
end

1 Deep Learning Functions

1-552



The loop ends when hasdata returns false, and all mini-batches have been returned.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Output Arguments
tf — True or false result
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

See Also
minibatchqueue | next | reset | shuffle

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
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imageDataAugmenter
Configure image data augmentation

Description
An image data augmenter configures a set of preprocessing options for image augmentation, such as
resizing, rotation, and reflection.

The imageDataAugmenter is used by an augmentedImageDatastore to generate batches of
augmented images. For more information, see “Augment Images for Training with Random Geometric
Transformations”.

Creation

Syntax
aug = imageDataAugmenter
aug = imageDataAugmenter(Name,Value)

Description

aug = imageDataAugmenter creates an imageDataAugmenter object with default property
values consistent with the identity transformation.

aug = imageDataAugmenter(Name,Value) configures a set of image augmentation options using
name-value pairs to set properties on page 1-554. You can specify multiple name-value pairs.
Enclose each property name in quotes.

Properties
FillValue — Fill value
numeric scalar | numeric vector

Fill value used to define out-of-bounds points when resampling, specified as a numeric scalar or
numeric vector.

• If the augmented images are single channel, then FillValue must be a scalar.
• If the augmented images are multichannel, then FillValue can be a scalar or a vector with

length equal to the number of channels of the input image. For example, if the input image is an
RGB image, FillValue can be a vector of length 3.

For grayscale and color images, the default fill value is 0. For categorical images, the default fill value
is an '<undefined>' label and trainNetwork ignores filled pixels when training.
Example: 128

RandXReflection — Random reflection
false (default) | true
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Random reflection in the left-right direction, specified as a logical scalar. When RandXReflection is
true (1), each image is reflected horizontally with 50% probability. When RandXReflection is
false (0), no images are reflected.

RandYReflection — Random reflection
false (default) | true

Random reflection in the top-bottom direction, specified as a logical scalar. When RandYReflection
is true (1), each image is reflected vertically with 50% probability. When RandYReflection is
false (0), no images are reflected.

RandRotation — Range of rotation
[0 0] (default) | 2-element numeric vector | function handle

Range of rotation, in degrees, applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The rotation angle is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the rotation angle as a
numeric scalar. Use a function handle to pick rotation angles from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, augmented images are not rotated.
Example: [-45 45]

RandScale — Range of uniform scaling
[1 1] (default) | 2-element numeric vector | function handle

Range of uniform (isotropic) scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The scale factor is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the scale factor as a
numeric scalar. Use a function handle to pick scale factors from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, augmented images are not scaled.
Example: [0.5 4]

RandXScale — Range of horizontal scaling
[1 1] (default) | 2-element vector of positive numbers | function handle

Range of horizontal scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal scale factor is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the horizontal scale
factor as a numeric scalar. Use a function handle to pick horizontal scale factors from a disjoint
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interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not scaled in the horizontal direction.

Note If you specify RandScale, then imageDataAugmenter ignores the value of RandXScale
when scaling images.

Example: [0.5 4]

RandYScale — Range of vertical scaling
[1 1] (default) | 2-element vector of positive numbers | function handle

Range of vertical scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical scale factor is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the vertical scale factor
as a numeric scalar. Use a function handle to pick vertical scale factors from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, augmented images are not scaled in the vertical direction.

Note If you specify RandScale, then imageDataAugmenter ignores the value of RandYScale
when scaling images.

Example: [0.5 4]

RandXShear — Range of horizontal shear
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal shear applied to the input image, specified as one of the following. Shear is
measured as an angle in degrees, and is in the range (–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the horizontal shear
angle as a numeric scalar. Use a function handle to pick horizontal shear angles from a disjoint
interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not sheared in the horizontal direction.
Example: [0 45]

RandYShear — Range of vertical shear
[0 0] (default) | 2-element numeric vector | function handle
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Range of vertical shear applied to the input image, specified as one of the following. Shear is
measured as an angle in degrees, and is in the range (–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the vertical shear angle
as a numeric scalar. Use a function handle to pick vertical shear angles from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, augmented images are not sheared in the vertical direction.
Example: [0 45]

RandXTranslation — Range of horizontal translation
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal translation applied to the input image, specified as one of the following.
Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal translation distance is picked randomly from a continuous uniform distribution
within the specified interval.

• function handle. The function must accept no input arguments and return the horizontal
translation distance as a numeric scalar. Use a function handle to pick horizontal translation
distances from a disjoint interval or using a nonuniform probability distribution. For more
information about function handles, see “Create Function Handle”.

By default, augmented images are not translated in the horizontal direction.
Example: [-5 5]

RandYTranslation — Range of vertical translation
[0 0] (default) | 2-element numeric vector | function handle

Range of vertical translation applied to the input image, specified as one of the following. Translation
distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical translation distance is picked randomly from a continuous uniform distribution within
the specified interval.

• function handle. The function must accept no input arguments and return the vertical translation
distance as a numeric scalar. Use a function handle to pick vertical translation distances from a
disjoint interval or using a nonuniform probability distribution. For more information about
function handles, see “Create Function Handle”.

By default, augmented images are not translated in the vertical direction.
Example: [-5 5]

Object Functions
augment Apply identical random transformations to multiple images
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Examples

Create Image Data Augmenter to Resize and Rotate Images

Create an image data augmenter that preprocesses images before training. This augmenter rotates
images by random angles in the range [0, 360] degrees and resizes images by random scale factors in
the range [0.5, 1].

augmenter = imageDataAugmenter( ...
    'RandRotation',[0 360], ...
    'RandScale',[0.5 1])

augmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [0 360]
           RandScale: [0.5000 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]

Create an augmented image datastore using the image data augmenter. The augmented image
datastore also requires sample data, labels, and an output image size.

[XTrain,YTrain] = digitTrain4DArrayData;
imageSize = [56 56 1];
auimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',augmenter)

auimds = 
  augmentedImageDatastore with properties:

         NumObservations: 5000
           MiniBatchSize: 128
        DataAugmentation: [1x1 imageDataAugmenter]
      ColorPreprocessing: 'none'
              OutputSize: [56 56]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Preview the random transformations applied to the first eight images in the image datastore.

minibatch = preview(auimds);
imshow(imtile(minibatch.input));
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Preview different random transformations applied to the same set of images.

minibatch = preview(auimds);
imshow(imtile(minibatch.input));

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
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• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
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    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);

Tips
• To preview the transformations applied to sample images, use the augment function.
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• To perform image augmentation during training, create an augmentedImageDatastore and
specify preprocessing options by using the 'DataAugmentation' name-value pair with an
imageDataAugmenter. The augmented image datastore automatically applies random
transformations to the training data.

See Also
augmentedImageDatastore | imageInputLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
“Create Function Handle”

Introduced in R2017b
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image3dInputLayer
3-D image input layer

Description
A 3-D image input layer inputs 3-D images or volumes to a network and applies data normalization.

For 2-D image input, use imageInputLayer.

Creation

Syntax
layer = image3dInputLayer(inputSize)
layer = image3dInputLayer(inputSize,Name,Value)

Description

layer = image3dInputLayer(inputSize) returns a 3-D image input layer and specifies the
InputSize property.

layer = image3dInputLayer(inputSize,Name,Value) sets the optional properties using
name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Properties
3-D Image Input

InputSize — Size of the input
row vector of integers

Size of the input data, specified as a row vector of integers [h w d c], where h, w, d, and c
correspond to the height, width, depth, and number of channels respectively.

• For grayscale input, specify a vector with c equal to 1.
• For RGB input, specify a vector with c equal to 3.
• For multispectral or hyperspectral input, specify a vector with c equal to the number of channels.

For 2-D image input, use imageInputLayer.
Example: [132 132 116 3]

Normalization — Data normalization
'zerocenter' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' |
function handle
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Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data, and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics at training time. To
save time when training, specify the required statistics for normalization and set the
'ResetInputNormalization' option in trainingOptions to false.

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization
[] (default) | 4-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-
by-c array of means per channel, a numeric scalar, or [], where h, w, d, and c correspond to the
height, width, depth, and the number of channels of the mean, respectively.

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | 4-D array | numeric scalar

Standard deviation for z-score normalization, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c
array of means per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height,
width, depth, and the number of channels of the standard deviation, respectively.
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If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | 4-D array | numeric scalar

Minimum value for rescaling, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c array of minima
per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height, width, depth, and
the number of channels of the minima, respectively.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | 4-D array | numeric scalar

Maximum value for rescaling, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c array of
maxima per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height, width,
depth, and the number of channels of the maxima, respectively.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)
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Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Image Input Layer

Create a 3-D image input layer for 132-by-132-by-116 color 3-D images with name 'input'. By
default, the layer performs data normalization by subtracting the mean image of the training set from
every input image.

layer = image3dInputLayer([132 132 116],'Name','input')

layer = 
  Image3DInputLayer with properties:

                      Name: 'input'
                 InputSize: [132 132 116 1]

   Hyperparameters
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []

Include a 3-D image input layer in a Layer array.

layers = [
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,16,'Stride',4)
    reluLayer
    maxPooling3dLayer(2,'Stride',4)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             16 5x5x5 convolutions with stride [4  4  4] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
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     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [4  4  4] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Compatibility Considerations
AverageImage property will be removed
Not recommended starting in R2019b

AverageImage will be removed. Use Mean instead. To update your code, replace all instances of
AverageImage with Mean. There are no differences between the properties that require additional
updates to your code.

imageInputLayer and image3dInputLayer, by default, use channel-wise normalization
Behavior change in future release

Starting in R2019b, imageInputLayer and image3dInputLayer, by default, use channel-wise
normalization. In previous versions, these layers use element-wise normalization. To reproduce this
behavior, set the NormalizationDimension option of these layers to 'element'.

See Also
averagePooling3dLayer | convolution3dLayer | fullyConnectedLayer | imageInputLayer
| maxPooling3dLayer | trainNetwork | transposedConv3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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imageInputLayer
Image input layer

Description
An image input layer inputs 2-D images to a network and applies data normalization.

For 3-D image input, use image3dInputLayer.

Creation

Syntax
layer = imageInputLayer(inputSize)
layer = imageInputLayer(inputSize,Name,Value)

Description

layer = imageInputLayer(inputSize) returns an image input layer and specifies the
InputSize property.

layer = imageInputLayer(inputSize,Name,Value) sets the optional properties on page 1-
568 using name-value pairs. You can specify multiple name-value pairs. Enclose each property name
in single quotes.

Properties
Image Input

InputSize — Size of the input
row vector of integers

Size of the input data, specified as a row vector of integers [h w c], where h, w, and c correspond to
the height, width, and number of channels respectively.

• For grayscale images, specify a vector with c equal to 1.
• For RGB images, specify a vector with c equal to 3.
• For multispectral or hyperspectral images, specify a vector with c equal to the number of

channels.

For 3-D image or volume input, use image3dInputLayer.
Example: [224 224 3]

Normalization — Data normalization
'zerocenter' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' |
function handle
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Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data, and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics at training time. To
save time when training, specify the required statistics for normalization and set the
'ResetInputNormalization' option in trainingOptions to false.

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization
[] (default) | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a h-by-w-by-c array, a 1-by-1-by-c array
of means per channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and
the number of channels of the mean, respectively.

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a h-by-w-by-c array, a 1-by-1-by-c array of
means per channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and
the number of channels of the standard deviation, respectively.
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If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | 3-D array | numeric scalar

Minimum value for rescaling, specified as a h-by-w-by-c array, a 1-by-1-by-c array of minima per
channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and the number
of channels of the minima, respectively.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | 3-D array | numeric scalar

Maximum value for rescaling, specified as a h-by-w-by-c array, a 1-by-1-by-c array of maxima per
channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and the number
of channels of the maxima, respectively.

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DataAugmentation — Data augmentation transforms
'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and 'randfliplr'

Note The DataAugmentation property is not recommended. To preprocess images with cropping,
reflection, and other geometric transformations, use augmentedImageDatastore instead.

Data augmentation transforms to use during training, specified as one of the following.

• 'none' — No data augmentation
• 'randcrop' — Take a random crop from the training image. The random crop has the same size

as the input size.
• 'randfliplr' — Randomly flip the input images horizontally with a 50% chance.
• Cell array of 'randcrop' and 'randfliplr'. The software applies the augmentation in the

order specified in the cell array.

Augmentation of image data is another way of reducing overfitting [1], [2].
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Data Types: string | char | cell

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Image Input Layer

Create an image input layer for 28-by-28 color images with name 'input'. By default, the layer
performs data normalization by subtracting the mean image of the training set from every input
image.

inputlayer = imageInputLayer([28 28 3],'Name','input')

inputlayer = 
  ImageInputLayer with properties:

                      Name: 'input'
                 InputSize: [28 28 3]
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   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []

Include an image input layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Compatibility Considerations
AverageImage property will be removed
Not recommended starting in R2019b

AverageImage will be removed. Use Mean instead. To update your code, replace all instances of
AverageImage with Mean. There are no differences between the properties that require additional
updates to your code.

imageInputLayer and image3dInputLayer, by default, use channel-wise normalization
Behavior change in future release

Starting in R2019b, imageInputLayer and image3dInputLayer, by default, use channel-wise
normalization. In previous versions, these layers use element-wise normalization. To reproduce this
behavior, set the NormalizationDimension option of these layers to 'element'.

References
[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional

Neural Networks". Advances in Neural Information Processing Systems. Vol 25, 2012.

[2] Cireşan, D., U. Meier, J. Schmidhuber. "Multi-column Deep Neural Networks for Image
Classification". IEEE Conference on Computer Vision and Pattern Recognition, 2012.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support 'Normalization' specified using a function handle.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Code generation does not support 'Normalization' specified using a function handle.

See Also
Deep Network Designer | augmentedImageDatastore | convolution2dLayer |
featureInputLayer | fullyConnectedLayer | image3dInputLayer | maxPooling2dLayer |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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imageLIME
Explain image classification result using LIME

Syntax
scoreMap = imageLIME(net,X,label)
[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label)
___  = imageLIME( ___ ,Name,Value)

Description
scoreMap = imageLIME(net,X,label) uses the locally-interpretable model-agnostic explanation
(LIME) technique to compute a map of the importance of the features in the input image X when the
network net evaluates the class score for the class given by label. Use this function to explain
classification decisions and check that your network is focusing on the appropriate features of the
image.

The LIME technique approximates the classification behavior of the net using a simpler, more
interpretable model. By generating synthetic data from input X, classifying the synthetic data using
net, and then using the results to fit a simple regression model, the imageLIME function determines
the importance of each feature of X to the network's classification score for class given by label.

This function requires Statistics and Machine Learning Toolbox.

[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label) also returns a
map of the features used to compute the LIME results and the calculated importance of each feature.

___  = imageLIME( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example,
'NumFeatures',100 sets the target number of features to 100.

Examples

Visualize Which Parts of an Image are Important for Classification

Use imageLIME to visualize the parts of an image are important to a network for a classification
decision.

Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize to match the input size for the network.

X = imread("laika_grass.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image. The image is of a dog named Laika.
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imshow(X)

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     toy poodle 

Use imageLIME to determine which parts of the image are important to the classification result.

scoreMap = imageLIME(net,X,label);

Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
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The network focuses predominantly on Laika's head and back to make the classification decision.
Laika's eye and ear are also important to the classification result.

Visualize Only the Most Important Features

Use imageLIME to determine the most important features in an image and isolate them from the
unimportant features.

Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize to match the input size for the network.

X = imread("sherlock.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     golden retriever 

Compute the map of the feature importance and also obtain the map of the features and the feature
importance. Set the image segmentation method to 'grid', the number of features to 64, and the
number of synthetic images to 3072.

[scoreMap,featureMap,featureImportance]  = imageLIME(net,X,label,'Segmentation','grid','NumFeatures',64,'NumSamples',3072);
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Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
colorbar

Use the feature importance to find the indices of the most important five features.

numTopFeatures = 5;
[~,idx] = maxk(featureImportance,numTopFeatures);

Use the map of the features to mask out the image so only the most important five features are
visible. Display the masked image.

mask = ismember(featureMap,idx);
maskedImg = uint8(mask).*X;
figure
imshow(maskedImg);
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Input Arguments
net — Image classification network
SeriesNetwork object | DAGNetwork object

Image classification network, specified as a SeriesNetwork object or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

net must contain a single input layer and a single output layer. The input layer must be an
imageInputLayer. The output layer must be a classificationLayer.

X — Input image
numeric array

Input image, specified as a numeric array.

The image must be the same size as the image input size of the network net. The input size is
specified by the InputSize property of the network's imageInputLayer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label
categorical | char vector | string scalar | vector

Class label used to calculate the feature importance map, specified as a categorical, a char vector, a
string scalar or a vector of these values.

If you specify label as a vector, the software calculates the feature importance for each class label
independently. In that case, scoreMap(:,:,k) and featureImportance(idx,k) correspond to
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the map of feature importance and the importance of feature idx for the kth element in label,
respectively.
Example: ["cat" "dog"]
Data Types: char | string | categorical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumFeatures',100,'Segmentation','grid',
'OutputUpsampling','bicubic','ExecutionEnvironment','gpu' segments the input image
into a grid of approximately 100 features, executes the calculation on the GPU, and upsamples the
resulting map to the same size as the input image using bicubic interpolation.

NumFeatures — Target number of features
49 (default) | positive integer

Target number of features to divide the input image into, specified as the comma-separated pair
consisting of 'NumFeatures' and a positive integer.

A larger value of 'NumFeatures' divides the input image into more, smaller features. To get the
best results when using a larger number of features, also increase the number of synthetic images
using the 'NumSamples' name-value pair.

The exact number of features depends on the input image and segmentation method specified using
the 'Segmentation' name-value pair and can be less than the target number of features.

When you specify 'Segmentation','superpixels', the actual number of features can be greater
or less than the number specified using 'NumFeatures'.

When you specify 'Segmentation','grid', the actual number of features can be less than the
number specified using 'NumFeatures'. If your input image is square specify 'NumFeatures' as a
square number.
Example: 'NumFeatures',100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumSamples — Number of synthetic images
2048 (default) | positive integer

Number of synthetic images to generate, specified as the comma-separated pair consisting of
'NumSamples' and a positive integer.

A larger number of synthetic images gives better results but takes more time to compute.
Example: 'NumSamples',1024
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Segmentation — Segmentation method
'superpixels' (default) | 'grid'
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Segmentation method to use to divide the input image into features, specified as the comma-
separated pair consisting of 'Segmentation' and 'superpixels' or 'grid'.

The imageLIME function segments the input image into features in the following ways depending on
the segmentation method.

• 'superpixels' — Input image is divided into superpixel features, using the superpixels
function. Features are irregularly shaped, based on the value of the pixels. This option requires
Image Processing Toolbox.

• 'grid' — Input image is divided into a regular grid of features. Features are approximately
square, based on the aspect ratio of the input image and the specified value of 'NumFeatures'.
The number of grid cells can be smaller than the specified value of 'NumFeatures'. If the input
image is square, specify 'NumFeatures' as a square number.

For photographic image data, the 'superpixels' option usually gives better results. In this case,
features are based on the contents of the image, by segmenting the image into regions of similar
pixel value. For other types of images, such as spectrograms, the more regular 'grid' option can
provide more useful results.
Example: 'Segmentation','grid'
Data Types: char | string

Model — Type of simple model
'tree' (default) | 'linear'

Type of simple model to fit, specified as the specified as the comma-separated pair consisting of
'Model' and 'tree' or 'linear'.

The imageLIME function classifies the synthetic images using the network net and then uses the
results to fit a simple, interpretable model. The methods used to fit the results and determine the
importance of each feature depend on the type of simple model used.

• 'tree' — Fit a regression tree using fitrtree then compute the importance of each feature
using predictorImportance

• 'linear' — Fit a linear model with lasso regression using fitrlinear then compute the
importance of each feature using the weights of the linear model.

Example: 'Model','linear'
Data Types: char | string

OutputUpsampling — Output upsampling method
'nearest' (default) | 'bicubic' | 'none'

Output upsampling method to use when segmentation method is 'grid', specified as the comma-
separated pair consisting of 'OutputUpsampling' and one of the following.

• 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input
data. The map indicates the size of the each feature with respect to the size of the input data.

• 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
• 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'nearest' or 'bicubic', the computed map is upsampled to the size
of the input data using the imresize function.
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Example: 'OutputUpsampling','bicubic'

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use to compute the map feature importance, specified as the comma-
separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of synthetic images. The mini-batch size specifies the number of
synthetic images that are passed to the network at once. Larger mini-batch sizes lead to faster
computation, at the cost of more memory.
Example: 'MiniBatchSize',256

ExecutionEnvironment — Hardware resource
'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following.

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the
'ExecutionEnvironment','gpu' option and Parallel Computing Toolbox or a suitable GPU is not
available, then the software returns an error.
Example: 'ExecutionEnvironment','gpu'

Output Arguments
scoreMap — Map of feature importance
numeric matrix | numeric array

Map of feature importance, returned as a numeric matrix or a numeric array. Areas in the map with
higher positive values correspond to regions of input data that contribute positively to the specified
classification label.

The value of scoreMap(i,j) denotes the importance of the image pixel (i,j) to the simple model.,
except when you use the options 'Segmentation','grid', and 'OutputUpsampling','none'.
In that case, the scoreMap is smaller than the input image, and the value of scoreMap(i,j)
denotes the importance of the feature at position (i,j) in the grid of features.

If label is specified as a vector, the change in classification score for each class label is calculated
independently. In that case, scoreMap(:,:,k) corresponds to the occlusion map for the kth element
in label.

featureMap — Map of features
numeric matrix

Map of features, returned as a numeric matrix.
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For each pixel (i,j) in the input image, idx = featureMap(i,j) is an integer corresponding to
the index of the feature containing that pixel.

featureImportance — Feature importance
numeric vector | numeric matrix

Feature importance, returned as a numeric vector or a numeric matrix.

The value of featureImportance(idx) is the calculated importance of the feature specified by
idx. If you provide labels as a vector of categorical values, char vectors, or string scalars, then
featureImportance(idx,k) corresponds to the importance of feature idx for label(k).

More About
LIME

The locally interpretable model-agnostic explanations (LIME) technique is an explainability technique
used to explain the classification decisions made by a deep neural network.

Given the classification decision of deep network for a piece of input data, the LIME technique
calculates the importance of each feature of the input data to the classification result.

The LIME technique approximates the behavior of a deep neural network using a simpler, more
interpretable model, such as a regression tree. To map the importance of different parts of the input
image, the imageLIME function of performs the following steps.

• Segment the image into features.
• Generate synthetic image data by randomly including or excluding features. Each pixel in an

excluded feature is replaced with the value of the average image pixel.
• Classify the synthetic images using the deep network.
• Fit a regression model using the presence or absence of image features for each synthetic image

as binary regression predictors for the scores of the target class.
• Compute the importance of each feature using the regression model.

The resulting map can be used to determine which features were most important to a particular
classification decision. This can be especially useful for making sure your network is focusing on the
appropriate features when classifying.

See Also
activations | classify | occlusionSensitivity

Topics
“Understand Network Predictions Using LIME”
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Investigate Network Predictions Using Class Activation Mapping”

Introduced in R2020b
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importCaffeLayers
Import convolutional neural network layers from Caffe

Syntax
layers = importCaffeLayers(protofile)
layers = importCaffeLayers(protofile,'InputSize',sz)

Description
layers = importCaffeLayers(protofile) imports the layers of a Caffe [1] network. The
function returns the layers defined in the .prototxt file protofile.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this
support package is not installed, then the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

layers = importCaffeLayers(protofile,'InputSize',sz) specifies the size of the input
data. If the .prototxt file does not specify the size of the input data, then you must specify the input
size.

Examples

Download Importer for Caffe Models Support Package

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

Download the required support package by typing importCaffeLayers at the command line.

importCaffeLayers

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install.

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

protofile = 'digitsnet.prototxt';

Import the network layers.

layers = importCaffeLayers(protofile)

layers = 

  1x7 Layer array with layers:
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     1   'testdata'   Image Input             28x28x1 images
     2   'conv1'      Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]
     3   'relu1'      ReLU                    ReLU
     4   'pool1'      Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]
     5   'ip1'        Fully Connected         10 fully connected layer
     6   'loss'       Softmax                 softmax
     7   'output'     Classification Output   crossentropyex with 'class1', 'class2', and 8 other classes

Input Arguments
protofile — File name
character vector | string scalar

File name of the .prototxt file containing the network architecture, specified as a character vector
or a string scalar. protofile must be in the current folder, in a folder on the MATLAB path, or you
must include a full or relative path to the file. If the .prototxt file does not specify the size of the
input data, you must specify the size using the sz input argument.
Example: 'digitsnet.prototxt'

sz — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values [h,w], or
[h,w,c] corresponding to the height, width, and the number of channels of the input data.
Example: [28 28 1]

Output Arguments
layers — Network architecture
Layer array | LayerGraph object

Network architecture, returned as a Layer array or a LayerGraph object. Caffe networks that take
color images as input expect the images to be in BGR format. During import, importCaffeLayers
modifies the network so that the imported MATLAB network takes RGB images as input.

Tips
• importCaffeLayers can import networks with the following Caffe layer types, with some

limitations:

Caffe Layer Deep Learning Toolbox Layer
BatchNormLayer batchNormalizationLayer
ConcatLayer depthConcatenationLayer
ConvolutionLayer convolution2dLayer
DeconvolutionLayer transposedConv2dLayer
DropoutLayer dropoutLayer
EltwiseLayer (only sum) additionLayer
EuclideanLossLayer RegressionOutputLayer
InnerProductLayer fullyConnectedLayer
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Caffe Layer Deep Learning Toolbox Layer
InputLayer imageInputLayer
LRNLayer (Local Response Normalization) crossChannelNormalizationLayer
PoolingLayer maxPooling2dLayer or

averagePooling2dLayer
ReLULayer reluLayer or leakyReluLayer
ScaleLayer batchNormalizationLayer
SigmoidLayer nnet.caffe.layer.SigmoidLayer
SoftmaxLayer softmaxLayer
TanHLayer tanhLayer

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase TEST. The
function ignores any layers that protofile specifies with the include-phase TRAIN.

References
[1] Caffe. https://caffe.berkeleyvision.org/.

[2] Caffe Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html.

See Also
assembleNetwork | exportONNXNetwork | importCaffeNetwork | importKerasLayers |
importKerasNetwork | importONNXLayers | importONNXNetwork

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”

Introduced in R2017a
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importCaffeNetwork
Import pretrained convolutional neural network models from Caffe

Syntax
net = importCaffeNetwork(protofile,datafile)
net = importCaffeNetwork( ___ ,Name,Value)

Description
net = importCaffeNetwork(protofile,datafile) imports a pretrained network from Caffe
[1]. The function returns the pretrained network with the architecture specified by the .prototxt
file protofile and with network weights specified by the .caffemodel file datafile.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this
support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

net = importCaffeNetwork( ___ ,Name,Value) returns a network with additional options
specified by one or more Name,Value pair arguments using any of the previous syntaxes.

Examples

Download Importer for Caffe Models Support Package

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

To download the required support package, type importCaffeNetwork at the command line.

importCaffeNetwork

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install.

Import Caffe Network

Specify files to import.

protofile = 'digitsnet.prototxt';
datafile = 'digits_iter_10000.caffemodel';

Import network.

net = importCaffeNetwork(protofile,datafile)

net = 
  SeriesNetwork with properties:
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         Layers: [7×1 nnet.cnn.layer.Layer]
     InputNames: {'testdata'}
    OutputNames: {'ClassificationOutput'}

Input Arguments
protofile — File name
character vector | string scalar

File name of the .prototxt file containing the network architecture, specified as a character vector
or a string scalar. protofile must be in the current folder, in a folder on the MATLAB path, or you
must include a full or relative path to the file. If the .prototxt file does not specify the size of the
input data, you must specify the size using the 'InputSize' name-value pair argument.
Example: 'digitsnet.prototxt'

datafile — File name
character vector | string scalar

File name of the .caffemodel file containing the network weights, specified as a character vector or
a string scalar. datafile must be in the current folder, in a folder on the MATLAB path, or you must
include a full or relative path to the file. To import network layers without weights, use
importCaffeLayers.
Example: 'digits_iter_10000.caffemodel'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: importCaffeNetwork(protofile,datafile,'AverageImage',I) imports a
pretrained network using the average image I for zero-center normalization.

InputSize — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values [h,w], or
[h,w,c] corresponding to the height, width, and the number of channels of the input data. If
the .prototxt file does not specify the size of the input data, then you must specify the input size.
Example: [28 28 1]

AverageImage — Average image
matrix

Average image for zero-center normalization, specified as a matrix. If you specify an image, then you
must specify an image of the same size as the input data. If you do not specify an image, the software
uses the data specified in the .prototxt file, if present. Otherwise, the function sets the
Normalization property of the image input layer of the network to 'none'.

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors
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Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If you specify a string array or cell array of character vectors str, then the
software sets the classes of the output layer to categorical(str,str). If Classes is 'auto',
then the function sets the classes to categorical(1:N), where N is the number of classes.
Data Types: char | categorical | string | cell

Output Arguments
net — Imported pretrained Caffe network
SeriesNetwork object | DAGNetwork object

Imported pretrained Caffe network, returned as a SeriesNetwork object or DAGNetwork object.
Caffe networks that take color images as input expect the images to be in BGR format. During import,
importCaffeNetwork modifies the network so that the imported MATLAB network takes RGB
images as input.

Tips
• importCaffeNetwork can import networks with the following Caffe layer types, with some

limitations:

Caffe Layer Deep Learning Toolbox Layer
BatchNormLayer batchNormalizationLayer
ConcatLayer depthConcatenationLayer
ConvolutionLayer convolution2dLayer
DeconvolutionLayer transposedConv2dLayer
DropoutLayer dropoutLayer
EltwiseLayer (only sum) additionLayer
EuclideanLossLayer RegressionOutputLayer
InnerProductLayer fullyConnectedLayer
InputLayer imageInputLayer
LRNLayer (Local Response Normalization) crossChannelNormalizationLayer
PoolingLayer maxPooling2dLayer or

averagePooling2dLayer
ReLULayer reluLayer or leakyReluLayer
ScaleLayer batchNormalizationLayer
SigmoidLayer nnet.caffe.layer.SigmoidLayer
SoftmaxLayer softmaxLayer
TanHLayer tanhLayer

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase TEST. The
function ignores any layers that protofile specifies with the include-phase TRAIN.
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Compatibility Considerations
'ClassNames' option will be removed
Not recommended starting in R2018b

'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances
of 'ClassNames' with 'Classes'. There are some differences between the corresponding
properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

References
[1] Caffe. https://caffe.berkeleyvision.org/.

[2] Caffe Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = importCaffeNetwork.

See Also
assembleNetwork | exportONNXNetwork | importCaffeLayers | importKerasLayers |
importKerasNetwork | importONNXLayers | importONNXNetwork

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

Introduced in R2017a
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importKerasLayers
Import layers from Keras network

Syntax
layers = importKerasLayers(modelfile)
layers = importKerasLayers(modelfile,Name,Value)

Description
layers = importKerasLayers(modelfile) imports the layers of a TensorFlow-Keras network
from a model file. The function returns the layers defined in the HDF5 (.h5) or JSON (.json) file
given by the file name modelfile.

This function requires the Deep Learning Toolbox Importer for TensorFlow-Keras Models support
package. If this support package is not installed, then the function provides a download link.

layers = importKerasLayers(modelfile,Name,Value) imports the layers from a TensorFlow-
Keras network with additional options specified by one or more name-value pair arguments.

For example, importKerasLayers(modelfile,'ImportWeights',true) imports the network
layers and the weights from the model file modelfile.

Examples

Download and Install Deep Learning Toolbox Importer for TensorFlow-Keras Models

Download and install the Deep Learning Toolbox Importer for TensorFlow-Keras Models support
package.

Type importKerasLayers at the command line.

importKerasLayers

If the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
importing the layers from the model file 'digitsDAGnet.h5' at the command line. If the required
support package is installed, then the function returns a LayerGraph object.

modelfile = 'digitsDAGnet.h5';
net = importKerasLayers(modelfile)

net = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}
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Import Layers from Keras Network and Plot Architecture

Import the network layers from the model file digitsDAGnet.h5.

modelfile = 'digitsDAGnet.h5';
layers = importKerasLayers(modelfile) 

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(layers)

Import Keras Network Layers and Train Network

Specify the network file to import.
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modelfile = 'digitsDAGnet.h5';

Import network layers.

layers = importKerasLayers(modelfile)

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Load a data set for training a classifier to recognize new digits.

folder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(folder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Partition the dataset into training and test sets.

numTrainFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainFiles,'randomize');

Set the training options.

options = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'InitialLearnRate',0.001);

Train network using training data.

net = trainNetwork(imdsTrain,layers,options);

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |       15.63% |      12.6982 |          0.0010 |
|       1 |          50 |       00:00:17 |       63.28% |       1.2109 |          0.0010 |
|       2 |         100 |       00:00:31 |       85.16% |       0.4193 |          0.0010 |
|       3 |         150 |       00:00:44 |       96.09% |       0.1756 |          0.0010 |
|       4 |         200 |       00:00:59 |       99.22% |       0.0460 |          0.0010 |
|       5 |         250 |       00:01:13 |      100.00% |       0.0374 |          0.0010 |
|       6 |         300 |       00:01:28 |       96.88% |       0.1217 |          0.0010 |
|       7 |         350 |       00:01:42 |      100.00% |       0.0087 |          0.0010 |
|       7 |         400 |       00:01:54 |      100.00% |       0.0167 |          0.0010 |
|       8 |         450 |       00:02:08 |      100.00% |       0.0099 |          0.0010 |
|       9 |         500 |       00:02:19 |      100.00% |       0.0047 |          0.0010 |
|      10 |         550 |       00:02:31 |      100.00% |       0.0031 |          0.0010 |
|      10 |         580 |       00:02:37 |      100.00% |       0.0059 |          0.0010 |
|========================================================================================|

Run the trained network on the test set that was not used to train the network and predict the image
labels (digits).
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YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9856

Import Keras Network Architecture and Weights from Same File

Specify the network file to import layers and weights from.

modelfile = 'digitsDAGnet.h5';

Import the network architecture and weights from the files you specified. To import the layer weights,
specify 'ImportWeights' to be true. The function also imports the layers with their weights from
the same HDF5 file.

layers = importKerasLayers(modelfile,'ImportWeights',true)

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

View the size of the weights in the second layer.

weights = layers.Layers(2).Weights;
size(weights)

ans = 1×4

     7     7     1    20

The function has imported the weights so the layer weights are non-empty.

Import Keras Network Architecture and Weights from Separate Files

Specify the network file to import layers from and the file containing weights.

modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';

Import the network architecture and weights from the files you specified. The .json file does not
include an output layer. Specify the output layer, so that importKerasLayers adds an output layer at
the end of the networks architecture.
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layers = importKerasLayers(modelfile, ...
    'ImportWeights',true, ...
    'WeightFile',weights, ...
    'OutputLayerType','classification')

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
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Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000
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Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers
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ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)
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net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Import Keras PReLU Layer

Import layers from a Keras network that has parametric rectified linear unit (PReLU) layers.

A PReLU layer performs a threshold operation, where for each channel, any input value less than zero
is multiplied by a scalar. The PReLU operation is given by

f xi =
xi if xi > 0
aixi if xi ≤ 0

where xi is the input of the nonlinear activation f  on channel i, and ai is the scaling parameter
controlling the slope of the negative part. The subscript i in ai indicates that the parameter can be a
vector and the nonlinear activation can vary on different channels.

importKerasNetwork and importKerasLayers can import a network that includes PReLU layers.
These functions support both scalar-valued and vector-valued scaling parameters. If a scaling
parameter is a vector, then the functions replace the vector with the average of the vector elements.
You can modify a PReLU layer to have a vector-valued scaling parameter after import.

Specify the network file to import.

modelfile = 'digitsDAGnetwithPReLU.h5';

digitsDAGnetwithPReLU includes two PReLU layers. One has a scalar-valued scaling parameter,
and the other has a vector-valued scaling parameter.

Import the network architecture and weights from modelfile.

layers = importKerasLayers(modelfile,'ImportWeights',true);

Warning: Layer 'p_re_lu_1' is a PReLU layer with a vector-valued parameter. The function replaces the parameter with the average of the vector elements. You can change the parameter back to a vector after import.

The importKerasLayers function displays a warning for the PReLu layer p_re_lu_1. The function
replaces the vector-valued scaling parameter of p_re_lu_1 with the average of the vector elements.
You can change the parameter back to a vector. First, find the index of the PReLU layer by viewing
the Layers property.

layers.Layers

ans = 
  13x1 Layer array with layers:

     1   'input_1'                       Image Input             28x28x1 images
     2   'conv2d_1'                      Convolution             20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_2'                      Convolution             20 3x3x1 convolutions with stride [1  1] and padding 'same'
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     4   'p_re_lu_1'                     PReLU                   PReLU layer
     5   'p_re_lu_2'                     PReLU                   PReLU layer
     6   'max_pooling2d_1'               Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     7   'max_pooling2d_2'               Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     8   'flatten_1'                     Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'flatten_2'                     Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    10   'concatenate_1'                 Depth concatenation     Depth concatenation of 2 inputs
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

layers has two PReLU layers. Extract the fourth layer p_re_lu_1, which originally had a vector-
valued scaling parameter for a channel dimension.

tempLayer = layers.Layers(4)

tempLayer = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]

   Learnable Parameters
       Alpha: 0.0044

  Show all properties

The RawAlpha property contains the vector-valued scaling parameter, and the Alpha property
contains a scalar that is an element average of the vector values. Reshape RawAlpha to place the
vector values in the third dimension, which corresponds to the channel dimension. Then, replace
Alpha with the reshaped RawAlpha values.

tempLayer.Alpha = reshape(tempLayer.RawAlpha,[1,1,numel(tempLayer.RawAlpha)])

tempLayer = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]

   Learnable Parameters
       Alpha: [1x1x20 single]

  Show all properties

Replace the p_re_lu_1 layer in layers with tempLayer.

layers = replaceLayer(layers,'p_re_lu_1', tempLayer);
layers.Layers(4)

ans = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]
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   Learnable Parameters
       Alpha: [1x1x20 single]

  Show all properties

Now the p_re_lu_1 layer has a vector-valued scaling parameter.

Input Arguments
modelfile — Name of Keras model file
character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a
character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file.

If modelfile includes

• The network architecture and weights, then it must be in HDF5 (.h5) format.
• Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If modelfile includes only the network architecture, then you can optionally supply the weights
using the 'ImportWeights' and 'WeightFile' name-value pair arguments. If you supply the
weights, then the weights file must be in HDF5 format.
Example: 'digitsnet.h5'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: importKerasLayers(modelfile,'OutputLayerType','classification') imports
the network layers from the model file modelfile and adds an output layer for a classification
problem at the end of the Keras layers.

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture
when modelfile does not specify a loss function, specified as 'classification', 'regression',
or 'pixelclassification'. Appending a pixelClassificationLayer object requires
Computer Vision Toolbox.

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. importKerasLayers inserts placeholder layers for the outputs. After importing, you
can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively.
Example: 'OutputLayerType','regression'
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ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the modelfile does not specify the
input size.

If a network in modelfile has multiple inputs, then you cannot specify the input sizes using this
argument. importKerasLayers inserts placeholder layers for the inputs. After importing, you can
find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively.
Example: 'ImageInputSize',[28 28]

ImportWeights — Indicator to import weights
false (default) | true

Indicator to import weights as well as the network architecture, specified as either false or true.

• If 'ImportWeights' is true and modelfile includes the weights, then importKerasLayers
imports the weights from modelfile, which must have HDF5 (.h5) format.

• If 'ImportWeights' is true and modelfile does not include the weights, then you must
specify a separate file that includes weights, using the 'WeightFile' name-value pair argument.

Example: 'ImportWeights',true
Data Types: logical

WeightFile — Weight file name
character vector | string scalar

Weight file name, from which to import weights when modelfile does not include weights, specified
as a character vector or a string scalar. To use this name-value pair argument, you also must set
'ImportWeights' to true.

Weight file must be in the current folder, in a folder on the MATLAB path, or you must include a full
or relative path to the file.
Example: 'WeightFile','weights.h5'
Data Types: char | string

Output Arguments
layers — Network architecture
Layer array object | LayerGraph object

Network architecture, returned as a Layer array object when the Keras network is of type
Sequential, or returned as a LayerGraph object when the Keras network is of type Model.

Tips
• importKerasLayers supports the following Keras layer types, with some limitations. If the

network contains any other type of layer, then the software inserts a placeholder layer in place of
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the unsupported layer. To find the names and indices of the unsupported layers in the network,
use the findPlaceholderLayers function. You then can replace a placeholder layer with a new
layer that you define. To replace a layer, use replaceLayer.

Supported Keras Layer Corresponding Deep Learning Toolbox
Layer

Add additionLayer
Activation, with activation names:

• 'elu'
• 'relu'
• 'linear'
• 'softmax'
• 'sigmoid'
• 'tanh'

Layers:

• eluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• tanhLayer

Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer

AveragePooling2D averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNLSTM lstmLayer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPooling2D globalMaxPooling2dLayer
GRU gruLayer
Input imageInputLayer
LSTM lstmLayer
MaxPooling2D maxPooling2dLayer
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Supported Keras Layer Corresponding Deep Learning Toolbox
Layer

Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

*For a PReLU layer, importKerasLayers replaces a vector-valued scaling parameter with the
average of the vector elements. You can change the parameter back to a vector after import. For
an example, see “Import Keras PReLU Layer” on page 1-598.

• You can replace a placeholder layer with a new layer that you define.

• If the network is a series network, then replace the layer in the array directly. For example,
layer(2) = newlayer;.

• If the network is a DAG network, then replace the layer using replaceLayer. For an example,
see “Assemble Network from Pretrained Keras Layers” on page 1-594.

• importKerasLayers supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

• You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use
importKerasNetwork if the network includes input size information for the inputs and loss
information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers
function inserts placeholder layers for the inputs and outputs. After importing, you can find and
replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively. The workflow for importing MIMO Keras networks is the same as the workflow for
importing MIMO ONNX networks. For an example, see “Import ONNX Network with Multiple
Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and
multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way as the images used to train the imported model were
preprocessed. Resizing images, subtracting the average image, and converting the images from
RGB to BGR format are the most common preprocessing operations.

• To resize images, use imresize. For example, imresize(im,[227 227]).
• To convert images from RGB to BGR format, use flip. For example, flip(im,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

References
[1] Keras: The Python Deep Learning library. https://keras.io.
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See Also
assembleNetwork | exportONNXNetwork | findPlaceholderLayers | importCaffeLayers |
importCaffeNetwork | importKerasNetwork | importONNXLayers | importONNXNetwork |
replaceLayer

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”

Introduced in R2017b
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importKerasNetwork
Import a pretrained Keras network and weights

Syntax
net = importKerasNetwork(modelfile)
net = importKerasNetwork(modelfile,Name,Value)

Description
net = importKerasNetwork(modelfile) imports a pretrained TensorFlow-Keras network and its
weights from modelfile.

This function requires Deep Learning Toolbox Importer for TensorFlow-Keras Models support
package. If this support package is not installed, the function provides a download link.

net = importKerasNetwork(modelfile,Name,Value) imports a pretrained TensorFlow-Keras
network and its weights with additional options specified by one or more name-value pair arguments.

For example, importKerasNetwork(modelfile,'WeightFile',weights) imports the network
from the model file modelfile and weights from the weight file weights. In this case, modelfile
can be in HDF5 or JSON format, and the weight file must be in HDF5 format.

Examples

Download and Install Deep Learning Toolbox Importer for TensorFlow-Keras Models

Download and install the Deep Learning Toolbox Importer for TensorFlow-Keras Models support
package.

Type importKerasNetwork at the command line.

importKerasNetwork

If the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
importing the network from the model file 'digitsDAGnet.h5' at the command line. If the required
support package is installed, then the function returns a DAGNetwork object.

modelfile = 'digitsDAGnet.h5';
net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
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     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Import and Plot Keras Network

Specify the file to import. The file digitsDAGnet.h5 contains a directed acyclic graph convolutional
neural network that classifies images of digits.

modelfile = 'digitsDAGnet.h5';

Import the network.

net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(net)
title('DAG Network Architecture')
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Import Keras Network and Weights

Specify the network and the weight files to import.

modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';

This is a directed acyclic graph convolutional neural network trained on the digits data.

Import network architecture and import the weights from separate files. The .json file does not have
an output layer or information on the cost function. Specify the output layer type when you import the
files.

net = importKerasNetwork(modelfile,'WeightFile',weights, ...
      'OutputLayerType','classification')

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
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    OutputNames: {'ClassificationLayer_activation_1'}

Import Pretrained Keras Network to Classify Image

Specify the model file.

modelfile = 'digitsDAGnet.h5';

Specify class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import the Keras network with the class names.

net = importKerasNetwork(modelfile,'Classes',classNames);

Read the image to classify.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));

Classify the image using the pretrained network.

label = classify(net,I);

Display the image and the classification result.

imshow(I)
title(['Classification result: ' char(label)])

Input Arguments
modelfile — Name of Keras model file
character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a
character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file.

If modelfile includes

• The network architecture and weights, then it must be in HDF5 (.h5) format.
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• Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If modelfile includes only the network architecture, then you must supply the weights in an HDF5
file, using the 'WeightFile' name-value pair argument.
Example: 'digitsnet.h5'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
importKerasNetwork(modelfile,'OutputLayerType','classification','Classes',cla
sses) imports a network from the model file modelfile, adds an output layer for a classification
problem at the end of the Keras layers, and specifies classes as the classes of the output layer.

WeightFile — Name of file containing weights
character vector | string scalar

Name of file containing weights, specified as a character vector or a string scalar. WeightFile must
be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to
the file.
Example: 'WeightFile','weights.h5'

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture
when modelfile does not specify a loss function, specified as 'classification', 'regression',
or 'pixelclassification'. Appending a pixelClassificationLayer object requires
Computer Vision Toolbox.

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. Use importKerasLayers instead. importKerasLayers inserts placeholder layers
for the outputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively.
Example: 'OutputLayerType','regression'

ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the modelfile does not specify the
input size.

If a network in modelfile has multiple inputs, then you cannot specify the input sizes using this
argument. Use importKerasLayers instead. importKerasLayers inserts placeholder layers for
the inputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively.
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Example: 'ImageInputSize',[28 28]

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If you specify a string array or cell array of character vectors str, then the
software sets the classes of the output layer to categorical(str,str). If Classes is 'auto',
then the function sets the classes to categorical(1:N), where N is the number of classes.
Data Types: char | categorical | string | cell

Output Arguments
net — Pretrained Keras network
SeriesNetwork object | DAGNetwork object

Pretrained Keras network, returned as one of the following:

• If the Keras network is of type Sequential, then net is a SeriesNetwork object.
• If the Keras network is of type Model, then net is a DAGNetwork object.

Tips
• importKerasNetwork can import a network with the following Keras layer types, with some

limitations. If the network contains any other type of layer, then the software returns an error
message. In this case, you can still use importKerasLayers to import the network architecture
and weights.

Supported Keras Layer Corresponding Deep Learning Toolbox
Layer

Add additionLayer
Activation, with activation names:

• 'elu'
• 'relu'
• 'linear'
• 'softmax'
• 'sigmoid'
• 'tanh'

Layers:

• eluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• tanhLayer

Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer
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Supported Keras Layer Corresponding Deep Learning Toolbox
Layer

AveragePooling2D averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNLSTM lstmLayer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPooling2D globalMaxPooling2dLayer
GRU gruLayer
Input imageInputLayer
LSTM lstmLayer
MaxPooling2D maxPooling2dLayer
Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

*For a PReLU layer, importKerasNetwork replaces a vector-valued scaling parameter with the
average of the vector elements. You can change the parameter back to a vector after import. For
an example, see “Import Keras PReLU Layer” on page 1-598.

• importKerasNetwork supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

• You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use
importKerasNetwork if the network includes input size information for the inputs and loss
information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers
function inserts placeholder layers for the inputs and outputs. After importing, you can find and
replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively. The workflow for importing MIMO Keras networks is the same as the workflow for
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importing MIMO ONNX networks. For an example, see “Import ONNX Network with Multiple
Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and
multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way as the images used to train the imported model were
preprocessed. Resizing images, subtracting the average image, and converting the images from
RGB to BGR format are the most common preprocessing operations.

• To resize images, use imresize. For example, imresize(im,[227 227]).
• To convert images from RGB to BGR format, use flip. For example, flip(im,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

Compatibility Considerations
'ClassNames' option will be removed
Not recommended starting in R2018b

'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances
of 'ClassNames' with 'Classes'. There are some differences between the corresponding
properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

References
[1] Keras: The Python Deep Learning library. https://keras.io.

See Also
exportONNXNetwork | importCaffeLayers | importCaffeNetwork | importKerasLayers |
importONNXLayers | importONNXNetwork

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

Introduced in R2017b
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importONNXFunction
Import pretrained ONNX network as a function

Syntax
params = importONNXFunction(modelfile,NetworkFunctionName)

Description
params = importONNXFunction(modelfile,NetworkFunctionName) imports an ONNX (Open
Neural Network Exchange) network from the file modelfile and returns an ONNXParameters
object (params) that contains the network parameters. The function also creates a model function
with the name specified by NetworkFunctionName that contains the network architecture. For more
information about the network function, see “Imported ONNX Model Function” on page 1-623.

Use the ONNXParameters object and the NetworkFunctionName model function to perform
common deep learning tasks, such as image and sequence data classification, transfer learning,
object detection, and image segmentation. importONNXFunction is useful when you cannot import
the network using the importONNXNetwork function (for example, importONNXFunction can
import YOLOv3) or if you want to define your own custom training loop (for more details, see “Train
Network Using Custom Training Loop” on page 1-455).

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

Examples

Import ONNX Network with Unsupported Operators as a Function

Import an ONNX network as a function. The network contains ONNX operators that are not
supported by Deep Learning Toolbox layers. You can use the imported model function for deep
learning tasks, such as prediction and transfer learning.

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package. You can enter importONNXFunction at the command line to check if the support package
is installed. If it is not installed, then the function provides a link to the required support package in
the Add-On Explorer. To install the support package, click the link, and then click Install.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on images from the ImageNet
database.

modelfile = 'shufflenet-9.onnx';

A recommended practice is to try to import the network by using importONNXNetwork. If
importONNXNetwork is unable to import the network because some of the network layers are not
supported, you can import the network as layers by using importONNXLayers, or as a function by
using importONNXFunction.
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Import the shufflenet network as layers. The software generates placeholder layers in place of the
unsupported layers.

lgraph = importONNXLayers(modelfile,'OutputLayerType','classification');

Warning: Unable to import some ONNX operators, because they are not supported. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

4 operators(s)    :    Average pooling layer in ONNX file does not include padding in the average. This may cause small numeric differences between the ONNX and MATLAB network outputs.
32 operators(s)    :    The Reshape operator is supported only when it performs a flattening operation.
16 operators(s)    :    The operator 'Transpose' is not supported.

To import the ONNX network as a function, which can support most ONNX operators, call importONNXFunction.

Find the placeholder layers and display the number of placeholder layers.

indPlaceholderLayers = findPlaceholderLayers(lgraph);
numel(indPlaceholderLayers)

ans = 48

You must replace the 48 placeholder layers to use lgraph for deep learning tasks, such as prediction.

Instead, import the network as a function to generate a model function that you can readily use for
deep learning tasks.

params = importONNXFunction(modelfile,'shufflenetFcn')

OpsetVersion = 9
A function 'shufflenetFcn' containing the imported ONNX network has been saved to the current directory.
To learn how to use this function, type: help shufflenetFcn

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'shufflenetFcn'

importONNXFunction returns the ONNXParameters object params, which contains the network
parameters, and the model function shufflnetFcn, which contains the network architecture.
importONNXFunction saves shufflenetFcn in the current folder. You can open the model function
to view or edit the network architecture by using open shufflenetFcn.

Predict Using Imported ONNX Function

Import an ONNX network as a function, and use the pretrained network to predict the class label of
an input image.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

1 Deep Learning Functions

1-614



modelfile = 'shufflenet-9.onnx';

Import the pretrained ONNX network as a function by using importONNXFunction, which returns
an ONNXParamaters object that contains the network parameters. The function also creates a new
model function in the current folder that contains the network architecture. Specify the name of the
model function as shufflenetFcn.

params = importONNXFunction(modelfile,'shufflenetFcn');

OpsetVersion = 9
A function 'shufflenetFcn' containing the imported ONNX network has been saved to the current directory.
To learn how to use this function, type: help shufflenetFcn

Read the image you want to classify and display the size of the image. The image is 792-by-1056
pixels and has three color channels (RGB).

I = imread('peacock.jpg');
size(I)

ans = 1×3

         792        1056           3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[224 224]);
imshow(I)

The inputs to shufflenet require further preprocessing (for more details, see ShuffleNet in ONNX
Model Zoo). Rescale the image. Normalize the image by subtracting the training images mean and
dividing by the training images standard deviation.

I = rescale(I,0,1);
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meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
I = (I - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);

imshow(I)

Import the class names from squeezenet, which is also trained with images from the ImageNet
database.

net = squeezenet;
ClassNames = net.Layers(end).ClassNames;

Calculate the class probabilities by specifying the image to classify I and the ONNXParameters
object params as input arguments to the model function shufflenetFcn.

scores = shufflenetFcn(I,params);

Find the class index with the highest probability. Display the predicted class for the input image and
the corresponding classification score.

indMax = find(scores==max(scores));
ClassNames(indMax)

ans = 1×1 cell array
    {'peacock'}

scoreMax = scores(indMax)

scoreMax = 0.7517
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Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network
with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-0 .

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames',...
    'ReadSize', miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

AlexNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

params = 
  ONNXParameters with properties:
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             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a
model function that contains the network architecture. importONNXFunction saves alexnetFcn in
the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and
bias (B) of convolution and fully connected layers, are updated by the network during training.
Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The
parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the
parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.
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params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
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        params.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
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The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,'Training',false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss,onnxParams.Learnables);

end

The alexnetONNX function generates an ONNX model of the alexnet network. You need Deep
Learning Toolbox Model for AlexNet Network support to access this model.

function alexnetONNX()
    
exportONNXNetwork(alexnet,'alexnet.onnx');

end

Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar

Name of the ONNX model file containing the network, specified as a character vector or string scalar.
The file must be in the current folder or a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: 'shufflenet.onnx'

NetworkFunctionName — Name of model function
character vector | string scalar

Name of the model function, specified as a character vector or string scalar. The function
NetworkFunctionName contains the architecture of the imported ONNX network. The file is saved
in an M-file in the current folder, or you must include a full or relative path to the file. The
NetworkFunctionName file is required for using the network. For more information, see “Imported
ONNX Model Function” on page 1-623.
Example: 'shufflenetFcn'
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Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters of the imported ONNX model. Use dot notation to reference properties of params. For
example, params.Learnables displays the network learnable parameters, such as the weights of
the convolution layers.

More About
Imported ONNX Model Function

importONNXFunction creates a model function that contains the network architecture of the
imported ONNX model. Specify the name NetworkFunctionName as an input argument to
importONNXFunction.

Syntax

Use the following syntaxes to interface with the imported ONNX model function
(NetworkFunctionName):

• [Y,state] = NetworkFunctionName(X,params) returns the output data Y and the updated
network state for the input data X.

• [Y,state] = NetworkFunctionName(X,params,Name,Value) uses additional options
specified by one or more name-value pair arguments.

• [Y1,Y2,...,Yn,state] = NetworkFunctionName(X1,X2,...,Xn,params) returns
multiple output data (Y1,Y2,...,Yn) and the updated network state for the multiple input data
(X1,X2,...,Xn).

• [Y1,Y2,...,Yn,state] = NetworkFunctionName(X1,X2,...,Xn,params,Name,Value)
uses additional options specified by one or more name-value pair arguments for multiple inputs
and outputs.

Input Arguments

Argument Description
X Input data, specified as an array or dlarray.
params Network parameters, specified as an

ONNXParameters object.
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Name-Value Pair Arguments

Argument name Description
'Training' Training option, specified as 'false' (default) or

'true'.

• Set value to 'false' to use ONNXFunction
to predict. For an example, see “Predict Using
Imported ONNX Function” on page 1-614.

• Set value to 'true' to use ONNXFunction to
train. For an example, see “Train Imported
ONNX Function Using Custom Training Loop”
on page 1-616.

'InputDataPermutation' Permutation applied to the dimension ordering of
input X, specified as 'auto' (default), 'none', a
numeric vector, or a cell array.

Assign a value to the name-value pair argument
'InputDataPermutation' to permute the
input data into the dimension ordering required
by the imported ONNX model.

• Assign the value 'auto' to apply an
automatic permutation based on assumptions
about common input data X. For more details,
see “Automatic Input Data Permutation” on
page 1-625.

• Assign the value 'none' to pass X in the
original ordering.

• Assign a numeric vector value to customize
the input dimension ordering; for example, [4
3 1 2].

• Assign a cell array value for multiple inputs;
for example, {[3 2 1],'none'}.
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Argument name Description
'OutputDataPermutation' Permutation applied to the dimension ordering of

output Y, specified as 'auto' (default), 'none',
a numeric vector, or a cell array.

Assign a value to the name-value pair argument
'OutputDataPermutation' to match the
dimension ordering of the imported ONNX model.

• Assign the value 'auto' to return Y in Deep
Learning Toolbox ordering. For more details,
see “Automatic Output Data Permutation” on
page 1-626.

• Assign the value 'none' to return Y in ONNX
ordering.

• Assign a numeric vector value to customize
the output dimension ordering; for example,
[3 4 2 1].

• Assign a cell array value for multiple outputs;
for example, {[3 2 1],'none'}.

Output Arguments

Argument Description
Y Output data, returned as an array or dlarray.

• If X is an array or you use ONNXFunction to
predict, Y is a array.

• If X is a dlarray or you use ONNXFunction
for training, Y is a dlarray.

state Updated network state, specified as a structure.

The network state contains information
remembered by the network between iterations
and updated across multiple training batches.

The interpretation of input argument X and output argument Y can differ between models. For more
information about the model input and output arguments, refer to help for the imported model
function NetworkFunctionName, or refer to the ONNX documentation [1].

Automatic Permutation for Imported Model Function

By default, NetworkFunctionName automatically permutes input and output data to facilitate image
classification tasks. Automatic permutation might be unsuitable for other tasks, such as object
detection and time series classification.

Automatic Input Data Permutation

To automatically permute the input, NetworkFunctionName assumes the following based on the
input dimensions specified by the imported ONNX network.

 importONNXFunction

1-625



Number of ONNX
Model Input
Dimensions

Interpretation of
Input Data

ONNX Standard
Dimension
Ordering

Deep Learning
Toolbox Standard
Dimension
Ordering

Automatic
Permutation of
Input

4 2-D image NCHW

H, W, and C
correspond to the
height, width, and
number of
channels of the
image,
respectively, and N
is the number of
observations.

HWCN

H, W, and C
correspond to the
height, width, and
number of
channels of the
image,
respectively, and N
is the number of
observations.

[ 4 3 1 2 ]

If the size of the input dimensions is a number other than 4, NetworkFunctionName specifies the
input argument 'InputDataPermutation' as 'none'.
Automatic Output Data Permutation

To automatically permute the output, NetworkFunctionName assumes the following based on the
output dimensions specified by the imported ONNX network.

Number of ONNX
Model Output
Dimensions

Interpretation of
Output Data

ONNX Standard
Dimension
Ordering

Deep Learning
Toolbox Standard
Dimension
Ordering

Automatic
Permutation of
Output

2 2-D image
classification
scores

NK

K is the number of
classes and N is the
number of
observations.

KN

K is the number of
classes and N is the
number of
observations.

[ 2 1 ]

4 2-D image pixel
classification
scores

NKHW

H and W
correspond to the
height and width
of the image,
respectively, K is
the number of
classes, and N is
the number of
observations.

HWKN

H and W
correspond to the
height and width
of the image,
respectively, K is
the number of
classes, and N is
the number of
observations.

[3 4 2 1]

If the size of the output dimensions is a number other than 2 or 4, NetworkFunctionName specifies
the input argument 'OutputDataPermutation' as 'none'.

Supported ONNX Layers

importONNXFunction supports the following ONNX layers, with some limitations. Compare these
layers with the layers supported by importONNXNetwork.
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ONNX Layers Supported by
importONNXFunction

importONNXNetwork Support

Abs No
Add Yes
And No
ArgMax No
AveragePool Yes
BatchNormalization Yes
Cast No
Ceil No
Clip Yes
Compress No
Concat Yes
Constant Yes
ConstantOfShape No
Conv Yes
ConvTranspose Yes
DepthToSpace No
Div Yes
Dropout Yes
Equal No
Exp No
Expand No
Flatten Yes
Floor No
Gather No
Gemm Yes
GlobalAveragePool Yes
Greater Yes
Hardmax No
Identity Yes
If No
InstanceNormalization Yes
LeakyRelu Yes
Less No
Log No
Loop No
LRN Yes

 importONNXFunction

1-627



ONNX Layers Supported by
importONNXFunction

importONNXNetwork Support

LSTM Yes
MatMul Yes
MaxPool Yes
Mul Yes
NonMaxSuppression No
NonZero No
Not No
OneHot No
Or No
Pad No
Pow No
PRelu Yes
RandomUniform No
Range No
Reciprocal No
ReduceMax No
ReduceMean No
ReduceMin No
ReduceProd No
ReduceSum No
Relu Yes
Reshape Yes
Resize Yes
RoiAlign No
Round No
Scan No
Scatter No
ScatterElements No
SequenceAt No
Shape No
Sigmoid Yes
Slice No
Softmax Yes
SpaceToDepth Yes
Split No
SplitToSequence No
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ONNX Layers Supported by
importONNXFunction

importONNXNetwork Support

Sqrt No
Squeeze No
Sub Yes
Sum Yes
Tanh Yes
Tile No
TopK No
Transpose No
Unsqueeze No
Upsample No
Where No

Tips
• Refer to the ONNX documentation for each model to see the required preprocessing of the

network inputs. For example, you need to resize (using imresize), rescale, and normalize the
input images to networks trained with the ImageNet dataset (such as AlexNet, GoogleNet,
ShuffleNet, and SqueezeNet).

• importONNXFunction supports ONNX operator sets 7, 8, 9, 10, and 11.

Alternative Functionality
importONNXFunction is useful when you cannot import a pretrained ONNX network by using
importONNXNetwork. If you want to generate code for a pretrained network, use
importONNXLayers. Find and replace the generated placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively. Then, use assembleNetwork to
return a DAGNetwork object. You can generate code for a trained DAGNetwork.

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
ONNXParameters | importONNXLayers | importONNXNetwork

Topics
“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”
“Pretrained Deep Neural Networks”

Introduced in R2020b
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importONNXLayers
Import layers from ONNX network

Syntax
layers = importONNXLayers(modelfile)
layers = importONNXLayers(modelfile,Name,Value)

Description
layers = importONNXLayers(modelfile) imports the layers of an ONNX (Open Neural
Network Exchange) network from the file modelfile. You can train the imported layers on a new
data set or assemble the layers into a network ready for prediction. For an example of the workflow of
assembling a network, see “Assemble Network from Pretrained Keras Layers”.

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

layers = importONNXLayers(modelfile,Name,Value) imports the layers from an ONNX
network with additional options specified by one or more name-value pair arguments.

For example, importONNXLayers(modelfile,'ImportWeights',false) imports the network
architecture without weights from the file modelfile.

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package.

Type importONNXLayers at the command line.

importONNXLayers

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
package, click the link, and then click Install. Check that the installation is successful by importing
the network from the model file 'cifarResNet.onnx' at the command line. If the support package
is installed, then the function returns a DAGNetwork object.

modelfile = 'cifarResNet.onnx';
layers = importONNXLayers(modelfile,'OutputLayerType','classification')

layers = 

  LayerGraph with properties:
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         Layers: [77×1 nnet.cnn.layer.Layer]
    Connections: [85×2 table]

Import ONNX Network Architecture

Import the architecture and weights of a residual neural network trained on the CIFAR-10 data set.
Specify the file containing the ONNX network and the type of the output layer to add to the imported
network.

modelfile = 'cifarResNet.onnx';
lgraph = importONNXLayers(modelfile, ...
    'OutputLayerType','classification', ...
    'ImportWeights',true)

lgraph = 
  LayerGraph with properties:

         Layers: [77×1 nnet.cnn.layer.Layer]
    Connections: [85×2 table]
     InputNames: {'Input_input'}
    OutputNames: {'ClassificationLayer_softmax'}

Analyze the imported network architecture.

analyzeNetwork(lgraph)
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Import ONNX Network with Multiple Outputs

Import an ONNX network that has multiple outputs by using importONNXLayers. The function
inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder
layers by using findPlaceholderLayers and replaceLayer, respectively.

Specify the network file from which to import layers and weights.

modelfile = 'digitsMIMO.onnx';

The network in digitsMIMO.onnx has two output layers: one classification layer to classify digits
and one regression layer to compute the mean squared error for the predicted angles of the digits.
Import the layers and weights from modelfile.

layers = importONNXLayers('digitsMIMO.onnx','ImportWeights',true)

Warning: ONNX network has multiple outputs. importONNXLayers inserts placeholder layers for the outputs. Find and replace the layers by using findPlaceholderLayers and replaceLayer, respectively.

layers = 
  LayerGraph with properties:
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         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [19×2 table]
     InputNames: {'Input_input'}
    OutputNames: {1×0 cell}

importONNXLayers displays a warning and inserts placeholder layers for the output layers.

Plot the layer graph using plot.

plot(layers)

The layer graph has two output layers: Output_fc_1_Flatten and Output_sm_1. These two layers
are the placeholders for the outputs. You can check the placeholder layers by viewing the Layers
property or by using the findPlaceholderLayers function.

layers.Layers

ans = 
  19x1 Layer array with layers:

     1   'Input_input'           Image Input           28x28x1 images
     2   'conv_1'                Convolution           16 5x5x1 convolutions with stride [1  1] and padding [2  2  2  2]
     3   'BN_1'                  Batch Normalization   Batch normalization with 16 channels
     4   'relu_1'                ReLU                  ReLU
     5   'conv_2'                Convolution           32 1x1x16 convolutions with stride [2  2] and padding [0  0  0  0]
     6   'conv_3'                Convolution           32 3x3x16 convolutions with stride [2  2] and padding [1  1  1  1]
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     7   'BN_2'                  Batch Normalization   Batch normalization with 32 channels
     8   'relu_2'                ReLU                  ReLU
     9   'conv_4'                Convolution           32 3x3x32 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'BN_3'                  Batch Normalization   Batch normalization with 32 channels
    11   'relu_3'                ReLU                  ReLU
    12   'plus_1'                Addition              Element-wise addition of 2 inputs
    13   'fc_1'                  Convolution           1 14x14x32 convolutions with stride [1  1] and padding [0  0  0  0]
    14   'fc_2'                  Convolution           10 14x14x32 convolutions with stride [1  1] and padding [0  0  0  0]
    15   'sm_1_Flatten'          ONNX Flatten          Flatten activations into 1-D assuming C-style (row-major) order
    16   'sm_1'                  Softmax               softmax
    17   'Output_sm_1'           PLACEHOLDER LAYER     Placeholder for 'Output' ONNX operator
    18   'fc_1_Flatten'          ONNX Flatten          Flatten activations into 1-D assuming C-style (row-major) order
    19   'Output_fc_1_Flatten'   PLACEHOLDER LAYER     Placeholder for 'Output' ONNX operator

placeholderLayers = findPlaceholderLayers(layers)

placeholderLayers = 
  2x1 PlaceholderOutputLayer array with layers:

     1   'Output_sm_1'           PLACEHOLDER LAYER   Placeholder for 'Output' ONNX operator
     2   'Output_fc_1_Flatten'   PLACEHOLDER LAYER   Placeholder for 'Output' ONNX operator

Create output layers to replace the placeholder layers. First, create a classification layer with the
name Output_sm_1. Specify the classes of the output layer as 0, 1, ..., 9. If you do not specify the
classes, then the software automatically sets them to 1, 2, ..., N, where N is the number of classes.

output1 = classificationLayer('Name','Output_sm_1','Classes',string(0:9)); 

Create a regression layer with the name Output_fc_1_Flatten.

output2 = regressionLayer('Name','Output_fc_1_Flatten'); 

Replace the placeholder layers with output1 and output2 using replaceLayer.

layers = replaceLayer(layers,'Output_sm_1',output1);
layers = replaceLayer(layers,'Output_fc_1_Flatten',output2);

Display the Layers property of the layer graph to confirm the replacement.

layers.Layers

ans = 
  19x1 Layer array with layers:

     1   'Input_input'           Image Input             28x28x1 images
     2   'conv_1'                Convolution             16 5x5x1 convolutions with stride [1  1] and padding [2  2  2  2]
     3   'BN_1'                  Batch Normalization     Batch normalization with 16 channels
     4   'relu_1'                ReLU                    ReLU
     5   'conv_2'                Convolution             32 1x1x16 convolutions with stride [2  2] and padding [0  0  0  0]
     6   'conv_3'                Convolution             32 3x3x16 convolutions with stride [2  2] and padding [1  1  1  1]
     7   'BN_2'                  Batch Normalization     Batch normalization with 32 channels
     8   'relu_2'                ReLU                    ReLU
     9   'conv_4'                Convolution             32 3x3x32 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'BN_3'                  Batch Normalization     Batch normalization with 32 channels
    11   'relu_3'                ReLU                    ReLU
    12   'plus_1'                Addition                Element-wise addition of 2 inputs
    13   'fc_1'                  Convolution             1 14x14x32 convolutions with stride [1  1] and padding [0  0  0  0]
    14   'fc_2'                  Convolution             10 14x14x32 convolutions with stride [1  1] and padding [0  0  0  0]
    15   'sm_1_Flatten'          ONNX Flatten            Flatten activations into 1-D assuming C-style (row-major) order
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    16   'sm_1'                  Softmax                 softmax
    17   'Output_sm_1'           Classification Output   crossentropyex with '0' and 9 other classes
    18   'fc_1_Flatten'          ONNX Flatten            Flatten activations into 1-D assuming C-style (row-major) order
    19   'Output_fc_1_Flatten'   Regression Output       mean-squared-error

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

assembledNet = assembleNetwork(layers)

assembledNet = 
  DAGNetwork with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [19×2 table]
     InputNames: {'Input_input'}
    OutputNames: {'Output_sm_1'  'Output_fc_1_Flatten'}

Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar

Name of ONNX model file containing the network, specified as a character vector or a string scalar.
The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: 'cifarResNet.onnx'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: importONNXLayers(modelfile,'OutputLayerType','classification') imports
the network layers from modelfile and adds an output layer for a classification output layer at the
end of the imported layers.

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture,
specified as 'classification', 'regression', or 'pixelclassification'. Using
'pixelclassification' appends a pixelClassificationLayer object (requires Computer
Vision Toolbox).

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. importONNXLayers inserts placeholder layers for the outputs. After importing, you
can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively.
Example: 'OutputLayerType','regression'
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ImportWeights — Indicator to import weights
false (default) | true

Indicator to import weights as well as the network architecture, specified as either false or true.
Example: 'ImportWeights',true
Data Types: logical

Output Arguments
layers — Network architecture
LayerGraph object

Network architecture, returned as a LayerGraph object.

Limitations
• importONNXLayers supports ONNX versions as follows:

• importONNXLayers supports ONNX intermediate representation version 6.
• importONNXLayers fully supports ONNX operator sets 6, 7, 8, and 9.
• importONNXLayers offers limited support for ONNX operator sets 10 and 11.

Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.

Tips
• If the ONNX network contains a layer that Deep Learning Toolbox Converter for ONNX Model

Format does not support, then importONNXLayers inserts a placeholder layer in place of the
unsupported layer. To find the names and indices of the unsupported layers in the network, use
the findPlaceholderLayers function. You then can replace a placeholder layer with a new
layer that you define. To replace a layer, use replaceLayer.

• importONNXLayers supports the following ONNX layers, with some limitations:

ONNX Layer Deep Learning Toolbox Layer
Add additionLayer or

nnet.onnx.layer.ElementwiseAffineLa
yer

AveragePool averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Clip nnet.onnx.layer.ClipLayer
Concat concatenationLayer
Constant None (Imported as weights)
Conv convolution2dLayer
ConvTranspose transposedConv2dLayer
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ONNX Layer Deep Learning Toolbox Layer
Div nnet.onnx.layer.ElementwiseAffineLa

yer
Dropout dropoutLayer
Flatten nnet.onnx.layer.FlattenLayer or

nnet.onnx.layer.Flatten3dLayer
Elu eluLayer
Gemm fullyConnectedLayer if ONNX network is

recurrent, otherwise
nnet.onnx.layer.FlattenLayer followed
by convolution2dLayer

GlobalAveragePool globalAveragePooling2dLayer
GlobalMaxPool globalMaxPooling2dLayer
GRU gruLayer
Identity nnet.onnx.layer.IdentityLayer
ImageScaler nnet.onnx.layer.ElementwiseAffineLa

yer
InstanceNormalization groupNormalizationLayer with

numGroups specified as "channel-wise"
LeakyRelu leakyReluLayer
LRN CrossChannelNormalizationLayer
LSTM lstmLayer or bilstmLayer
MatMul fullyConnectedLayer if ONNX network is

recurrent, otherwise convolution2dLayer
MaxPool maxPooling2dLayer
Mul multiplicationLayer
PRelu nnet.onnx.layer.PReluLayer
Relu reluLayer or clippedReluLayer
Reshape nnet.onnx.layer.FlattenLayer
Sigmoid sigmoidLayer
Softmax softmaxLayer
Sub nnet.onnx.layer.ElementwiseAffineLa

yer
Sum additionLayer
Tanh tanhLayer

ONNX Layer Computer Vision Toolbox Layer
SpaceToDepth spaceToDepthLayer

ONNX Layer Image Processing Toolbox
Resize resize2dLayer or resize3dLayer
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ONNX Layer Image Processing Toolbox
Upsample resize2dLayer or resize3dLayer

• The workflow for assembling layers imported from ONNX into a network ready for prediction is
the same as assembling layers imported from Keras. For an example of this workflow, see
“Assemble Network from Pretrained Keras Layers”.

• You can import an ONNX network with multiple inputs and multiple outputs. If the network has
multiple inputs and a single output, use importONNXNetwork. If the network has multiple
outputs, use importONNXLayers. The importONNXLayers function inserts placeholder layers
for the outputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively. For an example, see “Import ONNX
Network with Multiple Outputs” on page 1-632. To learn about a deep learning network with
multiple inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. Most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR images to RGB.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
assembleNetwork | exportONNXNetwork | findPlaceholderLayers | importCaffeLayers |
importCaffeNetwork | importKerasLayers | importKerasNetwork | importONNXFunction |
importONNXNetwork | replaceLayer

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”

Introduced in R2018a
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importONNXNetwork
Import pretrained ONNX network

Syntax
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype)
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype,'Classes',
classes)

Description
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype) imports a
pretrained network from the ONNX (Open Neural Network Exchange) file modelfile and specifies
the output layer type of the imported network.

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

net = importONNXNetwork(modelfile,'OutputLayerType',outputtype,'Classes',
classes) additionally specifies the classes for a classification network.

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package.

Type importONNXNetwork at the command line.

importONNXNetwork

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
package, click the link, and then click Install. Check that the installation is successful by importing
the network from the model file 'cifarResNet.onnx' at the command line. If the support package
is installed, then the function returns a DAGNetwork object.
modelfile = 'cifarResNet.onnx';
classes = ["airplane" "automobile" "bird" "cat" "dee" "dog" "frog" "horse" "ship" "truck"];
net = importONNXNetwork(modelfile,'OutputLayerType','classification','Classes',classes)

net = 

  DAGNetwork with properties:

         Layers: [77×1 nnet.cnn.layer.Layer]
    Connections: [85×2 table]
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Import ONNX Network

Import a residual neural network trained on the CIFAR-10 data set. Specify the file containing the
ONNX network, its output type, and its output classes.

modelfile = 'cifarResNet.onnx';
classes = ["airplane" "automobile" "bird" "cat" "deer" "dog" "frog" "horse" "ship" "truck"];
net = importONNXNetwork(modelfile,'OutputLayerType','classification','Classes',classes)

net = 
  DAGNetwork with properties:

         Layers: [77×1 nnet.cnn.layer.Layer]
    Connections: [85×2 table]
     InputNames: {'Input_input'}
    OutputNames: {'ClassificationLayer_softmax'}

Analyze the imported network.

analyzeNetwork(net)
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Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar

Name of ONNX model file containing the network, specified as a character vector or a string scalar.
The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: 'cifarResNet.onnx'

outputtype — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network, specified as
'classification', 'regression', or 'pixelclassification'. Using
'pixelclassification' appends a pixelClassificationLayer object (requires Computer
Vision Toolbox).

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. Use importONNXLayers instead. importONNXLayers inserts placeholder layers for
the outputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively.
Example: 'regression'

classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software sets the classes to
categorical(1:N), where N is the number of classes. If you specify a string array or cell array of
character vectors str, then the software sets the classes of the output layer to
categorical(str,str).
Data Types: char | categorical | string | cell

Output Arguments
net — Pretrained network
DAGNetwork object

Pretrained network, returned as DAGNetwork object.

Limitations
• importONNXNetwork supports ONNX versions as follows:

• importONNXNetwork supports ONNX intermediate representation version 6.
• importONNXNetwork fully supports ONNX operator sets 6, 7, 8, and 9.
• importONNXNetwork offers limited support for ONNX operator sets 10 and 11.
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Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.

Tips
• If the ONNX network contains a layer that Deep Learning Toolbox Converter for ONNX Model

Format does not support, then the function returns an error message. In this case, you can still
use importONNXLayers to import the network architecture and weights.

• importONNXNetwork supports the following ONNX layers, with some limitations:

ONNX Layer Deep Learning Toolbox Layer
Add additionLayer or

nnet.onnx.layer.ElementwiseAffineLa
yer

AveragePool averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Clip nnet.onnx.layer.ClipLayer
Concat concatenationLayer
Constant None (Imported as weights)
Conv convolution2dLayer
ConvTranspose transposedConv2dLayer
Div nnet.onnx.layer.ElementwiseAffineLa

yer
Dropout dropoutLayer
Flatten nnet.onnx.layer.FlattenLayer or

nnet.onnx.layer.Flatten3dLayer
Elu eluLayer
Gemm fullyConnectedLayer if ONNX network is

recurrent, otherwise
nnet.onnx.layer.FlattenLayer followed
by convolution2dLayer

GlobalAveragePool globalAveragePooling2dLayer
GlobalMaxPool globalMaxPooling2dLayer
GRU gruLayer
Identity nnet.onnx.layer.IdentityLayer
ImageScaler nnet.onnx.layer.ElementwiseAffineLa

yer
InstanceNormalization groupNormalizationLayer with

numGroups specified as "channel-wise"
LeakyRelu leakyReluLayer
LRN CrossChannelNormalizationLayer
LSTM lstmLayer or bilstmLayer

1 Deep Learning Functions

1-642



ONNX Layer Deep Learning Toolbox Layer
MatMul fullyConnectedLayer if ONNX network is

recurrent, otherwise convolution2dLayer
MaxPool maxPooling2dLayer
Mul multiplicationLayer
PRelu nnet.onnx.layer.PReluLayer
Relu reluLayer or clippedReluLayer
Reshape nnet.onnx.layer.FlattenLayer
Sigmoid sigmoidLayer
Softmax softmaxLayer
Sub nnet.onnx.layer.ElementwiseAffineLa

yer
Sum additionLayer
Tanh tanhLayer

ONNX Layer Computer Vision Toolbox Layer
SpaceToDepth spaceToDepthLayer

ONNX Layer Image Processing Toolbox
Resize resize2dLayer or resize3dLayer
Upsample resize2dLayer or resize3dLayer

• You can import an ONNX network with multiple inputs and a single output using
importONNXNetwork. If the network has multiple outputs, use importONNXLayers. The
importONNXLayers function inserts placeholder layers for the outputs. After importing, you can
find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively. For an example, see “Import ONNX Network with Multiple Outputs” on page 1-632.
To learn about a deep learning network with multiple inputs and multiple outputs, see “Multiple-
Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. Most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR images to RGB.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

Compatibility Considerations
'ClassNames' option will be removed
Not recommended starting in R2018b
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'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances
of 'ClassNames' with 'Classes'. There are some differences between the corresponding
properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
exportONNXNetwork | importCaffeLayers | importCaffeNetwork | importKerasLayers |
importKerasNetwork | importONNXFunction | importONNXLayers

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

Introduced in R2018a
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inceptionresnetv2
Pretrained Inception-ResNet-v2 convolutional neural network

Syntax
net = inceptionresnetv2

Description
Inception-ResNet-v2 is a convolutional neural network that is trained on more than a million images
from the ImageNet database [1]. The network is 164 layers deep and can classify images into 1000
object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has
learned rich feature representations for a wide range of images. The network has an image input size
of 299-by-299. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-ResNet-v2 network. Follow the
steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-ResNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Inception-ResNet-v2 instead of GoogLeNet.

net = inceptionresnetv2 returns a pretrained Inception-ResNet-v2 network.

This function requires the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Load Inception-ResNet-v2 Network

Download and install the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support
package.

Type inceptionresnetv2 at the command line.

inceptionresnetv2

If the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support package is not
installed, then the function provides a link to the required support package in the Add-On Explorer.
To install the support package, click the link, and then click Install. Check that the installation is
successful by typing inceptionresnetv2 at the command line. If the required support package is
installed, then the function returns a DAGNetwork object.

net = inceptionresnetv2

net = 

  DAGNetwork with properties:
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         Layers: [825×1 nnet.cnn.layer.Layer]
    Connections: [922×2 table]

Output Arguments
net — Pretrained Inception-ResNet-v2 convolutional neural network
DAGNetwork object

Pretrained Inception-ResNet-v2 convolutional neural network, returned as a DAGNetwork object.

References
[1] ImageNet. http://www.image-net.org

[2] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. "Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning." In AAAI, vol. 4, p. 12.
2017.

[3] https://keras.io/api/applications/inceptionresnetv2/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = inceptionresnetv2 or
by passing the inceptionresnetv2 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('inceptionresnetv2')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = inceptionresnetv2 or
by passing the inceptionresnetv2 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('inceptionresnetv2')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
DAGNetwork | densenet201 | googlenet | importKerasLayers | importKerasNetwork |
inceptionv3 | layerGraph | plot | resnet101 | resnet18 | resnet50 | squeezenet |
trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
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“Train Residual Network for Image Classification”

Introduced in R2017b
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inceptionv3
Inception-v3 convolutional neural network

Syntax
net = inceptionv3
net = inceptionv3('Weights','imagenet')

lgraph = inceptionv3('Weights','none')

Description
Inception-v3 is a convolutional neural network that is 48 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 299-by-299. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-v3 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-v3.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Inception-v3 instead of GoogLeNet.

net = inceptionv3 returns an Inception-v3 network trained on the ImageNet database.

This function requires the Deep Learning Toolbox Model for Inception-v3 Network support package.
If this support package is not installed, then the function provides a download link.

net = inceptionv3('Weights','imagenet') returns an Inception-v3 network trained on the
ImageNet database. This syntax is equivalent to net = inceptionv3.

lgraph = inceptionv3('Weights','none') returns the untrained Inception-v3 network
architecture. The untrained model does not require the support package.

Examples

Download Inception-v3 Support Package

Download and install the Deep Learning Toolbox Model for Inception-v3 Network support package.

Type inceptionv3 at the command line.

inceptionv3

If the Deep Learning Toolbox Model for Inception-v3 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing inceptionv3 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

inceptionv3

ans = 

  DAGNetwork with properties:

         Layers: [316×1 nnet.cnn.layer.Layer]
    Connections: [350×2 table]

Output Arguments
net — Pretrained Inception-v3 convolutional neural network
DAGNetwork object

Pretrained Inception-v3 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained Inception-v3 convolutional neural network architecture
LayerGraph object

Untrained Inception-v3 convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. "Rethinking
the inception architecture for computer vision." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818-2826. 2016.

[3] https://keras.io/api/applications/inceptionv3/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = inceptionv3 or by
passing the inceptionv3 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionv3')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax inceptionv3('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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1-649

https://keras.io/api/applications/inceptionv3/


• For code generation, you can load the network by using the syntax net = inceptionv3 or by
passing the inceptionv3 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionv3').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax inceptionv3('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot | resnet18
| resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
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isdlarray
Determine whether input is dlarray

Syntax
TF = isdlarray(X)

Description
TF = isdlarray(X) returns logical 1 (true) if X is a dlarray, and logical 0 (false) otherwise.
You can use this function with an if statement to avoid executing code that expects dlarray input.

Examples

Determine if Array is dlarray

Create an array of random numbers.

X = rand(3,3);

Create a dlarray from X.

dlX = dlarray(X);

Use the function isdlarray to verify that dlX is a dlarray

isdlarray(dlX)

ans = 
   1

Verify that X is not a dlarray

isdlarray(X)

ans = 
   0

Input Arguments
X — Input variable
workspace variable

Input variable, specified as a workspace variable. X can be any data type.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
dlarray | extractdata

Topics
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”

Introduced in R2020b
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Layer
Network layer for deep learning

Description
Layers that define the architecture of neural networks for deep learning.

Creation
For a list of deep learning layers in MATLAB, see “List of Deep Learning Layers”. To specify the
architecture of a neural network with all layers connected sequentially, create an array of layers
directly. To specify the architecture of a network where layers can have multiple inputs or outputs,
use a LayerGraph object.

Alternatively, you can import layers from Caffe, Keras, and ONNX using importCaffeLayers,
importKerasLayers, and importONNXLayers respectively.

To learn how to create your own custom layers, see “Define Custom Deep Learning Layers”.

Object Functions
trainNetwork Train neural network for deep learning

Examples

Construct Network Architecture

Define a convolutional neural network architecture for classification with one convolutional layer, a
ReLU layer, and a fully connected layer.

layers = [ ...
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  6x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             10 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Fully Connected         10 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

layers is a Layer object.
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Alternatively, you can create the layers individually and then concatenate them.

input = imageInputLayer([28 28 3]);
conv = convolution2dLayer([5 5],10);
relu = reluLayer;
fc = fullyConnectedLayer(10);
sm = softmaxLayer;
co = classificationLayer;

layers = [ ...
    input
    conv
    relu
    fc
    sm
    co]

layers = 
  6x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             10 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Fully Connected         10 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

Access Layers and Properties in Layer Array

Define a convolutional neural network architecture for classification with one convolutional layer, a
ReLU layer, and a fully connected layer.

layers = [ ...
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Display the image input layer by selecting the first layer.

layers(1)

ans = 
  ImageInputLayer with properties:

                      Name: ''
                 InputSize: [28 28 3]

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []
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View the input size of the image input layer.

layers(1).InputSize

ans = 1×3

    28    28     3

Display the stride for the convolutional layer.

layers(2).Stride

ans = 1×2

     1     1

Access the bias learn rate factor for the fully connected layer.

layers(4).BiasLearnRateFactor

ans = 1

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names
and all names must be unique.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];
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Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the
'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv'
and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To
check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9930

See Also
Layer | LayerGraph | assembleNetwork | importCaffeLayers | importKerasLayers |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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“Define Custom Deep Learning Layers”

Introduced in R2016a
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layerGraph
Graph of network layers for deep learning

Description
A layer graph specifies the architecture of a deep learning network with a more complex graph
structure in which layers can have inputs from multiple layers and outputs to multiple layers.
Networks with this structure are called directed acyclic graph (DAG) networks. After you create a
layerGraph object, you can use the object functions to plot the graph and modify it by adding,
removing, connecting, and disconnecting layers. To train the network, use the layer graph as the
layers on page 1-0  input argument to trainNetwork.

Creation

Syntax
lgraph = layerGraph
lgraph = layerGraph(layers)
lgraph = layerGraph(dagNet)
lgraph = layerGraph(dlnet)

Description

lgraph = layerGraph creates an empty layer graph that contains no layers. You can add layers to
the empty graph by using the addLayers function.

lgraph = layerGraph(layers) creates a layer graph from an array of network layers and sets
the Layers property. The layers in lgraph are connected in the same sequential order as in layers.
All layers must have unique, nonempty names.

lgraph = layerGraph(dagNet) extracts the layer graph of a DAGNetwork. For example, you can
extract the layer graph of a pretrained network to perform transfer learning.

lgraph = layerGraph(dlnet) extracts the layer graph of a dlnetwork. Use this syntax to use a
dlnetwork with the trainNetwork function or Deep Network Designer.

Input Arguments

dagNet — DAG network
DAGNetwork object

DAG network, specified as a DAGNetwork object.

dlnet — Network
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.
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For dlnetwork input, the software extracts the numeric data from the learnable parameters and
converts it to single precision.

Properties
Layers — Network layers
Layer array

Network layers, specified as a Layer array.

Connections — Layer connections
table

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: table

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
addLayers Add layers to layer graph
removeLayers Remove layers from layer graph
replaceLayer Replace layer in layer graph
connectLayers Connect layers in layer graph
disconnectLayers Disconnect layers in layer graph
plot Plot neural network layer graph

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the
graph. addLayers connects the layers sequentially.

lgraph = layerGraph;
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layers = [
    imageInputLayer([32 32 3],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
figure
plot(lgraph)

Create Layer Graph from an Array of Layers

Create an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.
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lgraph = layerGraph(layers);
figure
plot(lgraph)

Extract Layer Graph of DAG Network

Load a pretrained SqueezeNet network. You can use this trained network for classification and
prediction.

net = squeezenet;

To modify the network structure, first extract the structure of the DAG network by using
layerGraph. You can then use the object functions of LayerGraph to modify the network
architecture.

lgraph = layerGraph(net)

lgraph = 
  LayerGraph with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

1 Deep Learning Functions

1-664



Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names
and all names must be unique.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the
'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv'
and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To
check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
     InputNames: {'input'}
    OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9930

Tips
• Layer graphs cannot specify the architecture of long short-term memory (LSTM) networks. For

more information on how to create an LSTM network, see “Long Short-Term Memory Networks”.

See Also
DAGNetwork | Deep Network Designer | addLayers | additionLayer | analyzeNetwork |
assembleNetwork | connectLayers | depthConcatenationLayer | disconnectLayers |
googlenet | inceptionresnetv2 | inceptionv3 | plot | removeLayers | replaceLayer |
resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork
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Topics
“Create Simple Deep Learning Network for Classification”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”

Introduced in R2017b
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leakyrelu
Apply leaky rectified linear unit activation

Syntax
dlY = leakyrelu(dlX)
dlY = leakyrelu(dlX,scaleFactor)

Description
The leaky rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation,
where any input value less than zero is multiplied by a fixed scale factor.

This operation is equivalent to

f (x) =
x, x ≥ 0
scale * x, x < 0

.

Note This function applies the leaky ReLU operation to dlarray data. If you want to apply leaky
ReLU activation within a layerGraph object or Layer array, use the following layer:

• leakyReluLayer

dlY = leakyrelu(dlX) computes the leaky ReLU activation of the input dlX by applying a
threshold operation. All values in dlX less than zero are multiplied by a default scale factor of 0.01.

dlY = leakyrelu(dlX,scaleFactor) specifies the scale factor for the leaky ReLU operation.

Examples

Apply Leaky ReLU Activation

Use the leakyrelu function to scale negative values in the input data.

Create the input data as a single observation of random values with a height and width of 12 and 32
channels.

height = 12;
width = 12;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Compute the leaky ReLU activation using a scale factor of 0.05 for the negative values in the input.
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dlY = leakyrelu(dlX,0.05);

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels.
Data Types: single | double

scaleFactor — Scale factor for negative inputs
0.01 (default) | numeric scalar

Scale factor for negative inputs, specified as a numeric scalar. The default value is 0.01.
Data Types: single | double

Output Arguments
dlY — Leaky ReLU activations
dlarray

Leaky ReLU activations, returned as a dlarray. The output dlY has the same underlying data type
as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a gpuArray or a dlarray with underlying data of type
gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlconv | dlfeval | dlgradient | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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leakyReluLayer
Leaky Rectified Linear Unit (ReLU) layer

Description
A leaky ReLU layer performs a threshold operation, where any input value less than zero is multiplied
by a fixed scalar.

This operation is equivalent to:

f (x) =
x, x ≥ 0
scale * x, x < 0

.

Creation

Syntax
layer = leakyReluLayer
layer = leakyReluLayer(scale)
layer = leakyReluLayer( ___ ,'Name',Name)

Description

layer = leakyReluLayer returns a leaky ReLU layer.

layer = leakyReluLayer(scale) returns a leaky ReLU layer with a scalar multiplier for negative
inputs equal to scale.

layer = leakyReluLayer( ___ ,'Name',Name) returns a leaky ReLU layer and sets the optional
Name property.

Properties
Leaky ReLU

Scale — Scalar multiplier for negative input values
0.01 (default) | numeric scalar

Scalar multiplier for negative input values, specified as a numeric scalar.
Example: 0.4

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Leaky ReLU Layer

Create a leaky ReLU layer with the name 'leaky1' and a scalar multiplier for negative inputs equal
to 0.1.

layer = leakyReluLayer(0.1,'Name','leaky1')

layer = 
  LeakyReLULayer with properties:

     Name: 'leaky1'

   Hyperparameters
    Scale: 0.1000

Include a leaky ReLU layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
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    batchNormalizationLayer
    leakyReluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    leakyReluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Leaky ReLU              Leaky ReLU with scale 0.01
     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Convolution             32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   Leaky ReLU              Leaky ReLU with scale 0.01
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

References
[1] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural

network acoustic models." In Proc. ICML, vol. 30, no. 1. 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
clippedReluLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
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lstm
Long short-term memory

Syntax
dlY = lstm(dlX,H0,C0,weights,recurrentWeights,bias)
[dlY,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias)
[ ___ ] = lstm( ___ ,'DataFormat',FMT)

Description
The long short-term memory (LSTM) operation allows a network to learn long-term dependencies
between time steps in time series and sequence data.

Note This function applies the deep learning LSTM operation to dlarray data. If you want to apply
an LSTM operation within a layerGraph object or Layer array, use the following layer:

• lstmLayer

dlY = lstm(dlX,H0,C0,weights,recurrentWeights,bias) applies a long short-term memory
(LSTM) calculation to input dlX using the initial hidden state H0, initial cell state C0, and parameters
weights, recurrentWeights, and bias. The input dlX is a formatted dlarray with dimension
labels. The output dlY is a formatted dlarray with the same dimension labels as dlX, except for any
'S' dimensions.

The lstm function updates the cell and hidden states using the hyperbolic tangent function (tanh) as
the state activation function. The lstm function uses the sigmoid function given by σ(x) = (1 + e−x)−1

as the gate activation function.

[dlY,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias)
also returns the hidden state and cell state after the LSTM operation.

[ ___ ] = lstm( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when dlX is
not a formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order
as dlX, except for any 'S' dimensions.

Examples

Apply LSTM Operation to Sequence Data

Perform an LSTM operation using three hidden units.

Create the input sequence data as 32 observations with 10 channels and a sequence length of 64

numFeatures = 10;
numObservations = 32;
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sequenceLength = 64;

X = randn(numFeatures,numObservations,sequenceLength);
dlX = dlarray(X,'CBT');

Create the initial hidden and cell states with three hidden units. Use the same initial hidden state and
cell state for all observations.

numHiddenUnits = 3;
H0 = zeros(numHiddenUnits,1);
C0 = zeros(numHiddenUnits,1);

Create the learnable parameters for the LSTM operation.

weights = dlarray(randn(4*numHiddenUnits,numFeatures),'CU');
recurrentWeights = dlarray(randn(4*numHiddenUnits,numHiddenUnits),'CU');
bias = dlarray(randn(4*numHiddenUnits,1),'C');

Perform the LSTM calculation

[dlY,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias);

View the size and dimensions of dlY.

size(dlY)

ans = 1×3

     3    32    64

dlY.dims

ans = 
'CBT'

View the size of hiddenState and cellState.

size(hiddenState)

ans = 1×2

     3    32

size(cellState)

ans = 1×2

     3    32

Check that the output hiddenState is the same as the last time step of output dlY.

if extractdata(dlY(:,:,end)) == hiddenState
   disp("The hidden state and the last time step are equal.");
else 
   disp("The hidden state and the last time step are not equal.")
end
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The hidden state and the last time step are equal.

You can use the hidden state and cell state to keep track of the state of the LSTM operation and input
further sequential data.

Input Arguments
dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, at least one of H0, C0, weights, recurrentWeights, or bias must be a
dlarray.

dlX must contain a sequence dimension labeled 'T'. If dlX has any spatial dimensions labeled 'S',
they are flattened into the 'C' channel dimensions. If dlX has any unspecified dimensions labeled
'U', they must be singleton.
Data Types: single | double

H0 — Initial hidden state vector
dlarray | numeric array

Initial hidden state vector, specified as a dlarray with or without dimension labels or a numeric
array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of dlX. If H0 does not have a 'B'
dimension, the function uses the same hidden state vector for each observation in dlX.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension
of H0 must be equal to the size of the 'C' dimensions of C0.

If H0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden
units and must be the same size as the first dimension or the 'C' dimension of C0.
Data Types: single | double

C0 — Initial cell state vector
dlarray | numeric array

Initial cell state vector, specified as a dlarray with or without dimension labels or a numeric array.

If C0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of dlX. If C0 does not have a 'B'
dimension, the function uses the same cell state vector for each observation in dlX.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension
of C0 must be equal to the size of the 'C' dimensions of H0.

If C0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden
units and must be the same size as the first dimension or the 'C' dimension of H0.
Data Types: single | double
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weights — Weights
dlarray | numeric array

Weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify weights as a matrix of size 4*NumHiddenUnits-by-InputSize, where NumHiddenUnits is
the size of the 'C' dimension of both C0 and H0, and InputSize is the size of the 'C' dimension of
dlX multiplied by the size of each 'S' dimension of dlX, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size 4*NumHiddenUnits and
a 'U' dimension of size InputSize.
Data Types: single | double

recurrentWeights — Recurrent weights
dlarray | numeric array

Recurrent weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify recurrentWeights as a matrix of size 4*NumHiddenUnits-by-NumHiddenUnits, where
NumHiddenUnits is the size of the 'C' dimension of both C0 and H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size
4*NumHiddenUnits and a 'U' dimension of size NumHiddenUnits.
Data Types: single | double

bias — Bias
dlarray vector | numeric vector

Bias, specified as a dlarray vector with or without dimension labels or a numeric vector.

Specify bias as a vector of length 4*NumHiddenUnits, where NumHiddenUnits is the size of the
'C' dimension of both C0 and H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
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Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — LSTM output
dlarray

LSTM output, returned as a dlarray. The output dlY has the same underlying data type as the input
dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX, except for
any 'S' dimensions. If the input data is not a formatted dlarray, dlY is an unformatted dlarray
with the same dimension order as the input data.

The size of the 'C' dimension of dlY is the same as the number of hidden units, specified by the size
of the 'C' dimension of H0 or C0.

hiddenState — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same
data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with
the format 'CB'.

cellState — Cell state vector
dlarray | numeric array

Cell state vector for each observation, returned as a dlarray or a numeric array. cellState is
returned with the same data type as C0.

If the input C0 is a formatted dlarray, the output cellState is returned as a formatted dlarray
with the format 'CB'.

Limitations
• functionToLayerGraph does not support the lstm function. If you use

functionToLayerGraph with a function that contains the lstm operation, the resulting
LayerGraph contains placeholder layers.

More About
Long Short-Term Memory

The LSTM operation allows a network to learn long-term dependencies between time steps in time
series and sequence data. For more information, see the definition of Long Short-Tem Memory Layer
on page 1-695 on the lstmLayer reference page.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• H0
• C0
• weights
• recurrentWeights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | fullyconnect | gru | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”

Introduced in R2019b
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lstmLayer
Long short-term memory (LSTM) layer

Description
An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The layer performs additive interactions, which can help improve gradient flow over long sequences
during training.

Creation

Syntax
layer = lstmLayer(numHiddenUnits)
layer = lstmLayer(numHiddenUnits,Name,Value)

Description

layer = lstmLayer(numHiddenUnits) creates an LSTM layer and sets the NumHiddenUnits
property.

layer = lstmLayer(numHiddenUnits,Name,Value) sets additional OutputMode, “Activations”
on page 1-683, “State” on page 1-683, “Parameters and Initialization” on page 1-684, “Learn Rate
and Regularization” on page 1-686, and Name properties using one or more name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
quotes.

Properties
LSTM

NumHiddenUnits — Number of hidden units
positive integer

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for training, use the 'SequenceLength' option in
trainingOptions.
Example: 200
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OutputMode — Format of output
'sequence' (default) | 'last'

Format of output, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

InputSize — Input size
'auto' (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Example: 100

Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

Activation function to update the cell and hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σc in the calculations to update the cell and hidden state.
For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-695.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

CellState — Initial value of cell state
numeric vector

Initial value of the cell state, specified as a NumHiddenUnits-by-1 numeric vector. This value
corresponds to the cell state at time step 0.

After setting this property, calls to the resetState function set the cell state to this value.
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HiddenState — Initial value of the hidden state
numeric vector

Initial value of the hidden state, specified as a NumHiddenUnits-by-1 numeric vector. This value
corresponds to the hidden state at time step 0.

After setting this property, calls to the resetState function set the hidden state to this value.

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [4] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 4*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [5]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [6]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the recurrent weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [6]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [4] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
4*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [5]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.
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• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle – Initialize the recurrent weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' – Initialize the forget gate bias with ones and the remaining biases with
zeros.

• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the four input weight matrices for the components
(gates) in the LSTM layer. The four matrices are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is a 4*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.
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The recurrent weight matrix is a concatenation of the four recurrent weight matrices for the
components (gates) in the LSTM layer. The four matrices are vertically concatenated in the following
order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time RecurrentWeights is a 4*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases
[] (default) | numeric vector

Layer biases for the LSTM layer, specified as a numeric vector.

The bias vector is a concatenation of the four bias vectors for the components (gates) in the LSTM
layer. The four vectors are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 4*NumHiddenUnits-by-1 numeric vector.

Learn Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-4 numeric vector

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsLearnRateFactor correspond to the learning
rate factor of the following:

1 Input gate

1 Deep Learning Functions

1-686



2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-4 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsLearnRateFactor
correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.

To control the value of the learning rate factor for the four individual vectors in Bias, specify a 1-by-4
vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
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4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-4 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsL2Factor correspond to the L2 regularization
factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-4 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsL2Factor
correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
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4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual vectors in Bias, specify a 1-
by-4 vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create LSTM Layer

Create an LSTM layer with the name 'lstm1' and 100 hidden units.

layer = lstmLayer(100,'Name','lstm1')

layer = 
  LSTMLayer with properties:

                       Name: 'lstm1'

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []

   State Parameters
                HiddenState: []
                  CellState: []

  Show all properties

Include an LSTM layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:
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     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')
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Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5×1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);
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Load the test set and classify the sequences into speakers.

[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9514

Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification
output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
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    softmaxLayer
    classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and
classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for
sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of responses. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numResponses)
    regressionLayer];

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for
sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer];

For an example showing how to train an LSTM network for sequence-to-sequence regression and
predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.
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Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode
'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the
LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be
'last'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be
'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

More About
Long Short-Term Memory Layer

An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The state of the layer consists of the hidden state (also known as the output state) and the cell state.
The hidden state at time step t contains the output of the LSTM layer for this time step. The cell state
contains information learned from the previous time steps. At each time step, the layer adds
information to or removes information from the cell state. The layer controls these updates using
gates.

The following components control the cell state and hidden state of the layer.
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Component Purpose
Input gate (i) Control level of cell state update
Forget gate (f) Control level of cell state reset (forget)
Cell candidate (g) Add information to cell state
Output gate (o) Control level of cell state added to hidden state

This diagram illustrates the flow of data at time step t. The diagram highlights how the gates forget,
update, and output the cell and hidden states.

The learnable weights of an LSTM layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). The matrices W, R, and b are concatenations
of the input weights, the recurrent weights, and the bias of each component, respectively. These
matrices are concatenated as follows:

W =

Wi
Wf
Wg
Wo

, R =

Ri
Rf
Rg
Ro

, b =

bi
bf
bg
bo

,

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respectively.

The cell state at time step t is given by

ct = f t ⊙ ct − 1 + it ⊙ gt,
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where ⊙ denotes the Hadamard product (element-wise multiplication of vectors).

The hidden state at time step t is given by

ht = ot⊙ σc(ct),

where σc denotes the state activation function. The lstmLayer function, by default, uses the
hyperbolic tangent function (tanh) to compute the state activation function.

The following formulas describe the components at time step t.

Component Formula
Input gate it = σg(Wixt + Riht − 1 + bi)
Forget gate f t = σg(Wfxt + Rfht − 1 + bf )
Cell candidate gt = σc(Wgxt + Rght − 1 + bg)
Output gate ot = σg(Woxt + Roht − 1 + bo)

In these calculations, σg denotes the gate activation function. The lstmLayer function, by default,
uses the sigmoid function given by σ(x) = (1 + e−x)−1 to compute the gate activation function.

Compatibility Considerations
Default input weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the
Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling
from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'InputWeightsInitializer' option of the layer to 'narrow-normal'.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with
Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random matrix Z sampled
from a unit normal distribution. This behavior helps stabilize training and usually reduces the training
time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by
sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior,
set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, the StateActivationFunction property must be set to 'tanh'.
• For code generation, the GateActivationFunction property must be set to 'sigmoid'.

See Also
Deep Network Designer | bilstmLayer | classifyAndUpdateState | flattenLayer |
gruLayer | predictAndUpdateState | resetState | sequenceFoldingLayer |
sequenceInputLayer | sequenceUnfoldingLayer

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2017b
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maxpool
Pool data to maximum value

Syntax
dlY = maxpool(dlX,poolsize)
[dlY,indx,inputSize] = maxpool(dlX,poolsize)
___  = maxpool( ___ ,Name,Value)
dlY = maxpool(dlX,'global')
___  = maxpool( ___ ,'DataFormat',FMT)

Description
The maximum pooling operation performs downsampling by dividing the input into pooling regions
and computing the maximum value of each region.

Note This function applies the maximum pooling operation to dlarray data. If you want to apply
maximum pooling within a layerGraph object or Layer array, use one of the following layers:

• maxPooling2dLayer
• maxPooling3dLayer

dlY = maxpool(dlX,poolsize) performs downsampling by dividing the input dlX into
rectangular or cuboidal regions defined by poolsize and computing the maximum value of the data
in each region. The input dlX is a formatted dlarray with dimension labels. Pooling acts on spatial
dimensions labeled 'S'. The output dlY is a formatted dlarray with the same dimension labels as
dlX.

[dlY,indx,inputSize] = maxpool(dlX,poolsize) also returns the linear indices of the
maximum value within each pooled region and the size of the input feature map dlX for use with the
maxunpool operation.

___  = maxpool( ___ ,Name,Value) specifies options using one or more name-value pair
arguments. For example, 'Stride',3 sets the stride of the pooling operation.

dlY = maxpool(dlX,'global') computes the global maximum over the spatial dimensions of the
input dlX. This syntax is equivalent to setting poolsize in the previous syntaxes to the size of the
'S' dimensions of dlX.

___  = maxpool( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when dlX is
not a formatted dlarray, in addition to the input arguments in previous syntaxes. The output dlY is
an unformatted dlarray with the same dimension order as dlX.

Examples
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Pool Data to Maximum Values

Pool data to maximum values over two spatial dimensions.

Create the input data as a single observation of random values with a height and width of six and a
single channel.

height = 6;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')

dlX = 
  6(S) × 6(S) × 1(C) × 1(B) dlarray

    0.1781    0.8819    0.1564    0.4820    0.2518    0.7302
    0.1280    0.6692    0.8555    0.1206    0.2904    0.3439
    0.9991    0.1904    0.6448    0.5895    0.6171    0.5841
    0.1711    0.3689    0.3763    0.2262    0.2653    0.1078
    0.0326    0.4607    0.1909    0.3846    0.8244    0.9063
    0.5612    0.9816    0.4283    0.5830    0.9827    0.8797

Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

dlY = maxpool(dlX,2,'Stride',2)

dlY = 
  3(S) × 3(S) × 1(C) × 1(B) dlarray

    0.8819    0.8555    0.7302
    0.9991    0.6448    0.6171
    0.9816    0.5830    0.9827

Pool Data to Global Maximum Value

Pool data to its global maximum value.

Create the input data as an unformatted dlarray. The data contains a single observation of random
values with a height of four, a width of six, and a single channel.

height = 4;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X)

dlX = 
  4×6 dlarray

    0.8147    0.6324    0.9575    0.9572    0.4218    0.6557
    0.9058    0.0975    0.9649    0.4854    0.9157    0.0357
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    0.1270    0.2785    0.1576    0.8003    0.7922    0.8491
    0.9134    0.5469    0.9706    0.1419    0.9595    0.9340

Pool the data to the global maximum value. Specify the dimension format of the input data.

dlY = maxpool(dlX,'global','DataFormat','SSCB')

dlY = 
  1×1 dlarray

    0.9706

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted
dlarray, you must specify the dimension label format using 'DataFormat',FMT.

Pooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. dlX
must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S'
dimensions. The maxpool operation divides the data along each 'S' dimension into regions defined
by poolsize. The function computes the maximum of all values within each pooling region.
Data Types: single | double

poolsize — Size of pooling regions
numeric scalar | numeric vector

Size of the pooling regions, specified as a numeric scalar or numeric vector. If you specify poolsize
as a scalar, the pooling regions have the same size along all spatial dimensions. To use rectangular or
cuboidal pooling regions that have different sizes along each spatial dimension, specify poolsize as
a vector with the same length as the number of spatial dimensions.
Example: 3
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
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• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the
pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
'Padding' and one of the following:

• 'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.
Example: 'Padding','same'
Data Types: single | double
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Output Arguments
dlY — Pooled data
dlarray

Pooled data, returned as a dlarray. The output dlY has the same underlying data type as the input
dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

indx — Indices of maximum values
dlarray

Indices of maximum values in each pooled region, returned as a dlarray. Each value in indx
represents the location of the corresponding maximum value in dlY, given as a linear index of the
values in dlX.

If dlX is a formatted dlarray, indx has the same size and format as the output dlY.

If dlX is not a formatted dlarray, indx is an unformatted dlarray. In that case, indx is returned
with the following dimension order: all 'S' dimensions, followed by 'C', 'B', and 'T' dimensions,
then all 'U' dimensions. The size of indx matches the size of dlY when dlY is permuted to match
the previously stated dimension order.

Use the indx output with the maxunpool function to unpool the output of maxpool.

indx output is not supported when using the 'global' option.

inputSize — Size of input feature map
numeric vector

Size of the input feature map, returned as a numeric vector.

Use the inputSize output with the maxunpool function to unpool the output of maxpool.

inputSize output is not supported when using the 'global' option.

More About
Maximum Pooling

The maxpool function pools the input data to maximum values over the spatial dimensions. For more
information, see the definition of “Max Pooling Layer” on page 1-711 on the maxPooling2dLayer
reference page.

Compatibility Considerations
maxpool indices output argument changes shape and data type
Behavior changed in R2020a
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Starting in R2020a, the data type and shape of the indices output argument of the maxpool function
are changed. The maxpool function outputs the indices of the maximum values as a dlarray with
the same shape and format as the pooled data, instead of a numeric vector.

The indices output of maxpool remains compatible with the indices input of maxunpool. The
maxunpool function accepts the indices of the maximum values as a dlarray with the same shape
and format as the input data. To prevent errors, use only the indices output of the maxpool function
as the indices input to the maxunpool function.

To reproduce the previous behavior and obtain the indices output as a numeric vector, use the
following code:

[dlY,indx,inputSize] = maxpool(dlY,poolsize);
indx = extractdata(indx);
indx = reshape(indx,[],1);

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
avgpool | dlarray | dlconv | dlfeval | dlgradient | maxunpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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maxPooling2dLayer
Max pooling layer

Description
A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions,
and computing the maximum of each region.

Creation

Syntax
layer = maxPooling2dLayer(poolSize)
layer = maxPooling2dLayer(poolSize,Name,Value)

Description

layer = maxPooling2dLayer(poolSize) creates a max pooling layer and sets the PoolSize
property.

layer = maxPooling2dLayer(poolSize,Name,Value) sets the optional Stride, Name, and
HasUnpoolingOutputs properties using name-value pairs. To specify input padding, use the
'Padding' name-value pair argument. For example, maxPooling2dLayer(2,'Stride',3)
creates a max pooling layer with pool size [2 2] and stride [3 3]. You can specify multiple name-
value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the
edges of the layer input and to set the Stride, Name, and HasUnpoolingOutputs properties.
Enclose names in single quotes.
Example: maxPooling2dLayer(2,'Stride',3) creates a max pooling layer with pool size [2 2]
and stride [3 3].

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
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the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Max Pooling

PoolSize — Dimensions of pooling regions
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is
the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use
the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive
integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

HasUnpoolingOutputs — Flag for outputs to unpooling layer
false (default) | true

Flag for outputs to unpooling layer, specified as true or false.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.
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For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default) | 3

Number of outputs of the layer.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.
Data Types: double

OutputNames — Output names
{'out'} (default) | {'out','indices','size'}

Output names of the layer.
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If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.
Data Types: cell

Examples

Create Max Pooling Layer with Nonoverlapping Pooling Regions

Create a max pooling layer with nonoverlapping pooling regions.

layer = maxPooling2dLayer(2,'Stride',2)

layer = 
  MaxPooling2DLayer with properties:

                   Name: ''
    HasUnpoolingOutputs: 0
             NumOutputs: 1
            OutputNames: {'out'}

   Hyperparameters
               PoolSize: [2 2]
                 Stride: [2 2]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

The height and the width of the rectangular regions (pool size) are both 2. The pooling regions do not
overlap because the step size for traversing the images vertically and horizontally (stride) is also [2
2].

Include a max pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
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layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions.

layer = maxPooling2dLayer([3 2],'Stride',2)

layer = 
  MaxPooling2DLayer with properties:

                   Name: ''
    HasUnpoolingOutputs: 0
             NumOutputs: 1
            OutputNames: {'out'}

   Hyperparameters
               PoolSize: [3 2]
                 Stride: [2 2]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

This layer creates pooling regions of size [3 2] and takes the maximum of the six elements in each
region. The pooling regions overlap because there are stride dimensions Stride that are less than
the respective pooling dimensions PoolSize.

Include a max pooling layer with overlapping pooling regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             3x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
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     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Max Pooling Layer

A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions,
and computing the maximum of each region.

Pooling layers follow the convolutional layers for down-sampling, hence, reducing the number of
connections to the following layers. They do not perform any learning themselves, but reduce the
number of parameters to be learned in the following layers. They also help reduce overfitting.

A max pooling layer returns the maximum values of rectangular regions of its input. The size of the
rectangular regions is determined by the poolSize argument of maxPoolingLayer. For example, if
poolSize equals [2,3], then the layer returns the maximum value in regions of height 2 and width
3.

Pooling layers scan through the input horizontally and vertically in step sizes you can specify using
the 'Stride' name-value pair argument. If the pool size is smaller than or equal to the stride, then
the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the input to the pooling layer is n-by-n,
and the pooling region size is h-by-h, then the pooling layer down-samples the regions by h [1]. That
is, the output of a max or average pooling layer for one channel of a convolutional layer is n/h-by-n/h.
For overlapping regions, the output of a pooling layer is (Input Size – Pool Size + 2*Padding)/Stride +
1.

References
[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.

Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition''. IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | globalAveragePooling2dLayer |
maxUnpooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
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“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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maxPooling3dLayer
3-D max pooling layer

Description
A 3-D max pooling layer performs down-sampling by dividing three-dimensional input into cuboidal
pooling regions, and computing the maximum of each region.

Creation

Syntax
layer = maxPooling3dLayer(poolSize)
layer = maxPooling3dLayer(poolSize,Name,Value)

Description

layer = maxPooling3dLayer(poolSize) creates a 3-D max pooling layer and sets the PoolSize
property.

layer = maxPooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer
with pool size [2 2 2] and stride [3 3 3]. You can specify multiple name-value pairs. Enclose each
property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the
edges of the layer input and to set the Stride and Name properties. Enclose names in single quotes.
Example: maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer with pool size [2
2 2] and stride [3 3 3].

Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
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the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Max Pooling

PoolSize — Dimensions of pooling regions
vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers [h w d], where h
is the height, w is the width, and d is the depth. When creating the layer, you can specify PoolSize
as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1 1] specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth direction. When creating the layer, you can specify Stride as a scalar to use the same value
for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers
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Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Max Pooling 3-D Layer with Nonoverlapping Pooling Regions

Create a max pooling 3-D layer with nonoverlapping pooling regions.

layer = maxPooling3dLayer(2,'Stride',2)

layer = 
  MaxPooling3DLayer with properties:

           Name: ''
     NumOutputs: 1
    OutputNames: {'out'}

   Hyperparameters
       PoolSize: [2 2 2]
         Stride: [2 2 2]
    PaddingMode: 'manual'
    PaddingSize: [2x3 double]

The height, width, and depth of the cuboidal regions (pool size) are 2. The step size for traversing the
images (stride) is 2 in all dimensions. The pooling regions do not overlap because the stride is greater
than or equal to the corresponding pool size in all dimensions.

Include a max pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    maxPooling3dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
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     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [2  2  2] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Max Pooling 3-D Layer with Overlapping Pooling Regions

Create a max pooling 3-D layer with overlapping pooling regions and padding for the top and bottom
of the input.

layer = maxPooling3dLayer([3 2 2],'Stride',2,'Padding',[1 0 0])

layer = 
  MaxPooling3DLayer with properties:

           Name: ''
     NumOutputs: 1
    OutputNames: {'out'}

   Hyperparameters
       PoolSize: [3 2 2]
         Stride: [2 2 2]
    PaddingMode: 'manual'
    PaddingSize: [2x3 double]

This layer creates pooling regions of size 3-by-2-by-2 and takes the maximum of the twelve elements
in each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride
dimensions Stride that are less than the respective pooling dimensions PoolSize.

More About
3-D Max Pooling Layer

A 3-D max pooling layer extends the functionality of a max pooling layer to a third dimension, depth.
A max pooling layer performs down-sampling by dividing the input into rectangular or cuboidal
pooling regions, and computing the maximum of each region. To learn more, see the definition of max
pooling layer on page 1-711 on the maxPooling2dLayer reference page.

See Also
averagePooling3dLayer | convolution3dLayer | globalAveragePooling3dLayer |
maxPooling2dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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maxunpool
Unpool the output of a maximum pooling operation

Syntax
dlY = maxunpool(dlX,indx,outputSize)
dlY = maxunpool(dlX,indx,outputSize,'DataFormat',FMT)

Description
The maximum unpooling operation unpools the output of a maximum pooling operation by
upsampling and padding with zeros.

Note This function applies the maximum unpooling operation to dlarray data. If you want to apply
maximum unpooling within a layerGraph object or Layer array, use the following layer:

• maxUnpooling2dLayer

dlY = maxunpool(dlX,indx,outputSize) upsamples the spatial dimensions of input data dlX to
match the size outputSize. The data is padded with zeros between the locations of maximum values
specified by indx. The input dlX is a formatted dlarray with dimension labels. The output dlY is a
formatted dlarray with the same dimension labels as dlX.

dlY = maxunpool(dlX,indx,outputSize,'DataFormat',FMT) also specifies the dimension
format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with
the same dimension order as dlX.

Examples

Unpool Pooled Data

Create the input data as a single observation of random values with a height and width of six and a
single channel.

height = 6;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')

Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

[dlY,indx,dataSize] = maxpool(dlX,2,'Stride',2);

dlX = 
  6(S) × 6(S) × 1(C) × 1(B) dlarray
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    0.8206    0.5945    0.6960    0.1508    0.9857    0.0168
    0.9171    0.7565    0.9339    0.0515    0.0900    0.2920
    0.9295    0.7223    0.4381    0.4417    0.2460    0.9403
    0.6107    0.9710    0.4156    0.2089    0.1359    0.7609
    0.3046    0.4560    0.4689    0.5395    0.3991    0.6321
    0.8533    0.4369    0.2349    0.7844    0.7390    0.5615

dlY = 
  3(S) × 3(S) × 1(C) × 1(B) dlarray

    0.9171    0.9339    0.9857
    0.9710    0.4417    0.9403
    0.8533    0.7844    0.7390

indx = 
  3(S) × 3(S) × 1(C) × 1(B) dlarray

     2    14    25
    10    21    33
     6    24    30

dataSize = 1×4    
     6     6     1     1

Unpool the data using the indices and output size from the maxpool operation.

dlY = maxunpool(dlY,indx,dataSize)

dlY = 
  6(S) × 6(S) × 1(C) × 1(B) dlarray

         0         0         0         0    0.9857         0
    0.9171         0    0.9339         0         0         0
         0         0         0    0.4417         0    0.9403
         0    0.9710         0         0         0         0
         0         0         0         0         0         0
    0.8533         0         0    0.7844    0.7390         0

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted
dlarray, you must specify the dimension label format using 'DataFormat',FMT.

Unpooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label.
dlX must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S'
dimensions. Use the dlY output of the maxpool function as the dlX input to maxunpool.
Data Types: single | double

indx — Indices of maximum values
dlarray
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Indices of maximum values in each pooled region, specified as a dlarray.

Use the indx output of the maxpool function as the indx input to maxpool.
Data Types: single | double

outputSize — Size of output feature map
numeric array

Size of the output feature map, specified as a numeric array.

Use the inputSize output of the maxpool function as the outputSize input to maxunpool.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Unpooled data
dlarray

Unpooled data, returned as a dlarray. The output dlY has the same underlying data type as the
input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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maxUnpooling2dLayer
Max unpooling layer

Description
A max unpooling layer unpools the output of a max pooling layer.

Creation

Syntax
layer = maxUnpooling2dLayer
layer = maxUnpooling2dLayer('Name',name)

Description

layer = maxUnpooling2dLayer creates a max unpooling layer.

layer = maxUnpooling2dLayer('Name',name) sets the Name property. To create a network
containing a max unpooling layer you must specify a layer name.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
3 (default)

Number of inputs of the layer.

There are three inputs to this layer:

• 'in' — Input feature map to unpool.
• 'indices' — Indices of the maximum value in each pooled region. This is output by the max

pooling layer.
• 'size' — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using
connectLayers or disconnectLayers.
Data Types: double
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InputNames — Input names
{'in','indices','size'} (default)

Input names of the layer.

There are three inputs to this layer:

• 'in' — Input feature map to unpool.
• 'indices' — Indices of the maximum value in each pooled region. This is output by the max

pooling layer.
• 'size' — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using
connectLayers or disconnectLayers.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Max Unpooling Layer

Create a max unpooling layer that unpools the output of a max pooling layer.

layer = maxUnpooling2dLayer

layer = 
  MaxUnpooling2DLayer with properties:

          Name: ''
     NumInputs: 3
    InputNames: {'in'  'indices'  'size'}

Unpool Max Pooling Layer

Create a max pooling layer, and set the 'HasUnpoolingOutputs' property as true. This property
gives the max pooling layer two additional outputs,'indices' and 'size', which enables unpooling
the layer. Also create a max unpooling layer.
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layers = [
    maxPooling2dLayer(2,'Stride',2,'Name','mpool','HasUnpoolingOutputs',true)
    maxUnpooling2dLayer('Name','unpool');
]

layers = 
  2x1 Layer array with layers:

     1   'mpool'    Max Pooling     2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     2   'unpool'   Max Unpooling   Max Unpooling

Sequentially connect layers by adding them to a layerGraph. This step connects the 'out' output
of the max pooling layer to the 'in' input of the max unpooling layer.

lgraph = layerGraph(layers)

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {1x0 cell}
    OutputNames: {1x0 cell}

Unpool the output of the max pooling layer, by connecting the max pooling layer outputs to the max
unpooling layer inputs.

lgraph = connectLayers(lgraph,'mpool/indices','unpool/indices');
lgraph = connectLayers(lgraph,'mpool/size','unpool/size');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
connectLayers | disconnectLayers | layerGraph | maxPooling2dLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
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minibatchqueue
Create mini-batches for deep learning

Description
Use minibatchqueue to create, preprocess, and manage mini-batches of data for training using
custom training loops.

A minibatchqueue iterates over a datastore to provide data in a suitable format for training using
custom training loops. Use a minibatchqueue to automatically convert your data to dlarray or
gpuArray, convert data to a different precision, or apply a custom function to preprocess your data.
You can prepare your data in parallel in the background.

During training, you can manage your data using the minibatchqueue. You can shuffle the data at
the start of each training epoch using the shuffle function and collect data from the queue for each
training iteration using the next function. You can check if there is any data left in the queue using
the hasdata function, and reset the queue when it is empty.

Creation
Syntax
mbq = minibatchqueue(ds)
mbq = minibatchqueue(ds,numOutputs)

Description

mbq = minibatchqueue(ds) creates a minibatchqueue from the input datastore ds. The mini-
batches in mbq have the same number of variables as the results of read on the input datastore.

mbq = minibatchqueue(ds,numOutputs) creates a minibatchqueue from the input datastore
ds and sets the number of variables in each mini-batch. Use this syntax when you use MiniBatchFcn
to specify a mini-batch preprocessing function that has a different number of outputs than the
number of variables of the input datastore ds.

Input Arguments

ds — Input datastore
datastore | custom datastore

Input datastore, specified as a MATLAB datastore or a custom datastore.

For more information about datastores for deep learning, see “Datastores for Deep Learning”.

numOutputs — Number of mini-batch variables
positive integer

Number of mini-batch variables, specified as a positive integer. By default, the number of mini-batch
variables is equal to the number of variables of the input datastore.
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You can determine the number of variables of the input datastore by examining the output of
read(ds). If your datastore returns a table, the number of variables is the number of variables of the
table. If your datastore returns a cell array, the number of variables is the size of the second
dimension of the cell array.

If you use the MiniBatchFcn name-value pair to specify a mini-batch preprocessing function that
outputs a different number of variables than the input datastore, you must set numOutputs to match
the number of outputs of the function.
Example: 2

Properties
MiniBatchSize — Size of mini-batches
128 (default) | positive integer

This property is read-only.

Size of mini-batches returned by the next function, specified as a positive integer. The default value
is 128.
Example: 256

PartialMiniBatch — Return or discard incomplete mini-batches
"return" (default) | "discard"

Return or discard incomplete mini-batches, specified as "return" or "discard".

If the total number of observations is not exactly divisible by MiniBatchSize, the final mini-batch
returned by the next function can have fewer than MiniBatchSize observations. This property
specifies how any partial mini-batches are treated, using the following options:

• "return" — A mini-batch can contain fewer than MiniBatchSize observations. All data is
returned.

"discard" — All mini-batches must contain exactly MiniBatchSize observations. Some data
can be discarded from the queue if there is not enough for a complete mini-batch.

Set PartialMiniBatch to "discard" if you require that all of your mini-batches are the same size.
Example: "discard"
Data Types: char | string

MiniBatchFcn — Mini-batch preprocessing function
"collate" (default) | function handle

This property is read-only.

Mini-batch preprocessing function, specified as "collate" or a function handle.

The default value of MiniBatchFcn is "collate". This function concatenates the mini-batch
variables into arrays.

Use a function handle to a custom function to pre-process mini-batches for custom training. This is
recommended for one-hot encoding classification labels, padding sequence data, calculating average
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images, and so on. You must specify a custom function if your data consists of cell arrays containing
arrays of different sizes.

If you specify a custom mini-batch preprocessing function, the function must concatenate each batch
of output variables into an array after preprocessing and return each variable as a separate function
output. The function must accept at least as many inputs as the number of variables of the underlying
datastore. The inputs are passed to the custom function as N-by-1 cell arrays, where N is the number
of observations in the mini-batch. The function can return as many variables as required. If the
function specified by MiniBatchFcn returns a different number of outputs than inputs, specify
numOutputs as the number of outputs of the function.

The following actions are not recommended inside the custom function. To reproduce the desired
behavior, instead, set the corresponding property when you create the minibatchqueue.

Action Recommended Property
Cast variable to different data type OutputCast
Move data to GPU OutputEnvironment
Convert data to dlarray OutputAsDlarray
Apply data format to dlarray variable MiniBatchFormat

Example: @myCustomFunction
Data Types: char | string | function_handle

DispatchInBackground — Preprocess mini-batches in the background in a parallel pool
false or 0 (default) | true or 1

Preprocess mini-batches in the background in a parallel pool, specified as a numeric or logical 1
(true) or 0 (false).

Using this option requires Parallel Computing Toolbox The input datastore ds must be partitionable.
Custom datastores must implement the matlab.io.datastore.Partitionable class.

Use this option when your mini-batches require heavy preprocessing. This option uses a parallel pool
to prepare mini-batches in the background while you use mini-batches during training.

Workers in the pool process mini-batches by applying the function specified by MiniBatchFcn.
Further processing including applying the effects of the OutputCast, OutputEnvironment,
OutputAsDlarray, and MiniBatchFormat does not occur on the workers.

When DispatchInBackground is set to true, the software opens a local parallel pool using the
current settings, if a local pool is not currently open. Non-local pools are not supported. The pool is
opened the first time you call next.
Example: true
Data Types: logical

OutputCast — Data type of each mini-batch variable
'single' (default) | 'double' | 'int8' | 'int16' | 'int32' | 'int64' | 'uint8' | 'uint16' |
'uint32' | 'uint64' | 'logical' | 'char' | cell array

This property is read-only.
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Data type of each mini-batch variable, specified as 'single', 'double', 'int8', 'int16',
'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'logical', or 'char', or a cell
array of these values, or an empty vector.

If you specify OutputCast as an empty vector, the data type of each mini-batch variable is
unchanged. To specify a different data type for each mini-batch variable, specify a cell array
containing an entry for each mini-batch variable. The order of the elements of this cell array must
match the order the mini-batch variables are returned. This order is the same order as the variables
are returned from the function specified by MiniBatchFcn. If you do not specify a custom
MiniBatchFcn, it is the same order as the variables returned by the underlying datastore.

You must make sure that the value of OutputCast does not conflict with the values of the
OutputAsDlarray or OutputEnvironment properties. If you specify OutputAsDlarray as true or 1,
check that the data type specified by OutputCast is supported by dlarray. If you specify
OutputEnvironment as "gpu" or "auto" and a supported GPU is available, check that the data type
specified by OutputCast is supported by gpuArray.
Example: {'single','single','logical'}
Data Types: char | string

OutputAsDlarray — Convert mini-batch variable to dlarray
true or 1 (default) | false or 0 | vector of logical values

This property is read-only.

Convert mini-batch variable to dlarray, specified as a numeric or logical 1 (true) or 0 (false) or as
a vector of numeric or logical values.

To specify a different value for each output, specify a vector containing an entry for each mini-batch
variable. The order of the elements of this vector must match the order the mini-batch variable are
returned. This order is the same order as the variables are returned from the function specified by
MiniBatchFcn. If you do not specify a custom MiniBatchFcn, it is the same order as the variables
are returned by the underlying datastore.

Variables that are converted to dlarray have underlying data type as specified by the OutputCast
property.
Example: [1,1,0]
Data Types: logical

MiniBatchFormat — Data format of mini-batch variables
'' (default) | char array | cell array

This property is read-only.

Data format of mini-batch variables, specified as a char array or a cell array of char arrays.

The mini-batch format is applied to dlarray variables only. Non-dlarray mini-batch variables must
have a MiniBatchFormat of ''.

To avoid an error when you have a mix of dlarray and non-dlarray variables, you must specify a
value for each output by providing a cell array containing an entry for each mini-batch variable. The
order of the elements of this cell array must match the order the mini-batch variables are returned.
This is the same order as the variables are returned from the function specified by MiniBatchFcn. If
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you do not specify a custom MiniBatchFcn, it is the same order as the variables are returned by the
underlying datastore.
Example: {'SSCB', ''}
Data Types: char | string

OutputEnvironment — Hardware resource for mini-batch variables
'auto' (default) | 'gpu' | 'cpu' | cell array

Hardware resource for mini-batch variables returned using the next function, specified as one of the
following values:

• 'auto' — Mini-batch variables are returned on the GPU if one is available. Otherwise, mini-batch
variables are returned on the CPU.

• 'gpu' — Mini-batch variables are returned on the GPU.
• 'cpu' — Mini-batch variables are returned on the CPU

To return only specific variables on the GPU, specify OutputEnvironment as a cell array containing
an entry for each mini-batch variable. The order of the elements of this cell array must match the
order the mini-batch variable are returned. This order is the same order as the variables are returned
from the function specified by MiniBatchFcn. If you do not specify a custom MiniBatchFcn, it is
the same order as the variables are returned by the underlying datastore.

Using a GPU requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the 'gpu'
option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns
an error.
Example: {'gpu','cpu'}
Data Types: char | string

Object Functions
hasdata Determine if minibatchqueue can return a mini-batch
next Obtain next mini-batch of data from minibatchqueue
partition Partition a minibatchqueue
reset Reset minibatchqueue to start of data
shuffle Shuffle data in minibatchqueue

Examples

Prepare Mini-Batches for Custom Training Loop

Use a minibatchqueue to automatically prepare mini-batches of images and classification labels for
training in a custom training loop.

Create a datastore. Calling read on auimds produces a table with two variables: input, containing
the image data, and response, containing the corresponding classification labels.

auimds = augmentedImageDatastore([100 100],digitDatastore);
A = read(auimds);
head(A,2)
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ans = 
         input         response
    _______________    ________

    {100×100 uint8}       0    
    {100×100 uint8}       0    

Create a minibatchqueue from auimds. Set the MiniBatchSize property to 256.

The minibatchqueue has two output variables: the images and classification labels from the input
and response variables of auimds, respectively. Set the minibatchqueue to return the images as a
formatted dlarray on the GPU. The images are single channel black and white images. Add a
singleton channel dimension by applying the format 'SSBC' to the batch. Return the labels as a non-
dlarray on the CPU.

mbq = minibatchqueue(auimds,...
    'MiniBatchSize',256,...
    'OutputAsDlarray',[1,0],...
    'MiniBatchFormat',{'SSBC',''},...
    'OutputEnvironment',{'gpu','cpu'})

Use the next function to obtain mini-batches from mbq.

[X,Y] = next(mbq);

Create Mini-Batches Using Custom Preprocessing Function

Preprocess data using a minibatchqueue with a custom mini-batch preprocessing function. The
custom function rescales the incoming image data between 0 and 1 and calculates the average image.

Unzip the data and create a datastore.

unzip("MerchData.zip");
imds = imageDatastore("MerchData", ...
    "IncludeSubfolders",true, ...
    "LabelSource",'foldernames'); 

Create a minibatchqueue that preprocesses data using the custom function
preprocessMiniBatch defined at the end of this example. The custom function concatenates the
image data into a numeric array, rescales the image between 0 and 1, and calculates the average of
the batch of images. The function returns the rescaled batch of images and the average image. Set
the number of outputs to 2, to match the number of outputs of the function.

mbq = minibatchqueue(imds,2,...
    'MiniBatchSize',16,...
    'MiniBatchFcn',@preprocessMiniBatch,...
    'OutputAsDlarray',0)

mbq = 
minibatchqueue with 2 outputs and properties:

   Mini-batch creation:
           MiniBatchSize: 16
        PartialMiniBatch: 'return'
            MiniBatchFcn: @preprocessMiniBatch
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    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'  'single'}
         OutputAsDlarray: [0 0]
         MiniBatchFormat: {''  ''}
       OutputEnvironment: {'auto'  'auto'}

Obtain a mini-batch and display the average of the images in the mini-batch.

[X,averageImage] = next(mbq);
imshow(averageImage)

function [X,averageImage] = preprocessMiniBatch(XCell)
    X = cat(4,XCell{:});
    
    X = rescale(X,"InputMin",0,"InputMax",255);
    averageImage = mean(X,4);

end

Use minibatchqueue in a Custom Training Loop

Train a network using minibatchqueue to manage the processing of mini-batches.

Load Training Data

Load the digits training data and store the data in a datastore. Create a datastore for the images and
one for the labels using arrayDatastore. Then, combine the datastores to produce a single
datastore to use with minibatchqueue.
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[XTrain,YTrain] = digitTrain4DArrayData;
dsX = arrayDatastore(XTrain,'IterationDimension',4);
dsY = arrayDatastore(YTrain);

dsTrain = combine(dsX,dsY);

Determine the number of unique classes in the label data.

classes = categories(YTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the 'Mean' option in the image input
layer.

layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Define Model Gradients Function

Create the helper function modelGradients, listed at the end of the example. The function takes a
dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and
returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet.

Specify Training Options

Specify the options to use during training.

numEpochs = 10;
miniBatchSize = 128;

Visualize the training progress in a plot.

plots = "training-progress";

Create the minibatchqueue

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Discard partial mini-batches.
• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of

this example) to one-hot encode the class labels.
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• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

mbq = minibatchqueue(dsTrain,...
    'MiniBatchSize',miniBatchSize,...
    'PartialMiniBatch','discard',...
    'MiniBatchFcn',@preprocessMiniBatch,...    
    'MiniBatchFormat',{'SSCB',''});

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches while data is still available in the minibatchqueue. Update the network parameters using
the adamupdate function. At the end of each epoch, display the training progress.

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Initialize the average gradients and squared average gradients.

averageGrad = [];
averageSqGrad = [];

Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    shuffle (mbq);
        
    while hasdata(mbq)
        iteration = iteration + 1;
        
        % Read mini-batch of data
        [dlX,Y] = next(mbq);
              
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients helper function.
        [grad,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);
        
        % Update the network parameters using the Adam optimizer.
        [dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,averageSqGrad,iteration);
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        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Model Gradients Function

The modelGradients helper function takes a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect
to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient
function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)
    dlYPred = forward(dlnet,dlX);    
    loss = crossentropy(dlYPred,Y);    
    gradients = dlgradient(loss,dlnet.Learnables);
    
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:
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1 Extract the image data from the incoming cell array and concatenate into a numeric array.
Concatenating the image data over the fourth dimension adds a third dimension to each image,
to be used as a singleton channel dimension.

2 Extract the label data from the incoming cell array and concatenate along the second dimension
into a categorical array.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell)
    % Extract image data from cell and concatenate over 4th dimension to adds a
    % singleton dimension 3 for channel dimension
    X = cat(4,XCell{:});

    % Extract label data from cell and concatenate
    Y = cat(2,YCell{:});
    
    % One-hot encode labels
    Y = onehotencode(Y,1);

end

See Also
datastore | dlarray | dlfeval | dlnetwork

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020a
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mobilenetv2
MobileNet-v2 convolutional neural network

Syntax
net = mobilenetv2
net = mobilenetv2('Weights','imagenet')

lgraph = mobilenetv2('Weights','none')

Description
MobileNet-v2 is a convolutional neural network that is 53 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the MobileNet-v2 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with MobileNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load MobileNet-v2 instead of GoogLeNet.

net = mobilenetv2 returns a MobileNet-v2 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for MobileNet-v2 Network support package.
If this support package is not installed, then the function provides a download link.

net = mobilenetv2('Weights','imagenet') returns a MobileNet-v2 network trained on the
ImageNet data set. This syntax is equivalent to net = mobilenetv2.

lgraph = mobilenetv2('Weights','none') returns the untrained MobileNet-v2 network
architecture. The untrained model does not require the support package.

Examples

Download MobileNet-v2 Support Package

Download and install the Deep Learning Toolbox Model for MobileNet-v2 Network support package.

Type mobilenetv2 at the command line.

mobilenetv2

If the Deep Learning Toolbox Model for MobileNet-v2 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing mobilenetv2 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

mobilenetv2

ans = 

  DAGNetwork with properties:

         Layers: [155×1 nnet.cnn.layer.Layer]
    Connections: [164×2 table]

Output Arguments
net — Pretrained MobileNet-v2 convolutional neural network
DAGNetwork object

Pretrained MobileNet-v2 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained MobileNet-v2 convolutional neural network architecture
LayerGraph object

Untrained MobileNet-v2 convolutional neural network architecture, returned as a LayerGraph
object.

References
[1] ImageNet. http://www.image-net.org

[2] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C. "MobileNetV2: Inverted Residuals
and Linear Bottlenecks." In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 4510-4520). IEEE.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = mobilenetv2 or by
passing the mobilenetv2 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('mobilenetv2')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax mobilenetv2('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = mobilenetv2 or by
passing the mobilenetv2 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('mobilenetv2')
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For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax mobilenetv2('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot |
resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
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mse
Half mean squared error

Syntax
dlY = mse(dlX,targets)
dlY = mse(dlX,targets,'DataFormat',FMT)

Description
The half mean squared error operation computes the half mean squared error loss between network
predictions and target values for regression tasks.

The loss is calculated using the following formula

loss = 1
2N ∑i = 1

M
(Xi− Ti)2

where Xi is the network response, Ti is the target value, M is the total number of responses in X
(across all observations), and N is the total number of observations in X.

Note This function computes the half mean squared error loss between predictions and targets
stored as dlarray data. If you want to calculate the half mean squared error loss within a
layerGraph object or Layer array for use with trainNetwork, use the following layer:

• regressionLayer

dlY = mse(dlX,targets) computes the half mean squared error loss between the predictions dlX
and the target values targets for regression problems. The input dlX is a formatted dlarray with
dimension labels. The output dlY is an unformatted scalar dlarray with no dimension labels.

dlY = mse(dlX,targets,'DataFormat',FMT) also specifies the dimension format FMT when
dlX is not a formatted dlarray.

Examples

Find Half Mean Squared Error Between Predicted and Target Values

The half mean squared error evaluates how well the network predictions correspond to the target
values.

Create the input predictions as a single observation of random values with a height and width of six
and a single channel.

height = 6;
width = 6;
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channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')

Create the target values as a numeric array with the same dimension order as the input data dlX.

targets = ones(height,width,channels,observations);

Compute the half mean squared error between the predictions and the targets.

dlY = mse(dlX,targets)

dlY =

  1x1 dlarray

    5.2061

Input Arguments
dlX — Predictions
dlarray | numeric array

Predictions, specified as a dlarray with or without dimension labels or a numeric array. When dlX is
not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If
dlX is a numeric array, targets must be a dlarray.
Data Types: single | double

targets — Target values
dlarray | numeric array

Target values, specified as a formatted or unformatted dlarray or a numeric array.

If targets is a formatted dlarray, its dimension format must be the same as the format of X, or the
same as 'DataFormat' if X is unformatted

If targets is an unformatted dlarray or a numeric array, the size of targets must exactly match
the size of X. The format of X or the value of 'DataFormat' is implicitly applied to targets.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
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• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
dlY — Half mean squared error loss
dlarray scalar

Half mean squared error loss, returned as a dlarray scalar without dimension labels. The output
dlY has the same underlying data type as the input dlX.

More About
Half Mean Squared Error Loss

The mse function computes the half-mean-squared-error loss for regression problems. For more
information, see the definition of “Regression Output Layer” on page 1-827 on the
RegressionOutputLayer reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• dlX
• targets

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
crossentropy | dlarray | dlfeval | dlgradient | sigmoid

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network with Multiple Outputs”

Introduced in R2019b
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multiplicationLayer
Multiplication layer

Description
A multiplication layer multiplies inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.The size of the inputs to
the multiplication layer must be either same across all dimensions or same across at least one
dimension with other dimensions as singleton dimensions.

Creation

Syntax
layer = multiplicationLayer(numInputs)
layer = multiplicationLayer(numInputs,'Name',Name)

Description

layer = multiplicationLayer(numInputs) creates a multiplication layer that multiplies
numInputs inputs element-wise. This function also sets the NumInputs property.

layer = multiplicationLayer(numInputs,'Name',Name) also sets the Name property. To
create a network containing a multiplication layer, you must specify a layer name.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1','in2',...,'inN', where N equals NumInputs. For example, if
NumInputs equals 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input
names when connecting or disconnecting the layer by using connectLayers or
disconnectLayers.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph,
you must specify a layer name.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Multiplication Layer

Create a multiplication layer with two inputs and the name 'mul_1'.

mul = multiplicationLayer(2,'Name','mul_1')

mul = 
  MultiplicationLayer with properties:

          Name: 'mul_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

  Show all properties

Create two ReLU layers and connect them to the multiplication layer. The multiplication layer
multiplies the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph();
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,mul);

lgraph = connectLayers(lgraph,'relu_1','mul_1/in1');
lgraph = connectLayers(lgraph,'relu_2','mul_1/in2');

plot(lgraph);
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | concatenationLayer | layerGraph | trainNetwork

Topics
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2020b
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nasnetlarge
Pretrained NASNet-Large convolutional neural network

Syntax
net = nasnetlarge

Description
NASNet-Large is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 331-by-331. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Large model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Large.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load NASNet-Large instead of GoogLeNet.

net = nasnetlarge returns a pretrained NASNet-Large convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Large Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Large Support Package

Download and install the Deep Learning Toolbox Model for NASNet-Large Network support package.

Type nasnetlarge at the command line.

nasnetlarge

If the Deep Learning Toolbox Model for NASNet-Large Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
typing nasnetlarge at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

nasnetlarge

ans = 

  DAGNetwork with properties:
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         Layers: [1244×1 nnet.cnn.layer.Layer]
    Connections: [1463×2 table]

Transfer Learning with NASNet-Large

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the NASNet-Large network instead of GoogLeNet.

net = nasnetlarge

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained NASNet-Large convolutional neural network
DAGNetwork object

Pretrained NASNet-Large convolutional neural network, returned as a DAGNetwork object.

References
[1] ImageNet. http://www.image-net.org

[2] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning Transferable
Architectures for Scalable Image Recognition ." arXiv preprint arXiv:1707.07012 2, no. 6
(2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = nasnetlarge or by
passing the nasnetlarge function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetlarge')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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For code generation, you can load the network by using the syntax net = nasnetlarge or by
passing the nasnetlarge function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetlarge')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetmobile |
plot | resnet101 | resnet50 | shufflenet | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
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nasnetmobile
Pretrained NASNet-Mobile convolutional neural network

Syntax
net = nasnetmobile

Description
NASNet-Mobile is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Mobile model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Mobile.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load NASNet-Mobile instead of GoogLeNet.

net = nasnetmobile returns a pretrained NASNet-Mobile convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Mobile Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Mobile Support Package

Download and install the Deep Learning Toolbox Model for NASNet-Mobile Network support
package.

Type nasnetmobile at the command line.

nasnetmobile

If the Deep Learning Toolbox Model for NASNet-Mobile Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
typing nasnetmobile at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

nasnetmobile

ans = 

  DAGNetwork with properties:
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         Layers: [914×1 nnet.cnn.layer.Layer]
    Connections: [1073×2 table]

Transfer Learning with NASNet-Mobile

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the NASNet-Mobile network instead of GoogLeNet.

net = nasnetmobile

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained NASNet-Mobile convolutional neural network
DAGNetwork object

Pretrained NASNet-Mobile convolutional neural network, returned as a DAGNetwork object.

References
[1] ImageNet. http://www.image-net.org

[2] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning Transferable
Architectures for Scalable Image Recognition ." arXiv preprint arXiv:1707.07012 2, no. 6
(2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = nasnetmobile or by
passing the nasnetmobile function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetmobile')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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For code generation, you can load the network by using the syntax net = nasnetmobile or by
passing the nasnetmobile function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetmobile')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetlarge |
plot | resnet101 | resnet50 | shufflenet | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
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next
Obtain next mini-batch of data from minibatchqueue

Syntax
[x1,...,xN] = next(mbq)

Description
[x1,...,xN] = next(mbq) returns a mini-batch of data prepared using the minibatchqueue
object mbq. The function returns as many variables as the number of outputs of mbq.

Examples

Obtain a Mini-Batch

Create a minibatchqueue and obtain a mini-batch.

Create a minibatchqueue from a datastore. Set the MiniBatchSize property to 2.

auimds = augmentedImageDatastore([100 100],digitDatastore);
mbq = minibatchqueue(auimds,'MiniBatchSize',2,"MiniBatchFormat",{'SSBC','BC'})

mbq = 
minibatchqueue with 2 outputs and properties:

   Mini-batch creation:
           MiniBatchSize: 2
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'  'single'}
         OutputAsDlarray: [1 1]
         MiniBatchFormat: {'SSBC'  'BC'}
       OutputEnvironment: {'auto'  'auto'}

Use next to obtain a mini-batch. mbq has a two outputs.

[X,Y] = next(mbq);

X is a mini-batch containing two images from the datastore. Y contains the classification labels of
those images. Check the size and data format of the mini-batch variables.

size(X)
dims(X)
size(Y)
dims(Y)

ans = 1×4    
   100   100     1     2

 next

1-751



ans = 'SSCB'
ans = 1×2    
     1     2
ans = 'CB'

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Output Arguments
[x1,...,xN] — Mini-batch
numeric array | cell array

Mini-batch, returned as a numeric array or cell array.

The number and type of variables returned by next depends on the configuration of mbq. The function
returns as many variables as the number of outputs of mbq.

See Also
hasdata | minibatchqueue | reset

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
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occlusionSensitivity
Determine how input data affects output activations by occluding input

Syntax
scoreMap = occlusionSensitivity(net,X,label)
activationMap = occlusionSensitivity(net,X,layer,channel)
___  = occlusionSensitivity( ___ ,Name,Value)

Description
scoreMap = occlusionSensitivity(net,X,label) computes a map of the change in
classification score for the classes specified by label when parts of the input data X are occluded
with a mask. The change in classification score is relative to the original data without occlusion. The
occluding mask is moved across the input data, giving a change in classification score for each mask
location. Use an occlusion map to identify the parts of your input data that most impact the
classification score. Areas in the map with higher positive values correspond to regions of input data
that contribute positively to the specified classification label. The network must contain a
softmaxLayer followed by a classificationLayer.

activationMap = occlusionSensitivity(net,X,layer,channel) computes a map of the
change in total activation for the specified layer and channel when parts of the input data X are
occluded with a mask. The change in activation score is relative to the original data without
occlusion. Areas in the map with higher positive values correspond to regions of input data that
contribute positively to the specified channel activation, obtained by summing over all spatial
dimensions for that channel.

___  = occlusionSensitivity( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in previous syntaxes. For example,
'Stride',50 sets the stride of the occluding mask to 50 pixels.

Examples

Visualize Which Parts of an Image Influence Classification Score

Import the pretrained network GoogLeNet.

net = googlenet;

Import the image and resize to match the input size for the network.

X = imread("sherlock.jpg");

inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image.

imshow(X)
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Classify the image to get the class label.

label = classify(net,X)

label = categorical
     golden retriever 

Use occlusionSensitivity to determine which parts of the image positively influence the
classification result.

scoreMap = occlusionSensitivity(net,X,label);

Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5);
colormap jet
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The red parts of the map show the areas which have a positive contribution to the specified label. The
dog's left eye and ear strongly influence the network's prediction of golden retriever.

You can get similar results using the gradient class activation mapping (Grad-CAM) technique. Grad-
CAM uses the gradient of the classification score with respect to the last convolutional layer in a
network in order to understand which parts of the image are most important for classification. For an
example, see “Grad-CAM Reveals the Why Behind Deep Learning Decisions”.

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork object or a DAGNetwork object. You can get a
trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

net must contain a single input layer. The input layer must be an imageInputLayer.

X — Observation to occlude
numeric array

Observation to occlude, specified as a numeric array. You can calculate the occlusion map of one
observation at a time. For example, specify a single image to understand which parts of that image
affect classification results.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label used to calculate change in classification score
categorical array | character array | string array

 occlusionSensitivity

1-755



Class label used to calculate change in classification score, specified as a categorical, a character
array, or a string array.

If you specify label as a vector, the software calculates the change in classification score for each
class label independently. In that case, scoreMap(:,:,i) corresponds to the occlusion map for the
ith element in label.
Data Types: char | string | categorical

layer — Layer used to calculate change in activation
character vector | string scalar

Layer used to calculate change in activation, specified as a character vector or a string scalar. Specify
layer as the name of the layer in net for which you want to compute the change in activations.
Data Types: char | string

channel — Channel used to calculate change in activation
numeric index | vector of numeric indices

Channel used to calculate change in activation, specified as scalar or vector of channel indices. The
possible choices for channel depend on the selected layer. For example, for convolutional layers, the
NumFilters property specifies the number of output channels. You can use analyzeNetwork to
inspect the network and find out the number of output channels for each layer.

If channel is specified as a vector, the change in total activation for each specified channel is
calculated independently. In that case, activationMap(:,:,i) corresponds to the occlusion map
for the ith element in channel.

The function computes the change in total activation due to occlusion. The total activation is
computed by summing over all spatial dimensions of the activation of that channel. The occlusion
map corresponds to the difference between the total activation of the original data with no occlusion
and the total activation for the occluded data. Areas in the map with higher positive values
correspond to regions of input data that contribute positively to the specified channel activation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaskSize',75,'OutputUpsampling','nearest' uses an occluding mask with size 75
pixels along each side, and uses nearest-neighbor interpolation to upsample the output to the same
size as the input data

MaskSize — Size of occluding mask
'auto' (default) | vector | scalar

Size of occluding mask, specified as the comma-separated pair consisting of 'MaskSize' and one of
the following.

• 'auto' — Use a mask size of 20% of the input size, rounded to the nearest integer.
• A vector of the form [h w]— Use a rectangular mask with height h and width w.
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• A scalar — Use a square mask with height and width equal to the specified value.

Example: 'MaskSize',[50 60]

Stride — Step size for traversing mask across input data
'auto' (default) | vector | scalar

Step size for traversing the mask across the input data, specified as the comma-separated pair
consisting of 'Stride' and one of the following.

• 'auto' — Use a stride of 10% of the input size, rounded to the nearest integer.
• A vector of the form [a b]— Use a vertical stride of a and a horizontal stride of b.
• A scalar — Use a stride of the specified value in both the vertical and horizontal directions.

Example: 'Stride',30

MaskValue — Replacement value of occluded region
'auto' (default) | scalar | vector

Replacement value of occluded region, specified as the comma-separated pair consisting of
'MaskValue' and one of the following.

• 'auto' — Replace occluded pixels with the channel-wise mean of the input data.
• A scalar — Replace occluded pixels with the specified value.
• A vector — Replace occluded pixels with the value specified for each channel. The vector must

contain the same number of elements as the number of output channels of the layer.

Example: 'MaskValue',0.5

OutputUpsampling — Output upsampling method
'bicubic' (default) | 'nearest' | 'none'

Output upsampling method, specified as the comma-separated pair consisting of
'OutputUpsampling' and one of the following.

• 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
• 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input

data. The map indicates the resolution of the occlusion computation with respect to the size of the
input data.

• 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'bicubic' or 'nearest', the computed map is upsampled to the size
of the input data using the imresize function.
Example: 'OutputUpsampling','nearest'

MaskClipping — Edge handling of the occluding mask
'on' (default) | 'off'

Edge handling of the occluding mask, specified as the comma-separated pair consisting of
'MaskClipping' and one of the following.

• 'on' — Place the center of the first mask at the top-left corner of the input data. Masks at the
edges of the data are not full size.
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• 'off' — Place the top-left corner of the first mask at the top-left corner of the input data. Masks
are always full size. If the values of the MaskSize and Stride options mean that some masks
extend past the boundaries of the data, those masks are excluded.

For non-image input data, you can ensure you always occlude the same amount of input data using
the option 'MaskClipping','off'. For example, for word embeddings data, you can ensure the
same number of words are occluded at each point.
Example: 'MaskClipping','off'

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use to compute the map of change in classification score, specified as the
comma-separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of occluded images as the mask is moved across the input image.
All occluded images are used to calculate the map; the mini-batch determines the number of images
that are passed to the network at once. Larger mini-batch sizes lead to faster computation, at the cost
of more memory.
Example: 'MiniBatchSize',256

ExecutionEnvironment — Hardware resource
'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following.

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the
'ExecutionEnvironment','gpu' option and Parallel Computing Toolbox or a suitable GPU is not
available, then the software returns an error.
Example: 'ExecutionEnvironment','gpu'

Output Arguments
scoreMap — Map of change of classification score
numeric matrix | numeric array

Map of change of classification score, returned as a numeric matrix or a numeric array. The change in
classification score is calculated relative to the original input data without occlusion. Areas in the
map with higher positive values correspond to regions of input data that contribute positively to the
specified classification label.

If label is specified as a vector, the change in classification score for each class label is calculated
independently. In that case, scoreMap(:,:,i) corresponds to the occlusion map for the ith element
in label.
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activationMap — Map of change of total activation
numeric matrix | numeric array

Map of change of total activation, returned as a numeric matrix or a numeric array.

The function computes the change in total activation due to occlusion. The total activation is
computed by summing over all spatial dimensions of the activation of that channel. The occlusion
map corresponds to the difference between the total activation of the original data with no occlusion
and the total activation for the occluded data. Areas in the map with higher positive values
correspond to regions of input data that contribute positively to the specified channel activation.

If channels is specified as a vector, the change in total activation for each specified channel is
calculated independently. In that case, activationMap(:,:,i) corresponds to the occlusion map
for the ith element in channel.

See Also
activations | classify | imageLIME

Topics
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Understand Network Predictions Using LIME”
“Investigate Network Predictions Using Class Activation Mapping”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2019b
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onehotdecode
Decode probability vectors into class labels

Syntax
A = onehotdecode(B,classes,featureDim)
A = onehotdecode(B,classes,featureDim,typename)

Description
A = onehotdecode(B,classes,featureDim) decodes probability vectors in B to the most
probable class label from the labels specified by classes. featureDim specifies the dimension
along which the probability vectors are defined. The probability vectors are decoded into class labels
by matching the position of the highest value in the vector with the class label in the corresponding
position in classes. Each probability vector in A is replaced with the value of classes that
corresponds to the highest value in the probability vector.

A = onehotdecode(B,classes,featureDim,typename) decodes the probabilities into class
labels of data type typename.

Examples

Encode and Decode Labels

Use the onehotencode and onehotdecode functions to encode a set of labels into probability
vectors and decode them back into labels.

Create a vector of categorical labels.

colorsOriginal = ["red"; "blue"; "red"; "green"; "yellow"; "blue"];
colorsOriginal = categorical(colorsOriginal)

colorsOriginal = 1×6 categorical
red          blue         red          green        yellow       blue         

Determine the classes in the categorical vector.

classes = categories(colorsOriginal);

One-hot encode the labels into probability vectors, using the onehotencode function. Encode the
probability vectors into the first dimension.

colorsEncoded = onehotencode(colorsOriginal,1)

colorsEncoded = 4×6    
     0     1     0     0     0     1
     0     0     0     1     0     0
     1     0     1     0     0     0
     0     0     0     0     1     0

Use onehotdecode to decode the probability vectors.
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colorsDecoded = onehotdecode(colorsEncoded,classes,1)

colorsDecoded = 1×6 categorical    
red          blue         red          green        yellow       blue         
        

The decoded labels match the original labels.

Decode Probability Vectors into Most-Probable Classes

Use onehotdecode to decode a set of probability vectors into the most probable class for each
observation.

Create a set of ten random probability vectors. The vectors express the probability that an
observation belongs to one of five classes.

numObs = 10;
numClasses = 5;

prob = rand(numObs,numClasses);

tot = sum(prob,2);
prob = prob./tot;

Define the set of five classes.

classes = ["Red" "Yellow" "Green" "Blue" "Purple"];

Decode the probabilities into the most-probable classes. The probability vectors are encoded into the
second dimension, so specify the dimension containing encoded probabilities as 2. Obtain the most
probable classes as a vector of strings.

result = onehotdecode(prob,classes,2,"string")

result = 10×1 string    
"Green"      
"Blue"       
"Red"        
"Green"      
"Red"        
"Blue"       
"Purple"     
"Green"      
"Yellow"     
"Blue" 

Input Arguments
B — Probability vectors
numeric array

Probability vectors to decode, specified as a numeric array.

Values in B must be between 0 and 1. If a probability vector in B contains NaN values, then that
observation is decoded to the class that has the largest probability that is not NaN. If an observation
contains only NaN values, then that observation is decoded to the first class label in classes.
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Data Types: single | double

classes — Classes
cell array | string vector | numeric vector | character matrix

Classes, specified as a cell array of character vectors, a string vector, a numeric vector, or a two-
dimensional char array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell

featureDim — Dimension containing probability vectors
positive integer

Dimension containing probability vectors, specified as a positive integer.

Use featureDim to specify the dimension in B that contains the probability vectors. Each vector in B
along the specified dimension is replaced by the element of classes in the same position as the
highest value along the vector.

The dimension of B specified by featureDim must have length equal to the number of classes
specified by classes.

typename — Data type of decoded labels
'categorical' (default) | character vector | string scalar

Data type of decoded labels, specified as a character vector or a string scalar.

Valid values of typename are 'categorical', 'string' and numeric types such as 'single' and
'int64'. If you specify a numeric type, classes must be a numeric vector.
Example: 'double'
Data Types: char | string

Output Arguments
A — Decoded class labels
categorical array (default) | string array | numeric array

Decoded class labels, returned as a categorical array, a string array, or a numeric array.

See Also
categories | onehotencode

Topics
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
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onehotencode
Encode data labels into one-hot vectors

Syntax
B = onehotencode(A,featureDim)
tblB = onehotencode(tblA)
___  = onehotencode( ___ ,typename)
___  = onehotencode( ___ ,'ClassNames',classes)

Description
B = onehotencode(A,featureDim) encodes data labels in categorical array A into a one-hot
encoded array B. Each element of A is replaced with a numeric vector of length equal to the number
of unique classes in A along the dimension specified by featureDim. The vector contains a 1 in the
position corresponding to the class of the label in A, and 0 in every other position. Any <undefined>
values are encoded to NaN values.

tblB = onehotencode(tblA) encodes categorical data labels in table tblA into a table of one-hot
encoded numeric values. The single variable of tblA is replaced with as many variables as the
number of unique classes in tblA. Each row in tblB contains a 1 in the variable corresponding to
the class of the label in tlbA and a 0 in all other variables.

___  = onehotencode( ___ ,typename) encodes the labels into numeric values of data type
typename.

___  = onehotencode( ___ ,'ClassNames',classes) also specifies the names of the classes to
use for encoding. Use this syntax when A or tblA do not contain categorical values, when you want
to exclude any class labels from being encoded, or when you want to encode the vector elements in a
specific order. Any label in A or tblA of a class that does not exist in classes is encoded to a vector
of NaN values.

Examples

One-Hot Encode a Vector of Labels

Encode a categorical vector of class labels into one-hot vectors representing the labels.

Create a column vector of labels, where each row of the vector represents a single observation.
Convert the labels to a categorical array.

labels = ["red"; "blue"; "red"; "green"; "yellow"; "blue"];
labels = categorical(labels);

View the order of the categories.

categories(classes)

ans = 4×1 cell    
'blue'       
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'green'      
'red'        
'yellow'     

Encode the labels into one-hot vectors. Expand the labels into vectors in the second dimension to
encode the classes.

labels = onehotencode(color,2)

labels = 6×4    
     0     0     1     0
     1     0     0     0
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0

Each observation in labels is now a row vector with a 1 in the position corresponding to the category
of the class label and 0 in all other positions. The categories are encoded in the same order as the
categories, such that a 1 in position 1 represents the fist category in the list, in this case, 'blue'.

One-Hot Encode a Table

One-hot encode a table of categorical values.

Create a table of categorical data labels. Each row in the table holds a single observation.

color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);
color = table (color);

color = 
    color 
    ______

    blue  
    red   
    blue  
    green 
    yellow
    red   

One-hot encode the table of class labels.

color = onehotencode(color)

color = 
    blue    green    red    yellow
    ____    _____    ___    ______

     1        0       0       0   
     0        0       1       0   
     1        0       0       0   
     0        1       0       0   
     0        0       0       1   
     0        0       1       0   
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Each column of the table represents a class. The data labels are encoded with a 1 in the column of
the corresponding class, and 0 everywhere else.

One-Hot Encode a Subset of Classes

If not all classes in the data are relevant, encode the data labels using only a subset of the classes.

Create a row vector of data labels, where each column of the vector represents a single observation

pets = ["dog" "fish" "cat" "dog" "cat" "bird"];

Define the list of classes to encode. These classes are a subset of those present in the observations.

animalClasses = ["bird"; "cat"; "dog"];

One-hot encode the observations into the first dimension. Specify the classes to encode.

encPets = onehotencode(pets,1,"ClassNames",animalClasses)

encPets = 3×6    
     1   NaN     0     1     0     0
     0   NaN     1     0     1     0
     0   NaN     0     0     0     1

Observations of a class not present in the list of classes to encode are encoded to a vector of NaN
values.

One-Hot Encode an Image for Semantic Segmentation

Use onehotencode to encode a matrix of class labels, such as a semantic segmentation of an image.

Define a simple 15-by-15 pixel segmentation matrix of class labels.

A = "blue";
B = "green";
C = "black";

A = repmat(A,8,15);
B = repmat(B,7,5);
C = repmat(C,7,5);

seg = [A;B C B];

Convert the segmentation matrix into a categorical array.

seg = categorical(seg);

One-hot encode the segmentation matrix into an array of type single. Expand the encoded labels into
the third dimension.

encSeg = onehotencode(seg,3,"single");

Check the size of the encoded segmentation.

size(encSeg)
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ans = 1×3    
    15    15     3

The three possible classes of the pixels in the segmentation matrix are encoded as vectors in the third
dimension.

One-Hot Encode a Table with Several Variables

If your data is a table that contains several types of class variables, you can encode each variable
separately.

Create a table of observations of several types of categorical data.

color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);

pets = ["dog"; "fish"; "cat"; "dog"; "cat"; "bird"];
pets = categorical(pets);

location = ["USA"; "CAN"; "CAN"; "USA"; "AUS"; "USA"];
location = categorical(location);

data = table(color,pets,location)

data = 
    color     pets    location
    ______    ____    ________

    blue      dog       USA   
    red       fish      CAN   
    blue      cat       CAN   
    green     dog       USA   
    yellow    cat       USA   
    red       bird      USA   

Use a for-loop to one-hot encode each table variable and append it to a new table containing the
encoded data.

encData = table();

for i=1:width(data)
 encData = [encData onehotencode(data(:,i))];
end

encData

encData = 
    blue    green    red    yellow    bird    cat    dog    fish    CAN    USA
    ____    _____    ___    ______    ____    ___    ___    ____    ___    ___

     1        0       0       0        0       0      1      0       0      1 
     0        0       1       0        0       0      0      1       1      0 
     1        0       0       0        0       1      0      0       1      0 
     0        1       0       0        0       0      1      0       0      1 
     0        0       0       1        0       1      0      0       0      1 
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     0        0       1       0        1       0      0      0       0      1 

Each row of encdata encodes the three different categorical classes for each observation.

Input Arguments
A — Array of data labels
categorical array | numeric array | string array

Array of data labels to encode, specified as a categorical array, a numeric array, or a string array.

If A is a categorical array, the elements of the one-hot encoded vectors match the same order as that
given by categories(A).

If A is not a categorical array, you must specify the classes to encode using the 'ClassNames' name-
value pair. The vectors are encoded in the order that the classes appear in classes.

If A contains undefined values or values not present in classes, those values are encoded as a vector
of NaN values. typename must be 'double' or 'single'.
Data Types: categorical

tblA — Table of data labels
table

Table of data labels to encode, specified as a table. The table must contain a single variable and one
row for each observation. Each entry must contain a categorical scalar, a numeric scalar, or a string
scalar.

If tblAcontains categorical values, the elements of the one-hot encoded vectors match the same
order as the categories; for example, that given by categories(tbl(1,n)).

If tblA does not contain categorical values, you must specify the classes to encode using the
'ClassNames' name-value pair. The vectors are encoded in the order that the classes appear in
classes.

If tblA contains undefined values or values not present in classes, those values are encoded as NaN
values. typename must be 'double' or 'single'.
Data Types: table

featureDim — Dimension to expand
positive integer

Dimension to expand to encode the labels, specified as a positive integer.

featureDim must specify a singleton dimension of A, or be larger than n where n is the number of
dimensions of A.

typename — Data type of encoded labels
'double' (default) | character vector | string scalar

Data type of the encoded labels, specified as a character vector or a string scalar.
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If the classification label input is a categorical array, a numeric array, or a string array, then the
encoded labels are returned as an array of data type typename.

If the classification label input is a table, then the encoded labels are returned as a table where each
entry has data type typename.

Valid values of typename are floating point, signed and unsigned integer, and logical types.
Example: 'int64'
Data Types: char | string

classes — Classes to encode
cell array | string vector | numeric vector | character matrix

Classes to encode, specified as a cell array of character vectors, a string vector, a numeric vector, or a
two-dimensional char array.

If the input A or tblA does not contain categorical values, then you must specify classes. You can
also use the classes argument to exclude any class labels from being encoded, or to encode the
vector elements in a specific order.

If A or tblA contains undefined values or values not present in classes, those values are encoded to
a vector of NaN values. typename must be 'double' or 'single'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell

Output Arguments
B — Encoded labels
numeric array

Encoded labels, returned as a numeric array.

tblB — Encoded labels
table

Encoded labels, returned as a table.

Each row of tblB contains the one-hot encoded label for a single observation, in the same order as
that provided in tblA. Each row contains a 1 in the variable corresponding to the class of the label in
tlbA and a 0 in all other variables.

See Also
categorical | minibatchqueue | onehotdecode

Topics
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b

1 Deep Learning Functions

1-768



ONNXParameters
Parameters of an imported ONNX network for deep learning

Description
ONNXParameters contains the parameters (such as weights and bias) of an imported ONNX (Open
Neural Network Exchange) network. Use ONNXParameters to perform tasks such as transfer
learning.

Creation
Create an ONNXParameters object by using importONNXFunction.

Properties
Learnables — Parameters updated during network training
structure

Parameters updated during network training, specified as a structure. For example, the weights of
convolution and fully connected layers are parameters that the network learns during training. To
prevent Learnables parameters from being updated during training, convert them to
Nonlearnables by using freezeParameters. Convert frozen parameters back to Learnables by
using unfreezeParameters.

Add a new parameter to params.Learnables by using addParameter. Remove a parameter from
params.Learnables by using removeParameter.

Access the fields of the structure Learnables by using dot notation. For example,
params.Learnables.conv1_W could display the weights of the first convolution layer. Initialize the
weights for transfer learning by entering params.Learnables.conv1_W = rand([1000,4096]).
For more details about assigning a new value and parameter naming, see “Tips” on page 1-779.

Nonlearnables — Parameters unchanged during network training
structure

Parameters unchanged during network training, specified as a structure. For example, padding and
stride are parameters that stay constant during training.

Add a new parameter to params.Nonlearnables by using addParameter. Remove a parameter
from params.Nonlearnables by using removeParameter.

Access the fields of the structure Nonlearnables by using dot notation. For example,
params.Nonlearnables.conv1_Padding could display the padding of the first convolution layer.
For more details about parameter naming, see “Tips” on page 1-779.

State — Network state
structure
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Network state, specified as a structure. The network State contains information remembered by the
network between iterations and updated across multiple training batches. For example, the states of
LSTM and batch normalization layers are State parameters.

Add a new parameter to params.State by using addParameter. Remove a parameter from
params.State by using removeParameter.

Access the fields of the structure State by using dot notation. For example,
params.State.bn1_var could display the variance of the first batch normalization layer. For more
details about parameter naming, see “Tips” on page 1-779.

NumDimensions — Number of dimensions for every parameter
structure

This property is read-only.

Number of dimensions for every parameter, specified as a structure. NumDimensions includes
trailing singleton dimensions.

Access the fields of the structure NumDimensions by using dot notation. For example,
params.NumDimensions.conv1_W could display the number of dimensions for the weights
parameter of the first convolution layer.

NetworkFunctionName — Name of model function
character vector | string scalar

This property is read-only.

Name of the model function, specified as a character vector or string scalar. The property
NetworkFunctionName contains the name of the function NetworkFunctionName, which you
specify in importONNXFunction. The function NetworkFunctionName contains the architecture of
the imported ONNX network.
Example: 'shufflenetFcn'

Object Functions
addParameter Add parameter to ONNXParameters object
freezeParameters Convert learnable network parameters in ONNXParameters to nonlearnable
removeParameter Remove parameter from ONNXParameters object
unfreezeParameters Convert nonlearnable network parameters in ONNXParameters to learnable

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network
with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-0 .

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
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datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames',...
    'ReadSize', miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end

Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';
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Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

AlexNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a
model function that contains the network architecture. importONNXFunction saves alexnetFcn in
the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and
bias (B) of convolution and fully connected layers, are updated by the network during training.
Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
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      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The
parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the
parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
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    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
        params.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
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Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,'Training',false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.
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function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss,onnxParams.Learnables);

end

The alexnetONNX function generates an ONNX model of the alexnet network. You need Deep
Learning Toolbox Model for AlexNet Network support to access this model.

function alexnetONNX()
    
exportONNXNetwork(alexnet,'alexnet.onnx');

end

Move Parameters Mislabeled by ONNX Functional Importer

Import a network saved in the ONNX format as a function, and move the mislabeled parameters by
using freeze or unfreeze.

Create an ONNX model from the pretrained alexnet network. Then import alexnet.onnx as a
function. Import the pretrained ONNX network using importONNXFunction, which returns an
ONNXParamaters object that contains the network parameters. The function also creates a new
model function in the current folder that contains the network architecture. Specify the name of the
model function as alexnetFcn.

net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

importONNXFunction labels the parameters of the imported network as Learnables (parameters
that are updated during training) or Nonlearnables (parameters that remain unchanged during
training). The labeling is not always accurate. A recommended practice is to check if the parameters
are assigned to the correct structure params.Learnables or params.Nonlearnables. Display the
learnable and nonlearnable parameters of the imported network.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
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        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc7_Stride: [1×2 dlarray]
      fc7_DilationFactor: [1×2 dlarray]
             fc7_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]

Note that params.Learnables contains the parameter data_Mean, which should remain
unchanged during training. Convert data_Mean to a nonlearnable parameter. The
freezeParameters function removes the parameter data_Mean from param.Learnables and
adds it to params.Nonlearnables sequentially.

params = freezeParameters(params,'data_Mean');

Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
    conv1_W: [11×11×3×96 dlarray]
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    conv1_B: [96×1 dlarray]
    conv2_W: [5×5×48×256 dlarray]
    conv2_B: [256×1 dlarray]
    conv3_W: [3×3×256×384 dlarray]
    conv3_B: [384×1 dlarray]
    conv4_W: [3×3×192×384 dlarray]
    conv4_B: [384×1 dlarray]
    conv5_W: [3×3×192×256 dlarray]
    conv5_B: [256×1 dlarray]
      fc6_W: [6×6×256×4096 dlarray]
      fc6_B: [4096×1 dlarray]
      fc7_W: [1×1×4096×4096 dlarray]
      fc7_B: [4096×1 dlarray]
      fc8_W: [1×1×4096×1000 dlarray]
      fc8_B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc7_Stride: [1×2 dlarray]
      fc7_DilationFactor: [1×2 dlarray]
             fc7_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]
               data_Mean: [227×227×3 dlarray]
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Tips
• The following rules apply when you assign a new value to a params.Learnables parameter:

• The software automatically converts the new value to a dlarray.
• The new value must be compatible with the existing value of params.NumDimensions.

• importONNXFunction derives the field names of the structures Learnables, Nonlearnables,
and State from the names in the imported ONNX model file. The field names might differ
between imported networks.

See Also
importONNXFunction

Topics
“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”

Introduced in R2020b
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partition
Partition a minibatchqueue

Syntax
submbq = partition(mbq,numParts,indx)

Description
submbq = partition(mbq,numParts,indx) partitions minibatchqueue mbq into numParts
parts and returns the partition corresponding to the index indx. The properties of submbq are the
same as the properties of mbq.

The output minibatchqueue only has access to the partition of data it is given when it is created.
Using reset with submbq resets the minibatchqueue to the start of the data partition. Using
shuffle with submbq shuffles only the partitioned data. If you want to shuffle the data across
multiple partitions, you must shuffle the original minibatchqueue and then re-partition.

Examples

Partition minibatchqueue

Use the partition function to divide a minibatchqueue into three parts.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Partition the minibatchqueue into three parts and return the first partition.

sub1 = partition(mbq,3,1)

sub1 = 
minibatchqueue with 1 output and properties:
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   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

sub1 contains approximately the first third of the data in mbq.

Partition a minibatchqueue in Parallel

Use the partition function to divide a minibatchqueue into three parts.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Partition the minibatchqueue into three parts on three workers in a parallel pool. Iterate over the
data on each worker.

numWorkers = 3;
p = parpool('local',numWorkers);
parfor i=1:3
    submbq = partition(mbq,3,i);
    while hasdata(submbq)
        data = next(submbq);
    end
end

Each worker has access to a subset of the data in the original minibatchqueue.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue
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Queue of mini-batches, specified as a minibatchqueue object.

numParts — Number of partitions
numeric scalar

Number of partitions, specified as a numeric scalar.

indx — Partition index
numeric scalar

Partition index, specified as a numeric scalar.

Output Arguments
submbq — Output minibatchqueue
minibatchqueue

Output minibatchqueue. submbq contains subset of the data in mbq The properties of submbq are
the same as the properties of mbq.

See Also
minibatchqueue | next | reset | shuffle

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2020b
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partitionByIndex
Partition augmentedImageDatastore according to indices

Syntax
auimds2 = partitionByIndex(auimds,ind)

Description
auimds2 = partitionByIndex(auimds,ind) partitions a subset of observations in an
augmented image datastore, auimds, into a new datastore, auimds2. The desired observations are
specified by indices, ind.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
auimds2 — Output datastore
augmentedImageDatastore object

Output datastore, returned as an augmentedImageDatastore object containing a subset of files
from auimds.

See Also
read | readByIndex | readall

Introduced in R2018a
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PlaceholderLayer
Layer replacing an unsupported Keras layer, ONNX layer, or unsupported functionality from
functionToLayerGraph

Description
PlaceholderLayer is a layer that importKerasLayers and importONNXLayers insert into a
layer array or layer graph in place of an unsupported Keras or ONNX layer. It can also represent
unsupported functionality from functionToLayerGraph.

Creation
Importing layers from a Keras or ONNX network that has layers that are not supported by Deep
Learning Toolbox creates PlaceholderLayer objects. Also, when you create a layer graph using
functionToLayerGraph, unsupported functionality leads to PlaceholderLayer objects.

Properties
Name — Layer name
character vector | string scalar

Layer name, specified as a character vector or a string scalar.
Data Types: char | string

Description — Layer description
character vector | string scalar

Layer description, specified as a character vector or a string scalar.
Data Types: char | string

Type — Layer type
character vector | string scalar

Layer type, specified as a character vector or a string scalar.
Data Types: char | string

KerasConfiguration — Keras configuration of layer
structure

Keras configuration of a layer, specified as a structure. The fields of the structure depend on the layer
type.

Note This property only exists if the layer was created when importing a Keras network.

Data Types: struct
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ONNXNode — ONNX configuration of layer
structure

ONNX configuration of a layer, specified as a structure. The fields of the structure depend on the
layer type.

Note This property only exists if the layer was created when importing an ONNX network.

Data Types: struct

Weights — Imported weights
structure

Imported weights, specified as a structure.
Data Types: struct

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by
Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a
placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not yet supported by the Deep Learning
Toolbox. They have been replaced by placeholder layers. To find these layers, call the function
findPlaceholderLayers on the returned object. 
> In nnet.internal.cnn.keras.importKerasLayers (line 26)
  In importKerasLayers (line 102) 

lgraph = 

  LayerGraph with properties:

         Layers: [15×1 nnet.cnn.layer.Layer]
    Connections: [15×2 table]

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers
in the Keras network.

lgraph.Layers

ans = 

  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'gaussian_noise_1'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     7   'gaussian_noise_2'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
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     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1_softmax'               Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two
placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the
Keras network.

placeholders = findPlaceholderLayers(lgraph)

placeholders = 

  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration
gaussian2.KerasConfiguration

ans = 

  struct with fields:

    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = 

  struct with fields:

    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.
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The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
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         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")
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Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
      OutputSize: 10

   Hyperparameters
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    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

See Also
assembleNetwork | findPlaceholderLayers | functionToLayerGraph | importKerasLayers
| importONNXLayers

Topics
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”

Introduced in R2017b
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plot
Plot neural network layer graph

Syntax
plot(lgraph)
plot(net)

Description
plot(lgraph) plots a diagram of the layer graph lgraph. The plot function labels each layer by its
name and displays all layer connections.

Tip To analyze the network architecture and create an interactive network visualization, use
analyzeNetwork.

plot(net) plots a diagram of the network net.

Examples

Plot Layer Graph

Create a layer graph from an array of layers. Connect the 'relu_1' layer to the 'add' layer.

layers = [
    imageInputLayer([32 32 3],'Name','input')   
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2') 
    additionLayer(2,'Name','add')];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'relu_1','add/in2');

Plot the layer graph.

figure
plot(lgraph);
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Plot DAG Network

Load a pretrained GoogLeNet convolutional neural network as a DAGNetwork object. If the Deep
Learning Toolbox™ Model for GoogLeNet Network support package is not installed, then the
software provides a download link.

net = googlenet

net = 
  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]

Plot the network.

figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(net)
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Plot Series Network

Load a pretrained AlexNet convolutional neural network as a SeriesNetwork object. If the Deep
Learning Toolbox™ Model for AlexNet Network support package is not installed, then the software
provides a download link.

net = alexnet

net = 
  SeriesNetwork with properties:

         Layers: [25x1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

Plot the network.

plot(net)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Network architecture
SeriesNetwork object | DagNetworkobject

Network architecture, specified as a SeriesNetwork or a DAGNetwork object.

See Also
addLayers | analyzeNetwork | connectLayers | disconnectLayers | layerGraph |
removeLayers | replaceLayer

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
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predict
Predict responses using a trained deep learning neural network

Syntax
YPred = predict(net,imds)
YPred = predict(net,ds)
YPred = predict(net,tbl)

YPred = predict(net,X)
YPred = predict(net,X1,...,XN)

[YPred1,...,YPredM] = predict( ___ )

YPred = predict(net,sequences)

___  = predict( ___ ,Name,Value)

Description
You can make predictions using a trained neural network for deep learning on either a CPU or GPU.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute
capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment
name-value pair argument.

YPred = predict(net,imds) predicts responses for the image data in imds using the trained
SeriesNetwork or DAGNetwork object net. For dlnetwork input, see predict.

YPred = predict(net,ds) predicts responses for the data in the datastore ds.

YPred = predict(net,tbl) predicts responses for the data in the table tbl.

YPred = predict(net,X) predicts responses for the image or feature data in the numeric array X.

YPred = predict(net,X1,...,XN) predicts responses for the data in the numeric arrays X1, …,
XN for the mutli-input network net. The input Xi corresponds to the network input
net.InputNames(i).

[YPred1,...,YPredM] = predict( ___ ) predicts responses for the M outputs of a multi-output
network using any of the previous syntaxes. The output YPredj corresponds to the network output
net.OutputNames(j). To return categorical outputs for the classification output layers, set the
'ReturnCategorical' option to true.

YPred = predict(net,sequences) predicts responses for the sequence or time series data in
sequences using the trained recurrent network (for example, an LSTM or GRU network) net.

___  = predict( ___ ,Name,Value) predicts responses with additional options specified by one
or more name-value pair arguments.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using

 predict
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different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Predict Output Scores Using a Trained ConvNet

Load the sample data.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels
and 5000 is the number of synthetic images of handwritten digits. YTrain is a categorical vector
containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng('default')
net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:00 |       10.16% |       2.3195 |          0.0100 |
|       2 |          50 |       00:00:04 |       50.78% |       1.7102 |          0.0100 |
|       3 |         100 |       00:00:10 |       63.28% |       1.1632 |          0.0100 |
|       4 |         150 |       00:00:19 |       60.16% |       1.0859 |          0.0100 |
|       6 |         200 |       00:00:28 |       68.75% |       0.8997 |          0.0100 |
|       7 |         250 |       00:00:42 |       76.56% |       0.7920 |          0.0100 |
|       8 |         300 |       00:00:52 |       73.44% |       0.8410 |          0.0100 |
|       9 |         350 |       00:01:02 |       81.25% |       0.5512 |          0.0100 |
|      11 |         400 |       00:01:12 |       90.63% |       0.4742 |          0.0100 |
|      12 |         450 |       00:01:22 |       92.19% |       0.3615 |          0.0100 |
|      13 |         500 |       00:01:31 |       94.53% |       0.3160 |          0.0100 |
|      15 |         550 |       00:01:46 |       96.09% |       0.2545 |          0.0100 |
|      16 |         600 |       00:02:00 |       92.19% |       0.2765 |          0.0100 |
|      17 |         650 |       00:02:12 |       95.31% |       0.2461 |          0.0100 |
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|      18 |         700 |       00:02:25 |       99.22% |       0.1420 |          0.0100 |
|      20 |         750 |       00:02:35 |       98.44% |       0.1000 |          0.0100 |
|      21 |         800 |       00:02:44 |       98.44% |       0.1449 |          0.0100 |
|      22 |         850 |       00:02:54 |       98.44% |       0.0989 |          0.0100 |
|      24 |         900 |       00:03:04 |       96.88% |       0.1315 |          0.0100 |
|      25 |         950 |       00:03:14 |      100.00% |       0.0859 |          0.0100 |
|      26 |        1000 |       00:03:22 |      100.00% |       0.0701 |          0.0100 |
|      27 |        1050 |       00:03:32 |      100.00% |       0.0759 |          0.0100 |
|      29 |        1100 |       00:03:41 |       99.22% |       0.0663 |          0.0100 |
|      30 |        1150 |       00:03:51 |       98.44% |       0.0775 |          0.0100 |
|      30 |        1170 |       00:03:55 |       99.22% |       0.0732 |          0.0100 |
|========================================================================================|

Run the trained network on a test set and predict the scores.

[XTest,YTest] = digitTest4DArrayData;
YPred = predict(net,XTest);

predict, by default, uses a CUDA® enabled GPU with compute capability 3.0, when available. You
can also choose to run predict on a CPU using the 'ExecutionEnvironment','cpu' name-value
pair argument.

Display the first 10 images in the test data and compare to the predictions from predict.

YTest(1:10,:)

ans = 10x1 categorical
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 

YPred(1:10,:)

ans = 10x10 single matrix

    0.9978    0.0001    0.0008    0.0002    0.0003    0.0000    0.0004    0.0000    0.0002    0.0003
    0.8881    0.0000    0.0473    0.0001    0.0000    0.0002    0.0029    0.0001    0.0014    0.0599
    0.9998    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0001
    0.9814    0.0000    0.0000    0.0000    0.0000    0.0000    0.0046    0.0000    0.0011    0.0128
    0.9748    0.0000    0.0133    0.0003    0.0000    0.0000    0.0002    0.0004    0.0111    0.0001
    0.9873    0.0000    0.0001    0.0000    0.0000    0.0000    0.0007    0.0000    0.0072    0.0046
    0.9981    0.0000    0.0000    0.0000    0.0000    0.0000    0.0018    0.0000    0.0000    0.0000
    1.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
    0.9266    0.0000    0.0046    0.0000    0.0006    0.0009    0.0001    0.0000    0.0018    0.0654
    0.9328    0.0000    0.0139    0.0012    0.0001    0.0001    0.0378    0.0000    0.0110    0.0031

YTest contains the digits corresponding to the images in XTest. The columns of YPred contain
predict’s estimation of a probability that an image contains a particular digit. That is, the first
column contains the probability estimate that the given image is digit 0, the second column contains

 predict
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the probability estimate that the image is digit 1, the third column contains the probability estimate
that the image is digit 2, and so on. You can see that predict’s estimation of probabilities for the
correct digits are almost 1 and the probability for any other digit is almost 0. predict correctly
estimates the first 10 observations as digit 0.

Predict Output Scores Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the
Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by
sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Make predictions on the test data.

YPred = predict(net,XTest);

View the prediction scores for the first 10 sequences.

YPred(1:10,:)

ans = 10x9 single matrix

    0.9918    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0006    0.0059
    0.9868    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0010    0.0105
    0.9924    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0006    0.0054
    0.9896    0.0000    0.0000    0.0000    0.0006    0.0009    0.0001    0.0007    0.0080
    0.9965    0.0000    0.0000    0.0000    0.0007    0.0009    0.0000    0.0003    0.0016
    0.9888    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0008    0.0087
    0.9886    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0008    0.0089
    0.9982    0.0000    0.0000    0.0000    0.0006    0.0007    0.0000    0.0001    0.0004
    0.9883    0.0000    0.0000    0.0000    0.0006    0.0010    0.0001    0.0008    0.0093
    0.9959    0.0000    0.0000    0.0000    0.0007    0.0011    0.0000    0.0004    0.0019

Compare these prediction scores to the labels of these sequences. The function assigns high
prediction scores to the correct class.

YTest(1:10)
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ans = 10x1 categorical
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

ds — Datastore
datastore

Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a
cell array. The format of the datastore output depends on the network architecture.

 predict

1-799



Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depend on the type of data.

Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.
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Data Format of Predictors
2-D image sequence h-by-w-by-c-by-s array, where h, w, and c

correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data
numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of
input:

Input Description
2-D images A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width,

and number of channels of the images, respectively, and N is the number of
images.

3-D images A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height,
width, depth, and number of channels of the images, respectively, and N is
the number of images.

Features A N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input
data.

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, …, XN, where N is the number
of network inputs and the input Xi corresponds to the network input net.InputNames(i).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.
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Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

tbl — Table of image or feature data
table

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

Input Predictors
Image data • Absolute or relative file path to an image,

specified as a character vector in a single
column

• Image specified as a 3-D numeric array

Specify predictors in a single column.
Feature data Numeric scalar.

Specify predictors in numFeatures columns of
the table, where numFeatures is the number of
features of the input data.

This argument supports networks with a single input only.
Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pair of Name,Value argument. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').
Example: 'MiniBatchSize',256 specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.
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When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.
Example: 'MiniBatchSize',256

Acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with
compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler
installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the
support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup”
(GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers”
(GPU Coder). Recurrent neural networks (RNNs) containing a sequenceInputLayer are not
supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler to deploy your network when using the 'mex' option.
Example: 'Acceleration','mex'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
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• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled
NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

ReturnCategorical — Option to return categorical labels
false (default) | true

Option to return categorical labels, specified as true or false.

If ReturnCategorical is true, then the function returns categorical labels for classification output
layers. Otherwise, the function returns the prediction scores for classification output layers.

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
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steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

Output Arguments
YPred — Predicted scores or responses
matrix | 4-D numeric array | cell array of matrices

Predicted scores or responses, returned as a matrix, a 4-D numeric array, or a cell array of matrices.
The format of YPred depends on the type of problem.

The following table describes the format for classification problems.

Task Format
Image classification N-by-K matrix, where N is the number of

observations, and K is the number of classesSequence-to-label classification
Feature classification
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequenceLength option to
each mini-batch independently.

The following table describes the format for regression problems.

Task Format
2-D image regression • N-by-R matrix, where N is the number of

images and R is the number of responses.
• h-by-w-by-c-by-N numeric array, where h, w,

and c are the height, width, and number of
channels of the images, respectively, and N is
the number of images.
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Task Format
3-D image regression • N-by-R matrix, where N is the number of

images and R is the number of responses.
• h-by-w-by-d-by-c-by-N numeric array, where h,

w, d, and c are the height, width, depth, and
number of channels of the images,
respectively, and N is the number of images.

Sequence-to-one regression N-by-R matrix, where N is the number of
sequences and R is the number of responses.

Sequence-to-sequence regression N-by-1 cell array of numeric sequences, where N
is the number of sequences. The sequences are
matrices with R rows, where R is the number of
responses. Each sequence has the same number
of time steps as the corresponding input
sequence after applying the SequenceLength
option to each mini-batch independently.

For sequence-to-sequence regression tasks with
one observation, sequences can be a matrix. In
this case, YPred is a matrix of responses.

Feature regression N-by-R matrix, where N is the number of
observations and R is the number of responses.

For sequence-to-sequence regression problems with one observation, sequences can be a matrix. In
this case, YPred is a matrix of responses.

Algorithms
If the image data contains NaNs, predict propagates them through the network. If the network has
ReLU layers, these layers ignore NaNs. However, if the network does not have a ReLU layer, then
predict returns NaNs as predictions.

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

Alternatives
You can compute the predicted scores and the predicted classes from a trained network using
classify.

You can also compute the activations from a network layer using activations.

For sequence-to-label and sequence-to-sequence classification networks (for example, LSTM
networks), you can make predictions and update the network state using
classifyAndUpdateState and predictAndUpdateState.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the syntax YPred = predict(net,X) is supported.
• The input X must not have a variable size. The size must be fixed at code generation time.

For more information about generating code for deep learning neural networks, see “Workflow for
Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• YPred = predict(net,X)
• [YPred1,...,YPredM] = predict(__)
• YPred = predict(net,sequences)
• __ = predict(__,Name,Value)

• The input X must not have variable size. The size must be fixed at code generation time.
• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only

vector input sequences. The ARM Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the 'MiniBatchSize', 'ReturnCategorical', 'SequenceLength',
'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments
are supported for code generation. All name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is
supported for code generation.

• GPU code generation for the predict function supports inputs that are defined as half-precision
floating point data types. For more information, see half.

 predict

1-807



See Also
activations | classify | classifyAndUpdateState | predictAndUpdateState

Introduced in R2016a
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predictAndUpdateState
Predict responses using a trained recurrent neural network and update the network state

Syntax
[updatedNet,YPred] = predictAndUpdateState(recNet,sequences)
[updatedNet,YPred] = predictAndUpdateState( ___ ,Name,Value)

Description
You can make predictions using a trained deep learning network on either a CPU or GPU. Using a
GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability
3.0 or higher. Specify the hardware requirements using the “'ExecutionEnvironment'” on page 1-0
name-value pair argument.

[updatedNet,YPred] = predictAndUpdateState(recNet,sequences) predicts responses for
data in sequences using the trained recurrent neural network recNet and updates the network
state.

This function supports recurrent neural networks only. The input recNet must have at least one
recurrent layer.

[updatedNet,YPred] = predictAndUpdateState( ___ ,Name,Value) uses any of the
arguments in the previous syntaxes and additional options specified by one or more Name,Value pair
arguments. For example, 'MiniBatchSize',27 makes predictions using mini-batches of size 27.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Predict and Update Network State

Predict responses using a trained recurrent neural network and update the network state.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:
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     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Predict the scores of each time step and update the network
state.

X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,score] = predictAndUpdateState(net,v);
    scores(:,i) = score;
end

Plot the prediction scores. The plot shows how the prediction scores change between time steps.

classNames = string(net.Layers(end).Classes);
figure
lines = plot(scores');
xlim([1 numTimeSteps])
legend("Class " + classNames,'Location','northwest')
xlabel("Time Step")
ylabel("Score")
title("Prediction Scores Over Time Steps")

Highlight the prediction scores over time steps for the correct class.

trueLabel = YTest(94)

trueLabel = categorical
     3 

lines(trueLabel).LineWidth = 3;
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Display the final time step prediction in a bar chart.

figure
bar(score)
title("Final Prediction Scores")
xlabel("Class")
ylabel("Score")
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Input Arguments
recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.
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Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [updatedNet, YPred] =
predictAndUpdateState(recNet,C,'MiniBatchSize',27) makes predictions using mini-
batches of size 27.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When making predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.
Example: 'MiniBatchSize',256

Acceleration — Performance optimization
'auto' (default) | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resource.

• 'none' — Disable all acceleration.

The default option is 'auto'.
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Using the 'Acceleration' option 'auto' can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using new input data.
Example: 'Acceleration','auto'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment'
and one of the following:

• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled

NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable
GPU is not available, then the software returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
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pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

Output Arguments
updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

YPred — Predicted scores or responses
matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of YPred
depends on the type of problem.

The following table describes the format for classification problems.

Task Format
Sequence-to-label classification N-by-K matrix, where N is the number of

observations, and K is the number of classes.
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequenceLength option to
each mini-batch independently.

For sequence-to-sequence classification problems with one observation, sequences can be a matrix.
In this case, YPred is a K-by-S matrix of scores, where K is the number of classes, and S is the total
number of time steps in the corresponding input sequence.

The following table describes the format for regression problems.
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Task Format
Sequence-to-one regression N-by-R matrix, where N is the number of

observations and R is the number of responses.
Sequence-to-sequence regression N-by-1 cell array of numeric sequences, where N

is the number of observations. The sequences are
matrices with R rows, where R is the number of
responses. Each sequence has the same number
of time steps as the corresponding input
sequence after applying the SequenceLength
option to each mini-batch independently.

For sequence-to-sequence problems with one
observation, sequences can be a matrix. In this
case, YPred is a matrix of responses.

Algorithms
All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• [updatedNet,YPred] = predictAndUpdateState(recNet,sequences)
• [updatedNet,YPred] = predictAndUpdateState(__,Name,Value)

• GPU code generation for the predictAndUpdateState function is only supported for recurrent
neural networks and cuDNN target library.

• The cuDNN library supports vector and 2-D image sequences.
• For vector sequence inputs, the number of features must be a constant during code generation.

The sequence length can be variable sized.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
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• Only the 'MiniBatchSize', 'SequenceLength', 'SequencePaddingDirection', and
'SequencePaddingValue' name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is
supported for code generation.

See Also
bilstmLayer | classify | classifyAndUpdateState | gruLayer | lstmLayer | predict |
resetState | sequenceInputLayer

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Deep Learning in MATLAB”

Introduced in R2017b
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read
Read data from augmentedImageDatastore

Syntax
data = read(auimds)
[data,info] = read(auimds)

Description
data = read(auimds) returns a batch of data from an augmented image datastore, auimds.
Subsequent calls to the read function continue reading from the endpoint of the previous call.

[data,info] = read(auimds) also returns information about the extracted data, including
metadata, in info.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object. The datastore
specifies a MiniBatchSize number of observations in each batch, and a numObservations total
number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows.

For the last batch of data in the datastore auimds, if numObservations is not cleanly divisible by
MiniBatchSize, then read returns a partial batch containing all the remaining observations in the
datastore.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
Filename Filename is a fully resolved path containing the path

string, name of the file, and file extension.
FileSize Total file size, in bytes. For MAT-files, FileSize is

the total number of key-value pairs in the file.
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See Also
read (Datastore) | readByIndex | readall

Introduced in R2018a
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readByIndex
Read data specified by index from augmentedImageDatastore

Syntax
data = readByIndex(auimds,ind)
[data,info] = readByIndex(auimds,ind)

Description
data = readByIndex(auimds,ind) returns a subset of observations from an augmented image
datastore, auimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(auimds,ind) also returns information about the observations,
including metadata, in info.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array with the following fields.

Field Name Description
MiniBatchIndices Numeric vector of indices.

See Also
partitionByIndex | read | readall

Introduced in R2018a
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regressionLayer
Create a regression output layer

Syntax
layer = regressionLayer
layer = regressionLayer(Name,Value)

Description
A regression layer computes the half-mean-squared-error loss for regression problems.

layer = regressionLayer returns a regression output layer for a neural network as a
RegressionOutputLayer object.

Predict responses of a trained regression network using predict. Normalizing the responses often
helps stabilizing and speeding up training of neural networks for regression. For more information,
see “Train Convolutional Neural Network for Regression”.

layer = regressionLayer(Name,Value) sets the optional Name and ResponseNames properties
using name-value pairs. For example, regressionLayer('Name','output') creates a regression
layer with the name 'output'. Enclose each property name in single quotes.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')

layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
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layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution         25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: regressionLayer('Name','output') creates a regression layer with the name
'output'

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

ResponseNames — Names of responses
{} (default) | cell array of character vectors | string array

Names of the responses, specified a cell array of character vectors or a string array. At training time,
the software automatically sets the response names according to the training data. The default is {}.
Data Types: cell

Output Arguments
layer — Regression output layer
RegressionOutputLayer object

Regression output layer, returned as a RegressionOutputLayer object.

More About
Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression problems. For typical
regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:
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MSE =∑
i = 1

R
(ti− yi)

2

R ,

where R is the number of responses, ti is the target output, and yi is the network’s prediction for
response i.

For image and sequence-to-one regression networks, the loss function of the regression layer is the
half-mean-squared-error of the predicted responses, not normalized by R:

loss = 1
2∑

i = 1

R

(ti− yi)
2 .

For image-to-image regression networks, the loss function of the regression layer is the half-mean-
squared-error of the predicted responses for each pixel, not normalized by R:

loss = 1
2∑

p = 1

HWC

(tp− yp)2,

where H, W, and C denote the height, width, and number of channels of the output respectively, and p
indexes into each element (pixel) of t and y linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-
mean-squared-error of the predicted responses for each time step, not normalized by R:

loss = 1
2S∑

i = 1

S

∑
j = 1

R

(ti j− yi j)2,

where S is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
RegressionOutputLayer | classificationLayer | fullyConnectedLayer

Topics
“Deep Learning in MATLAB”
“Train Convolutional Neural Network for Regression”
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Introduced in R2017a
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RegressionOutputLayer
Regression output layer

Description
A regression layer computes the half-mean-squared-error loss for regression problems.

Creation
Create a regression output layer using regressionLayer.

Properties
Regression Output

ResponseNames — Names of responses
{} (default) | cell array of character vectors | string array

Names of the responses, specified a cell array of character vectors or a string array. At training time,
the software automatically sets the response names according to the training data. The default is {}.
Data Types: cell

LossFunction — Loss function for training
'mean-squared-error'

Loss function the software uses for training, specified as 'mean-squared-error'.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

 RegressionOutputLayer

1-825



Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.
Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.
Data Types: cell

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')

layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution         25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error
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More About
Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression problems. For typical
regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:

MSE =∑
i = 1

R
(ti− yi)

2

R ,

where R is the number of responses, ti is the target output, and yi is the network’s prediction for
response i.

For image and sequence-to-one regression networks, the loss function of the regression layer is the
half-mean-squared-error of the predicted responses, not normalized by R:

loss = 1
2∑

i = 1

R

(ti− yi)
2 .

For image-to-image regression networks, the loss function of the regression layer is the half-mean-
squared-error of the predicted responses for each pixel, not normalized by R:

loss = 1
2∑

p = 1

HWC

(tp− yp)2,

where H, W, and C denote the height, width, and number of channels of the output respectively, and p
indexes into each element (pixel) of t and y linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-
mean-squared-error of the predicted responses for each time step, not normalized by R:

loss = 1
2S∑

i = 1

S

∑
j = 1

R

(ti j− yi j)2,

where S is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

See Also
classificationLayer | fullyConnectedLayer | regressionLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
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“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017a
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reset
Reset minibatchqueue to start of data

Syntax
reset(mbq)

Description
reset(mbq) resets mbq back to the start of the underlying datastore.

Examples

Reset minibatchqueue and Obtain More Mini-Batches

You can call next on a minibatchqueue until all data is returned. When you reach the end of the
data, use reset to reset the minibatchqueue and continue obtaining mini-batches with next.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Iterate over all data in the minibatchqueue. Use hasdata to check if data is still available.

while hasdata(mbq)
    [~] = next(mbq);
end

When hasdata returns false, you cannot collect a mini-batch using next.

hasdata(mbq)

ans = 
   0

X = next(mbq);
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Error using minibatchqueue/next (line 353)
Unable to provide a mini-batch because end of data reached. Use reset or shuffle to continue generating mini-batches from the data set.

Reset the minibatchqueue. Now, hasdata returns true, and you can continue to obtain data using
next.

reset(mbq);
hasdata(mbq)

ans = 
   1

X = next(mbq);

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

See Also
hasdata | minibatchqueue | next | shuffle

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2020b
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resetState
Reset the state of a recurrent neural network

Syntax
updatedNet = resetState(recNet)

Description
updatedNet = resetState(recNet) resets the state of a recurrent neural network (for example,
an LSTM network) to the initial state.

Examples

Reset Network State

Reset the network state between sequence predictions.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Classify a sequence and update the network state. For reproducibility, set rng to 'shuffle'.

rng('shuffle')
X = XTest{94};
[net,label] = classifyAndUpdateState(net,X);
label

label = categorical
     3 
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Classify another sequence using the updated network.

X = XTest{1};
label = classify(net,X)

label = categorical
     7 

Compare the final prediction with the true label.

trueLabel = YTest(1)

trueLabel = categorical
     1 

The updated state of the network may have negatively influenced the classification. Reset the
network state and predict on the sequence again.

net = resetState(net);
label = classify(net,XTest{1})

label = categorical
     1 

Input Arguments
recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network). If the input network is not a recurrent network, then the function has no effect and
returns the input network.

Output Arguments
updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

If the input network is not a recurrent network, then the function has no effect and returns the input
network.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.
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[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for the resetState function is only supported for recurrent neural
networks and cuDNN target library.

See Also
bilstmLayer | classifyAndUpdateState | gruLayer | lstmLayer | predictAndUpdateState
| sequenceInputLayer

Topics
“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”

Introduced in R2017b
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rmspropupdate
Update parameters using root mean squared propagation (RMSProp)

Syntax
[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad)
[ ___ ] = rmspropupdate( ___ learnRate,sqGradDecay,epsilon)

Description
Update the network learnable parameters in a custom training loop using the root mean squared
propagation (RMSProp) algorithm.

Note This function applies the RMSProp optimization algorithm to update network parameters in
custom training loops that use networks defined as dlnetwork objects or model functions. If you
want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsRMSProp object using the trainingOptions function.
• Use the TrainingOptionsRMSProp object with the trainNetwork function.

[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad) updates the
learnable parameters of the network dlnet using the RMSProp algorithm. Use this syntax in a
training loop to iteratively update a network defined as a dlnetwork object.

[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad) updates the
learnable parameters in params using the RMSProp algorithm. Use this syntax in a training loop to
iteratively update the learnable parameters of a network defined using functions.

[ ___ ] = rmspropupdate( ___ learnRate,sqGradDecay,epsilon) also specifies values to use
for the global learning rate, square gradient decay, and small constant epsilon, in addition to the
input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using rmspropupdate

Perform a single root mean squared propagation update step with a global learning rate of 0.05 and
squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the average squared gradient for the first iteration.
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averageSqGrad = [];

Specify custom values for the global learning rate and squared gradient decay factor.

learnRate = 0.05;
sqGradDecay = 0.95;

Update the learnable parameters using rmspropupdate.
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,learnRate,sqGradDecay);

Train a Network Using rmspropupdate

Use rmspropupdate to train a network using the root mean squared propagation (RMSProp)
algorithm.

Load Training Data

Load the digits training data.

[XTrain,YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
numClasses = numel(classes);

Define the Network

Define the network architecture and specify the average image value using the 'Mean' option in the
image input layer.

layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Define Model Gradients Function

Create the helper function modelGradients, listed at the end of the example. The function takes a
dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and
returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
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numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU with compute capability 3.0 or higher.

executionEnvironment = "auto";

Visualize the training progress in a plot.

plots = "training-progress";

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the rmspropupdate function. At the end of
each epoch, display the training progress.

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Initialize the squared average gradients.

averageSqGrad = [];

Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(idx);
    
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);
        
        Y = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y(c,YTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to a dlarray.
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        dlX = dlarray(single(X),'SSCB');
        
        % If training on a GPU, then convert data to a gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients helper function.
        [gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);
        
        % Update the network parameters using the RMSProp optimizer.
        [dlnet,averageSqGrad] = rmspropupdate(dlnet,gradients,averageSqGrad);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end
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Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest, YTest] = digitTest4DArrayData;

Convert the data to a dlarray with dimension format 'SSCB'. For GPU prediction, also convert the
data to a gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YPred==YTest)

accuracy = 0.9860

Model Gradients Function

The helper function modelGradients takes a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect
to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient
function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)

dlYPred = forward(dlnet,dlX);

loss = crossentropy(dlYPred,Y);

gradients = dlgradient(loss,dlnet.Learnables);

end

Input Arguments
dlnet — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.
dlnet.Learnables is a table with three variables:

• Layer — Layer name, specified as a string scalar.
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• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as dlnet.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

grad — Gradients of loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to rmspropupdate.

Input Learnable Parameters Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables. grad
must have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params
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Input Learnable Parameters Gradients
Structure Structure with the same data

types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageSqGrad — Moving average of squared parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric
array, a cell array, a structure, or a table.

The exact form of averageSqGrad depends on the input network or learnable parameters. The
following table shows the required format for averageSqGrad for possible inputs to
rmspropupdate.

Input Learnable Parameters Average Squared Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables.
averageSqGrad must have a
Value variable consisting of cell
arrays that contain the average
squared gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params
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Input Learnable Parameters Average Squared Gradients
Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. averageSqGrad must
have a Value variable
consisting of cell arrays that
contain the average squared
gradient of each learnable
parameter.

If you specify averageSqGrad as an empty array, the function assumes no previous gradients and
runs in the same way as for the first update in a series of iterations. To update the learnable
parameters iteratively, use the averageSqGrad output of a previous call to rmspropupdate as the
averageSqGrad input.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the
global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

sqGradDecay — Squared gradient decay factor
0.9 (default) | positive scalar between 0 and 1.

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of
sqGradDecay is 0.9.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of
epsilon is 1e-8.

Output Arguments
dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table
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Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a
cell array, a structure, or a table.

More About
RMSProp

The function uses the root mean squared propagation algorithm to update the learnable parameters.
For more information, see the definition of the RMSProp algorithm under “Stochastic Gradient
Descent” on page 1-992 on the trainingOptions reference page.

Compatibility Considerations
rmspropupdate squared gradient decay factor default is 0.9
Behavior changed in R2020a

Starting in R2020a, the default value of the squared gradient decay factor in rmspropupdate is 0.9.
In previous versions, the default value was 0.999. To reproduce the previous default behavior, use
one of the following syntaxes:

[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad,0.001,0.999)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,0.001,0.999)

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• grad
• averageSqGrad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
adamupdate | dlarray | dlfeval | dlgradient | dlnetwork | dlupdate | forward |
sgdmupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”

Introduced in R2019b
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relu
Apply rectified linear unit activation

Syntax
dlY = relu(dlX)

Description
The rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation, where
any input value less than zero is set to zero.

This operation is equivalent to

f (x) =
x, x > 0
0, x ≤ 0.

Note This function applies the ReLU operation to dlarray data. If you want to apply ReLU
activation within a layerGraph object or Layer array, use the following layer:

• reluLayer

dlY = relu(dlX) computes the ReLU activation of the input dlX by applying a threshold operation.
All values in dlX that are less than zero are set to zero.

Examples

Apply ReLU Activation

Use the relu function to set negative values in the input data to zero.

Create the input data as a single observation of random values with a height and width of 12 and 32
channels.

height = 12;
width = 12;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Compute the leaky ReLU activation.

dlY = relu(dlX);
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All negative values in dlX are now set to 0.

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels.
Data Types: single | double

Output Arguments
dlY — ReLU activations
dlarray

ReLU activations, returned as a dlarray. The output dlY has the same underlying data type as the
input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlconv | dlfeval | dlgradient | leakyrelu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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reluLayer
Rectified Linear Unit (ReLU) layer

Description
A ReLU layer performs a threshold operation to each element of the input, where any value less than
zero is set to zero.

This operation is equivalent to

f x =
x, x ≥ 0
0, x < 0

.

Creation

Syntax
layer = reluLayer
layer = reluLayer('Name',Name)

Description

layer = reluLayer creates a ReLU layer.

layer = reluLayer('Name',Name) creates a ReLU layer and sets the optional Name property
using a name-value pair. For example, reluLayer('Name','relu1') creates a ReLU layer with the
name 'relu1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)
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Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create ReLU Layer

Create a ReLU layer with the name 'relu1'.

layer = reluLayer('Name','relu1')

layer = 
  ReLULayer with properties:

    Name: 'relu1'

Include a ReLU layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex
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More About
ReLU Layer

A ReLU layer performs a threshold operation to each element of the input, where any value less than
zero is set to zero.

Convolutional and batch normalization layers are usually followed by a nonlinear activation function
such as a rectified linear unit (ReLU), specified by a ReLU layer. A ReLU layer performs a threshold
operation to each element, where any input value less than zero is set to zero, that is,

f x =
x, x ≥ 0
0, x < 0

.

The ReLU layer does not change the size of its input.

There are other nonlinear activation layers that perform different operations and can improve the
network accuracy for some applications. For a list of activation layers, see “Activation Layers”.

References
[1] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann

machines." In Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807-814. 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Deep Network Designer | batchNormalizationLayer | clippedReluLayer | leakyReluLayer
| trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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removeLayers
Remove layers from layer graph

Syntax
newlgraph = removeLayers(lgraph,layerNames)

Description
newlgraph = removeLayers(lgraph,layerNames) removes the layers specified by
layerNames from the layer graph lgraph. The function also removes any connections to the
removed layers.

Examples

Remove Layer from Layer Graph

Create a layer graph from an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Remove the 'BN_1' layer and its connections.

lgraph = removeLayers(lgraph,'BN_1');
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

layerNames — Names of layers to remove
character vector | cell array of character vectors | string array

Names of layers to remove, specified as a character vector, a cell array of character vectors, or a
string array.

To remove a single layer from the layer graph, specify the name of the layer.

To remove multiple layers, specify the layer names in an array, where each element of the array is a
layer name.
Example: 'conv1'
Example: {'conv1','add1'}
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Output Arguments
newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also
addLayers | assembleNetwork | connectLayers | disconnectLayers | layerGraph | plot |
replaceLayer

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
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removeParameter
Remove parameter from ONNXParameters object

Syntax
params = removeParameter(params,name)

Description
params = removeParameter(params,name) removes the parameter specified by name from the
ONNXParameters object params.

Examples

Remove Parameters from Imported ONNX Model Function

Import a network saved in the ONNX format as a function and modify the network parameters.

Create an ONNX model from the pretrained alexnet network. Then import alexnet.onnx as a
function. Import the pretrained ONNX network using importONNXFunction, which returns an
ONNXParamaters object that contains the network parameters. The function also creates a new
model function in the current folder that contains the network architecture. Specify the name of the
model function as alexnetFcn.

net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters
that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
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        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc7_Stride: [1×2 dlarray]
      fc7_DilationFactor: [1×2 dlarray]
             fc7_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]

The network has parameters that represent three fully connected layers. You can remove the
parameters of the fully connected layer fc7 to reduce computational complexity. Check the output
dimensions of the previous layer and the input dimensions of the subsequent layer before removing a
middle layer from params.

Remove the parameters of layer fc7 by using removeParameter.

params = removeParameter(params,'fc7_B');
params = removeParameter(params,'fc7_W');
params = removeParameter(params,'fc7_Stride');
params = removeParameter(params,'fc7_DilationFactor');
params = removeParameter(params,'fc7_Padding');

Display the updated learnable and nonlearnable parameters.

params.Learnables
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ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            conv1_Stride: [1×2 dlarray]
    conv1_DilationFactor: [1×2 dlarray]
           conv1_Padding: [1×1 dlarray]
          pool1_PoolSize: [1×2 dlarray]
            pool1_Stride: [1×2 dlarray]
           pool1_Padding: [1×1 dlarray]
            conv2_Stride: [1×2 dlarray]
    conv2_DilationFactor: [1×2 dlarray]
           conv2_Padding: [2×2 dlarray]
          pool2_PoolSize: [1×2 dlarray]
            pool2_Stride: [1×2 dlarray]
           pool2_Padding: [1×1 dlarray]
            conv3_Stride: [1×2 dlarray]
    conv3_DilationFactor: [1×2 dlarray]
           conv3_Padding: [2×2 dlarray]
            conv4_Stride: [1×2 dlarray]
    conv4_DilationFactor: [1×2 dlarray]
           conv4_Padding: [2×2 dlarray]
            conv5_Stride: [1×2 dlarray]
    conv5_DilationFactor: [1×2 dlarray]
           conv5_Padding: [2×2 dlarray]
          pool5_PoolSize: [1×2 dlarray]
            pool5_Stride: [1×2 dlarray]
           pool5_Padding: [1×1 dlarray]
              fc6_Stride: [1×2 dlarray]
      fc6_DilationFactor: [1×2 dlarray]
             fc6_Padding: [1×1 dlarray]
              fc8_Stride: [1×2 dlarray]
      fc8_DilationFactor: [1×2 dlarray]
             fc8_Padding: [1×1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the
network for prediction with the new parameters or retrain the network. Open the model function by
using open alexnetFcn and remove the fully connected layer fc7.
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Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

name — Name of parameter
character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.
Example: 'conv2_W'
Example: 'conv2_Padding'

Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by removeParameter.

See Also
ONNXParameters | addParameter | importONNXFunction

Introduced in R2020b
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replaceLayer
Replace layer in layer graph

Syntax
newlgraph = replaceLayer(lgraph,layerName,larray)
newlgraph = replaceLayer(lgraph,layerName,larray,'ReconnectBy',mode)

Description
newlgraph = replaceLayer(lgraph,layerName,larray) replaces the layer layerName in the
layer graph lgraph with the layers in larray.

replaceLayer connects the layers in larray sequentially and connects larray into the layer
graph.

newlgraph = replaceLayer(lgraph,layerName,larray,'ReconnectBy',mode) additionally
specifies the method of reconnecting layers.

Examples

Replace Layer in Layer Graph

Define a simple network architecture and plot it.

layers = [
    imageInputLayer([28 28 1],'Name','input')    
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    reluLayer('Name','relu_1')    
    additionLayer(2,'Name','add')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classoutput')];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'input','add/in2');

figure
plot(lgraph)
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Replace the ReLU layer in the network with a batch normalization layer followed by a leaky ReLU
layer.

larray = [batchNormalizationLayer('Name','BN1')
          leakyReluLayer('Name','leakyRelu_1','Scale',0.1)];
lgraph = replaceLayer(lgraph,'relu_1',larray);

plot(lgraph)
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Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
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Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000
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Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers
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ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)
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net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

layerName — Name of layer to replace
string scalar | character vector

Name of the layer to replace, specified as a string scalar or a character vector.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

mode — Method to reconnect layers
'name' (default) | 'order'

Method to reconnect layers specified as one of the following:

• 'name' – Reconnect larray using the input and output names of the replaced layer. For each
layer connected to an input of the replaced layer, reconnect the layer to the input of the same
input name of larray(1). For each layer connected to an output of the replaced layer, reconnect
the layer to the output of the same output name of larray(end).

• 'order' – Reconnect larray using the order of the input names of larray(1) and the output
names of larray(end). Reconnect the layer connected to the ith input of the replaced layer to
the ith input of larray(1). Reconnect the layer connected to the jth output of the replaced
layer to the jth output of larray(end).

Data Types: char | string

Output Arguments
newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also
PlaceholderLayer | addLayers | assembleNetwork | connectLayers | disconnectLayers |
findPlaceholderLayers | layerGraph | removeLayers
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Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2018b

 replaceLayer

1-863



resnet18
ResNet-18 convolutional neural network

Syntax
net = resnet18
net = resnet18('Weights','imagenet')

lgraph = resnet18('Weights','none')

Description
ResNet-18 is a convolutional neural network that is 18 layers deep. You can load a pretrained version
of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-18 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-18.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-18 instead of GoogLeNet.

net = resnet18 returns a ResNet-18 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-18 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet18('Weights','imagenet') returns a ResNet-18 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet18.

lgraph = resnet18('Weights','none') returns the untrained ResNet-18 network architecture.
The untrained model does not require the support package.

Examples

Download ResNet-18 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-18 Network support package.

Type resnet18 at the command line.

resnet18

If the Deep Learning Toolbox Model for ResNet-18 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing resnet18 at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

resnet18

ans = 

  DAGNetwork with properties:

         Layers: [72×1 nnet.cnn.layer.Layer]
    Connections: [79×2 table]

Output Arguments
net — Pretrained ResNet-18 convolutional neural network
DAGNetwork object

Pretrained ResNet-18 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-18 convolutional neural network architecture
LayerGraph object

Untrained ResNet-18 convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet18 or by passing
the resnet18 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet18')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet18('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = resnet18 or by
passing the resnet18 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet18')
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For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet18('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot |
resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2018a
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resnet50
ResNet-50 convolutional neural network

Syntax
net = resnet50
net = resnet50('Weights','imagenet')

lgraph = resnet50('Weights','none')

Description
ResNet-50 is a convolutional neural network that is 50 layers deep. You can load a pretrained version
of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-50 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-50.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-50 instead of GoogLeNet.

net = resnet50 returns a ResNet-50 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-50 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet50('Weights','imagenet') returns a ResNet-50 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet50.

lgraph = resnet50('Weights','none') returns the untrained ResNet-50 network architecture.
The untrained model does not require the support package.

Examples

Download ResNet-50 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-50 Network support package.

Type resnet50 at the command line.

resnet50

If the Deep Learning Toolbox Model for ResNet-50 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing resnet50 at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

resnet50

ans = 

  DAGNetwork with properties:

         Layers: [177×1 nnet.cnn.layer.Layer]
    Connections: [192×2 table]

Output Arguments
net — Pretrained ResNet-50 convolutional neural network
DAGNetwork object

Pretrained ResNet-50 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-50 convolutional neural network architecture
LayerGraph object

Untrained ResNet-50 convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

[3] https://keras.io/api/applications/resnet/#resnet50-function

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet50 or by passing
the resnet50 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet50')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet50('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For code generation, you can load the network by using the syntax net = resnet50 or by
passing the resnet50 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet50')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet50('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot |
resnet101 | resnet18 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
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resnet101
ResNet-101 convolutional neural network

Syntax
net = resnet101
net = resnet101('Weights','imagenet')

lgraph = resnet101('Weights','none')

Description
ResNet-101 is a convolutional neural network that is 101 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-101 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-101.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-101 instead of GoogLeNet.

net = resnet101 returns a ResNet-101 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-101 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet101('Weights','imagenet') returns a ResNet-101 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet101.

lgraph = resnet101('Weights','none') returns the untrained ResNet-101 network
architecture. The untrained model does not require the support package.

Examples

Download ResNet-101 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-101 Network support package.

Type resnet101 at the command line.

resnet101

If the Deep Learning Toolbox Model for ResNet-101 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by

1 Deep Learning Functions

1-870



typing resnet101 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

resnet101

ans = 

  DAGNetwork with properties:

         Layers: [347×1 nnet.cnn.layer.Layer]
    Connections: [379×2 table]

Output Arguments
net — Pretrained ResNet-101 convolutional neural network
DAGNetwork object

Pretrained ResNet-101 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-101 convolutional neural network architecture
LayerGraph object

Untrained ResNet-101 convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

[3] https://github.com/KaimingHe/deep-residual-networks

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet101 or by passing
the resnet101 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet101('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For code generation, you can load the network by using the syntax net = resnet101 or by
passing the resnet101 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet101('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph |
plot | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
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sequenceFoldingLayer
Sequence folding layer

Description
A sequence folding layer converts a batch of image sequences to a batch of images. Use a sequence
folding layer to perform convolution operations on time steps of image sequences independently.

To use a sequence folding layer, you must connect the miniBatchSize output to the
miniBatchSize input of the corresponding sequence unfolding layer. For an example, see “Create
Network for Video Classification” on page 1-874.

Creation

Syntax
layer = sequenceFoldingLayer
layer = sequenceFoldingLayer('Name',Name)

Description

layer = sequenceFoldingLayer creates a sequence folding layer.

layer = sequenceFoldingLayer('Name',Name) creates a sequence folding layer and sets the
optional Name property using a name-value pair. For example,
sequenceFoldingLayer('Name','fold1') creates a sequence folding layer with the name
'fold1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

 sequenceFoldingLayer

1-873



Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
2 (default)

Number of outputs of the layer.

The layer has two outputs:

• 'out' – Output feature map corresponding to reshaped input.
• 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected

to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: double

OutputNames — Output names
{'out','miniBatchSize'} (default)

Output names of the layer.

The layer has two outputs:

• 'out' – Output feature map corresponding to reshaped input.
• 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected

to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: cell

Examples

Create Sequence Folding Layer

Create a sequence folding layer with name the 'fold1'.

layer = sequenceFoldingLayer('Name','fold1')

layer = 
  SequenceFoldingLayer with properties:

           Name: 'fold1'
     NumOutputs: 2
    OutputNames: {'out'  'miniBatchSize'}

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
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• To apply convolutional operations independently to each time step, first convert the sequences of
images to an array of images using a sequence folding layer.

• To restore the sequence structure after performing these operations, convert this array of images
back to image sequences using a sequence unfolding layer.

• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.
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lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bilstmLayer | classifyAndUpdateState | flattenLayer | gruLayer | lstmLayer |
predictAndUpdateState | resetState | sequenceInputLayer | sequenceUnfoldingLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
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“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2019a
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sequenceInputLayer
Sequence input layer

Description
A sequence input layer inputs sequence data to a network.

Creation

Syntax
layer = sequenceInputLayer(inputSize)
layer = sequenceInputLayer(inputSize,Name,Value)

Description

layer = sequenceInputLayer(inputSize) creates a sequence input layer and sets the
InputSize property.

layer = sequenceInputLayer(inputSize,Name,Value) sets the optional Normalization,
Mean, and Name properties using name-value pairs. You can specify multiple name-value pairs.
Enclose each property name in single quotes.

Properties
Image Input

InputSize — Size of input
positive integer | vector of positive integers

Size of the input, specified as a positive integer or a vector of positive integers.

• For vector sequence input, InputSize is a scalar corresponding to the number of features.
• For 2-D image sequence input, InputSize is vector of three elements [h w c], where h is the

image height, w is the image width, and c is the number of channels of the image.
• For 3-D image sequence input, InputSize is vector of four elements [h w d c], where h is the

image height, w is the image width, d is the image depth, and c is the number of channels of the
image.

Example: 100

Normalization — Data normalization
'none' (default) | 'zerocenter' | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' |
function handle

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:
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• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data, and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics at training time. To
save time when training, specify the required statistics for normalization and set the
'ResetInputNormalization' option in trainingOptions to false.

If the input data contains padding, then the layer ignored padding values when normalizing the input
data.

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization
[] (default) | numeric array | numeric scalar

Mean for zero-center and z-score normalization, specified as a numeric array, or empty.

• For vector sequence input, Mean must be a InputSize-by-1 vector of means per channel, a
numeric scalar, or [].

• For 2-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of means per channel, a numeric scalar, or [].

• For 3-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of means per channel, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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StandardDeviation — Standard deviation
[] (default) | numeric array | numeric scalar

Standard deviation used for z-score normalization, specified as a numeric array, a numeric scalar, or
empty.

• For vector sequence input, StandardDeviation must be a InputSize-by-1 vector of standard
deviations per channel, a numeric scalar, or [].

• For 2-D image sequence input, StandardDeviation must be a numeric array of the same size as
InputSize, a 1-by-1-by-InputSize(3) array of standard deviations per channel, a numeric
scalar, or [].

• For 3-D image sequence input, StandardDeviation must be a numeric array of the same size as
InputSize, a 1-by-1-by-1-by-InputSize(4) array of standard deviations per channel, or a
numeric scalar.

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | numeric array | numeric scalar

Minimum value for rescaling, specified as a numeric array, or empty.

• For vector sequence input, Min must be a InputSize-by-1 vector of means per channel or a
numeric scalar.

• For 2-D image sequence input, Min must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of minima per channel, or a numeric scalar.

• For 3-D image sequence input, Min must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of minima per channel, or a numeric scalar.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the software calculates the minima at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | numeric array | numeric scalar

Maximum value for rescaling, specified as a numeric array, or empty.

• For vector sequence input, Max must be a InputSize-by-1 vector of means per channel or a
numeric scalar.

• For 2-D image sequence input, Max must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of maxima per channel, a numeric scalar, or [].

• For 3-D image sequence input, Max must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of maxima per channel, a numeric scalar, or [].
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If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the software calculates the maxima at training time.

You can set this property when creating networks without training (for example, when assembling
networks using assembleNetwork).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Sequence Input Layer

Create a sequence input layer with the name 'seq1' and an input size of 12.

layer = sequenceInputLayer(12,'Name','seq1')

layer = 
  SequenceInputLayer with properties:
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                      Name: 'seq1'
                 InputSize: 12

   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Include a sequence input layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Create Sequence Input Layer for Image Sequences

Create a sequence input layer for sequences of 224-224 RGB images with the name 'seq1'.

layer = sequenceInputLayer([224 224 3], 'Name', 'seq1')

layer = 
  SequenceInputLayer with properties:

                      Name: 'seq1'
                 InputSize: [224 224 3]

   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
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categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')

Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]
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layers = 
  5×1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);

Load the test set and classify the sequences into speakers.
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[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9514

Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification
output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and
classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for
sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of responses. You do not need to specify the sequence length.
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For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numResponses)
    regressionLayer];

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for
sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer];

For an example showing how to train an LSTM network for sequence-to-sequence regression and
predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.

Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode
'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the
LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be
'last'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be
'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
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numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
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    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)
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Compatibility Considerations
sequenceInputLayer, by default, uses channel-wise normalization for zero-center
normalization
Behavior change in future release

Starting in R2019b, sequenceInputLayer, by default, uses channel-wise normalization for zero-
center normalization. In previous versions, this layer uses element-wise normalization. To reproduce
this behavior, set the NormalizationDimension option of this layer to 'element'.

sequenceInputLayer ignores padding values when normalizing
Behavior changed in R2020a

Starting in R2020a, sequenceInputLayer objects ignore padding values in the input data when
normalizing. This means that the Normalization option in the sequenceInputLayer now makes
training invariant to data operations, for example, 'zerocenter' normalization now implies that the
training results are invariant to the mean of the data.

If you train on padded sequences, then the calculated normalization factors may be different in
earlier versions and can produce different results.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• For code generation, only vector input types are supported.
• For vector sequence inputs, the number of features must be a constant during code generation.
• Code generation does not support 'Normalization' specified using a function handle.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), or the NVIDIA TensorRT high performance inference library.

• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences.

• For vector sequence inputs, the number of features must be a constant during code generation.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
• Code generation does not support 'Normalization' specified using a function handle.

See Also
Deep Network Designer | bilstmLayer | classifyAndUpdateState | featureInputLayer |
flattenLayer | gruLayer | lstmLayer | predictAndUpdateState | resetState |
sequenceFoldingLayer | sequenceUnfoldingLayer

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2017b
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sequenceUnfoldingLayer
Sequence unfolding layer

Description
A sequence unfolding layer restores the sequence structure of the input data after sequence folding.

To use a sequence unfolding layer, you must connect the miniBatchSize output of the
corresponding sequence folding layer to the miniBatchSize input of the sequence unfolding layer.
For an example, see “Create Network for Video Classification” on page 1-892.

Creation

Syntax
layer = sequenceUnfoldingLayer
layer = sequenceUnfoldingLayer('Name',Name)

Description

layer = sequenceUnfoldingLayer creates a sequence unfolding layer.

layer = sequenceUnfoldingLayer('Name',Name) creates a sequence unfolding layer and sets
the optional Name property using a name-value pair. For example,
sequenceUnfoldingLayer('Name','unfold1') creates a sequence unfolding layer with the
name 'unfold1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer.

This layer has two inputs:

• 'in' – Input feature map.
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• 'miniBatchSize' – Size of the mini-batch from the corresponding sequence folding layer. This
output must be connected to the 'miniBatchSize' output of the corresponding sequence
folding layer.

Data Types: double

InputNames — Input names
{'in','miniBatchSize'} (default)

Input names of the layer.

This layer has two inputs:

• 'in' – Input feature map.
• 'miniBatchSize' – Size of the mini-batch from the corresponding sequence folding layer. This

output must be connected to the 'miniBatchSize' output of the corresponding sequence
folding layer.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Sequence Unfolding Layer

Create a sequence unfolding layer with the name 'unfold1'.

layer = sequenceUnfoldingLayer('Name','unfold1')

layer = 
  SequenceUnfoldingLayer with properties:

          Name: 'unfold1'
     NumInputs: 2
    InputNames: {'in'  'miniBatchSize'}
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Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
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    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bilstmLayer | classifyAndUpdateState | flattenLayer | gruLayer | lstmLayer |
predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer

Topics
“Classify Videos Using Deep Learning”
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“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Long Short-Term Memory Networks”
“Visualize Activations of LSTM Network”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2019a
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SeriesNetwork
Series network for deep learning

Description
A series network is a neural network for deep learning with layers arranged one after the other. It has
a single input layer and a single output layer.

Creation
There are several ways to create a SeriesNetwork object:

• Load a pretrained network using alexnet, darknet19, vgg16, or vgg19. For an example, see
“Load Pretrained AlexNet Convolutional Neural Network” on page 1-897.

• Train or fine-tune a network using trainNetwork. For an example, see “Train Network for Image
Classification” on page 1-898.

• Import a pretrained network from TensorFlow-Keras, Caffe, or the ONNX (Open Neural Network
Exchange) model format.

• For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras
Network” on page 1-606.

• For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on
page 1-586.

• For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network”
on page 1-639.

Note To learn about other pretrained networks, such as googlenet and resnet50, see “Pretrained
Deep Neural Networks”.

Properties
Layers — Network layers
Layer array

Network layers, specified as a Layer array.

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array
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Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
activations Compute deep learning network layer activations
classify Classify data using a trained deep learning neural network
predict Predict responses using a trained deep learning neural network
predictAndUpdateState Predict responses using a trained recurrent neural network and update the

network state
classifyAndUpdateState Classify data using a trained recurrent neural network and update the

network state
resetState Reset the state of a recurrent neural network
plot Plot neural network layer graph

Examples

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and classes.

Load the pretrained AlexNet network using alexnet. The output net is a SeriesNetwork object.

net = alexnet

net = 
  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

Using the Layers property, view the network architecture. The network comprises of 25 layers.
There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'relu3'    ReLU                          ReLU
    12   'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
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    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         crossentropyex with 'tench' and 999 other classes

You can view the names of the classes learned by the network by viewing the Classes property of
the classification output layer (the final layer). View the first 10 classes by selecting the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

protofile = 'digitsnet.prototxt';

Import the network layers.

layers = importCaffeLayers(protofile)

layers = 

  1x7 Layer array with layers:

     1   'testdata'   Image Input             28x28x1 images
     2   'conv1'      Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]
     3   'relu1'      ReLU                    ReLU
     4   'pool1'      Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]
     5   'ip1'        Fully Connected         10 fully connected layer
     6   'loss'       Softmax                 softmax
     7   'output'     Classification Output   crossentropyex with 'class1', 'class2', and 8 other classes

Train Network for Image Classification

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
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imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by
applying random transformations to digit images created with different fonts. Each digit image is 28-
by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
    drawnow;
end

Divide the datastore so that each category in the training set has 750 images and the testing set has
the remaining images from each label.

numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize');

splitEachLabel splits the image files in digitData into two new datastores, imdsTrain and
imdsTest.
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Define the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to the default settings for the stochastic gradient descent with momentum. Set the
maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(imdsTrain,layers,options);

Run the trained network on the test set, which was not used to train the network, and predict the
image labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data
matching the classifications from classify to the number of images in the test data.

1 Deep Learning Functions

1-900



accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9420

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState,
classifyAndUpdateState, and resetState object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
DAGNetwork | alexnet | analyzeNetwork | assembleNetwork | classify | darknet19 |
importCaffeNetwork | plot | predict | trainNetwork | trainingOptions | vgg16 | vgg19

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
“Long Short-Term Memory Networks”

Introduced in R2016a
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setL2Factor
Package: nnet.cnn.layer

Set L2 regularization factor of layer learnable parameter

Syntax
layer = setL2Factor(layer,parameterName,factor)
layerUpdated = setL2Factor(layer,parameterPath,factor)

dlnetUpdated = setL2Factor(dlnet,layerName,parameterName,factor)
dlnetUpdated = setL2Factor(dlnet,parameterPath,factor)

Description
layer = setL2Factor(layer,parameterName,factor) sets the L2 regularization factor of the
parameter with the name parameterName in layer to factor.

For built-in layers, you can set the L2 regularization factor directly by using the corresponding
property. For example, for a convolution2dLayer layer, the syntax layer =
setL2Factor(layer,'Weights',factor) is equivalent to layer.WeightL2Factor = factor.

layerUpdated = setL2Factor(layer,parameterPath,factor) sets the L2 regularization
factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is
in a dlnetwork object in a custom layer.

dlnetUpdated = setL2Factor(dlnet,layerName,parameterName,factor) sets the L2
regularization factor of the parameter with the name parameterName in the layer with name
layerName for the specified dlnetwork object.

dlnetUpdated = setL2Factor(dlnet,parameterPath,factor) sets the L2 regularization
factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is
in a nested layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create a layer array including a custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer];

Set the L2 regularization factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4),'Alpha',2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4),'Alpha')

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           224x224x64 images
     2   'conv1'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 64 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 64 channels split into 64 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2
using the setL2Factor function.

factor = 2;
layer = setL2Factor(layer,'Network/conv1/Weights',factor);
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Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(layer,'Network/conv1/Weights')

factor = 2

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2
using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'conv','Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'conv','Weights')

factor = 2

Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
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    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
    residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
    residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the learnable
parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx,:)

ans=8×3 table
    Layer            Parameter                  Value       
    ______    _______________________    ___________________

    "res1"    "Network/conv1/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv1/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Scale"        {1x1x32    dlarray}
    "res1"    "Network/conv2/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv2/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Scale"        {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the
layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar
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Parameter name, specified as a character vector or a string scalar.

factor — L2 regularization factor
nonnegative scalar

L2 regularization factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor with the global L2 regularization factor to determine the L2
regularization factor for the specified parameter. For example, if factor is 2, then the L2
regularization for the specified parameter is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to setL2Factor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the setL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to setL2Factor, the path "Network/conv1/Weights" specifies the
"Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to setL2Factor is a dlnetwork object and the desired parameter is in a nested layer,
then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the setL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to setL2Factor, the path "res1/Network/conv1/Weights"
specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given
by layer.Network, where layer is the layer with name "res1" in the input network dlnet.
Data Types: char | string
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dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments
layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

dlnetUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

See Also
getL2Factor | getLearnRateFactor | setLearnRateFactor | trainNetwork |
trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
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setLearnRateFactor
Package: nnet.cnn.layer

Set learn rate factor of layer learnable parameter

Syntax
layerUpdated = setLearnRateFactor(layer,parameterName,factor)
layerUpdated = setLearnRateFactor(layer,parameterPath,factor)

dlnetUpdated = setLearnRateFactor(dlnet,layerName,parameterName,factor)
dlnetUpdated = setLearnRateFactor(dlnet,parameterPath,factor)

Description
layerUpdated = setLearnRateFactor(layer,parameterName,factor) sets the learn rate
factor of the parameter with the name parameterName in layer to factor.

For built-in layers, you can set the learn rate factor directly by using the corresponding property. For
example, for a convolution2dLayer layer, the syntax layer =
setLearnRateFactor(layer,'Weights',factor) is equivalent to
layer.WeightLearnRateFactor = factor.

layerUpdated = setLearnRateFactor(layer,parameterPath,factor) sets the learn rate
factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is
in a dlnetwork object in a custom layer.

dlnetUpdated = setLearnRateFactor(dlnet,layerName,parameterName,factor) sets the
learn rate factor of the parameter with the name parameterName in the layer with name layerName
for the specified dlnetwork object.

dlnetUpdated = setLearnRateFactor(dlnet,parameterPath,factor) sets the learn rate
factor of the parameter specifiedby the path parameterPath. Use this syntax when the parameter is
in a nested layer.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create a layer array including the custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
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    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the learn rate factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setLearnRateFactor(layers(4),'Alpha',2);

View the updated learn rate factor.

factor = getLearnRateFactor(layers(4),'Alpha')

factor = 2

Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           224x224x64 images
     2   'conv1'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 64 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           64 3x3x64 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 64 channels split into 64 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using
the setLearnRateFactor function.
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factor = 2;
layer = setLearnRateFactor(layer,'Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(layer,'Network/conv1/Weights')

factor = 2

Set and Get Learn Rate Factor of dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the learn rate factor of the 'Weights' learnable parameter of the convolution layer to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);

Get the updated learn rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'conv','Weights')

factor = 2

Set and Get Learning Rate Factor of Nested dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
    residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
    residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
    residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

View the layers of the nested network in the layer 'res1'.

dlnet.Layers(6).Network.Layers

ans = 
  8x1 Layer array with layers:

     1   'in'      Image Input           56x56x32 images
     2   'conv1'   Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
     3   'gn1'     Group Normalization   Group normalization with 32 channels split into 1 groups
     4   'relu1'   ReLU                  ReLU
     5   'conv2'   Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
     6   'gn2'     Group Normalization   Group normalization with 32 channels split into 32 groups
     7   'add'     Addition              Element-wise addition of 2 inputs
     8   'relu2'   ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Freeze Learnable Parameters of dlnetwork Object

Load a pretrained network.

net = squeezenet;

Convert the network to a layer graph, remove the output layer, and convert it to a dlnetwork object.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);
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The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the first few
rows of the learnables table.

learnables = dlnet.Learnables;
head(learnables)

ans=8×3 table
          Layer           Parameter           Value       
    __________________    _________    ___________________

    "conv1"               "Weights"    {3x3x3x64  dlarray}
    "conv1"               "Bias"       {1x1x64    dlarray}
    "fire2-squeeze1x1"    "Weights"    {1x1x64x16 dlarray}
    "fire2-squeeze1x1"    "Bias"       {1x1x16    dlarray}
    "fire2-expand1x1"     "Weights"    {1x1x16x64 dlarray}
    "fire2-expand1x1"     "Bias"       {1x1x64    dlarray}
    "fire2-expand3x3"     "Weights"    {3x3x16x64 dlarray}
    "fire2-expand3x3"     "Bias"       {1x1x64    dlarray}

To freeze the learnable parameters of the network, loop over the learnable parameters and set the
learn rate to 0 using the setLearnRateFactor function.

factor = 0;

numLearnables = size(learnables,1);
for i = 1:numLearnables
    layerName = learnables.Layer(i);
    parameterName = learnables.Parameter(i);
    
    dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end

To use the updated learn rate factors when training, you must pass the dlnetwork object to the
update function in the custom training loop. For example, use the command

[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity);

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.

factor — Learning rate factor
nonnegative scalar

Learning rate factor for the parameter, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is
twice the current global learning rate. The software determines the global learning rate based on the
settings specified with the trainingOptions function.
Example: 2

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to setLearnRateFactor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the setLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to setLearnRateFactor, the path "Network/conv1/Weights" specifies
the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to setLearnRateFactor is a dlnetwork object and the desired parameter is in a
nested layer, then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the setLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to setLearnRateFactor, the path "res1/Network/conv1/
Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork
object given by layer.Network, where layer is the layer with name "res1" in the input network
dlnet.
Data Types: char | string

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.
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layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments
layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

dlnetUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

See Also
getL2Factor | getLearnRateFactor | setL2Factor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
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sgdmupdate
Update parameters using stochastic gradient descent with momentum (SGDM)

Syntax
[dlnet,vel] = sgdmupdate(dlnet,grad,vel)
[params,vel] = sgdmupdate(params,grad,vel)
[ ___ ] = sgdmupdate( ___ learnRate,momentum)

Description
Update the network learnable parameters in a custom training loop using the stochastic gradient
descent with momentum (SGDM) algorithm.

Note This function applies the SGDM optimization algorithm to update network parameters in
custom training loops that use networks defined as dlnetwork objects or model functions. If you
want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsSGDM object using the trainingOptions function.
• Use the TrainingOptionsSGDM object with the trainNetwork function.

[dlnet,vel] = sgdmupdate(dlnet,grad,vel) updates the learnable parameters of the
network dlnet using the SGDM algorithm. Use this syntax in a training loop to iteratively update a
network defined as a dlnetwork object.

[params,vel] = sgdmupdate(params,grad,vel) updates the learnable parameters in params
using the SGDM algorithm. Use this syntax in a training loop to iteratively update the learnable
parameters of a network defined using functions.

[ ___ ] = sgdmupdate( ___ learnRate,momentum) also specifies values to use for the global
learning rate and momentum, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using sgdmupdate

Perform a single SGDM update step with a global learning rate of 0.05 and momentum of 0.95.

Create the parameters and parameter gradients as numeric arrays.

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the parameter velocities for the first iteration.

vel = [];

 sgdmupdate

1-915



Specify custom values for the global learning rate and momentum.

learnRate = 0.05;
momentum = 0.95;

Update the learnable parameters using sgdmupdate.

[params,vel] = sgdmupdate(params,grad,vel,learnRate,momentum);

Train Network Using sgdmupdate

Use sgdmupdate to train a network using the SGDM algorithm.

Load Training Data

Load the digits training data.

[XTrain,YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
numClasses = numel(classes);

Define Network

Define the network architecture and specify the average image value using the 'Mean' option in the
image input layer.

layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Define Model Gradients Function

Create the helper function modelGradients, listed at the end of the example. The function takes a
dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and
returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
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Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU with compute capability 3.0 or higher.

executionEnvironment = "auto";

Visualize the training progress in a plot.

plots = "training-progress";

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the sgdmupdate function. At the end of each
epoch, display the training progress.

Initialize the training progress plot.

if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end

Initialize the velocity parameter.

vel = [];

Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(idx);
    
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);
        
        Y = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y(c,YTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to a dlarray.
        dlX = dlarray(single(X),'SSCB');
        
        % If training on a GPU, then convert data to a gpuArray.
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        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients helper function.
        [gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);
        
        % Update the network parameters using the SGDM optimizer.
        [dlnet,vel] = sgdmupdate(dlnet,gradients,vel);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest, YTest] = digitTest4DArrayData;
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Convert the data to a dlarray with the dimension format 'SSCB'. For GPU prediction, also convert
the data to a gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YPred==YTest)

accuracy = 0.9916

Model Gradients Function

The modelGradients helper function takes a dlnetwork object dlnet and a mini-batch of input
data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect
to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient
function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)

    dlYPred = forward(dlnet,dlX);
    
    loss = crossentropy(dlYPred,Y);
    
    gradients = dlgradient(loss,dlnet.Learnables);

end

Input Arguments
dlnet — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.
dlnet.Learnables is a table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as dlnet.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table
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Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

grad — Gradients of the loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to sgdmupdate.

Input Learnable Parameters Gradients
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables. grad
must have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params
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Input Learnable Parameters Gradients
Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

vel — Parameter velocities
[] | dlarray | numeric array | cell array | structure | table

Parameter velocities, specified as an empty array, a dlarray, a numeric array, a cell array, a
structure, or a table.

The exact form of vel depends on the input network or learnable parameters. The following table
shows the required format for vel for possible inputs to sgdmpdate.

Input Learnable Parameters Velocities
dlnet Table dlnet.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
dlnet.Learnables. vel must
have a Value variable
consisting of cell arrays that
contain the velocity of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. vel must have a
Value variable consisting of cell
arrays that contain the velocity
of each learnable parameter.

If you specify vel as an empty array, the function assumes no previous velocities and runs in the
same way as for the first update in a series of iterations. To update the learnable parameters
iteratively, use the vel output of a previous call to sgdmupdate as the vel input.
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learnRate — Global learning rate
0.01 (default) | positive scalar

Learning rate, specified as a positive scalar. The default value of learnRate is 0.01.

If you specify the network parameters as a dlnetwork object, the learning rate for each parameter is
the global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

momentum — Momentum
0.9 (default) | positive scalar between 0 and 1

Momentum, specified as a positive scalar between 0 and 1. The default value of momentum is 0.9.

Output Arguments
dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

vel — Updated parameter velocities
dlarray | numeric array | cell array | structure | table

Updated parameter velocities, returned as a dlarray, a numeric array, a cell array, a structure, or a
table.

More About
Stochastic Gradient Descent with Momentum

The function uses the stochastic gradient descent with momentum algorithm to update the learnable
parameters. For more information, see the definition of the stochastic gradient descent with
momentum algorithm under “Stochastic Gradient Descent” on page 1-992 on the
trainingOptions reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.
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• grad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
adamupdate | dlarray | dlfeval | dlgradient | dlnetwork | dlupdate | forward |
rmspropupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”

Introduced in R2019b
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shuffle
Shuffle data in augmentedImageDatastore

Syntax
auimds2 = shuffle(auimds)

Description
auimds2 = shuffle(auimds) returns an augmentedImageDatastore object containing a
random ordering of the data from augmented image datastore auimds.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

Output Arguments
auimds2 — Output datastore
augmentedImageDatastore object

Output datastore, returned as an augmentedImageDatastore object containing randomly ordered
files from auimds.

See Also
read | readByIndex | readall

Introduced in R2018a
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shuffle
Shuffle data in minibatchqueue

Syntax
shuffle(mbq)

Description
shuffle(mbq) resets the data held in mbq and shuffles it into a random order. After shuffling, the
next function returns different mini-batches. Use this syntax to reset and shuffle your data after each
training epoch in a custom training loop.

Examples

Differences Between shuffle and reset

The shuffle function resets and shuffles the minibatchqueue so that you can obtain data from it
in a random order. By contrast, the reset function resets the minibatchqueue to the start of the
underlying datastore.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Obtain the first mini-batch of data.

X1 = next(mbq);

Iterate over the rest of the data in the minibatchqueue. Use hasdata to check if data is still
available.

while hasdata(mbq)
    next(mbq);
end
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Shuffle the minibatchqueue and obtain the first mini-batch after the queue is shuffled.

shuffle(mbq);
X2 = next(mbq);

Iterate over the remaining data again.

while hasdata(mbq)
    next(mbq);
end

Reset the minibatchqueue and obtain the first mini-batch after the queue is reset.

reset(mbq);
X3 = next(mbq);

Check whether the mini-batches obtained after resetting or shuffling the minibatchqueue are the
same as the first mini-batch after the minibatchqueue is created.

isequal(X1,X2)
isequal(X1,X3)

ans = 
   0
ans = 
   1

The reset function returns the minibatchqueue to the start of the underlying data, so that the
next function returns mini-batches in the same order each time. By contrast, the shuffle function
shuffles the underlying data and produces randomized mini-batches.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

See Also
hasdata | minibatchqueue | next | reset

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
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shufflenet
Pretrained ShuffleNet convolutional neural network

Syntax
net = shufflenet

Description
ShuffleNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ShuffleNet model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ShuffleNet.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ShuffleNet instead of GoogLeNet.

net = shufflenet returns a pretrained ShuffleNet convolutional neural network.

This function requires the Deep Learning Toolbox Model for ShuffleNet Network support package. If
this support package is not installed, then the function provides a download link.

Examples

Download ShuffleNet Support Package

Download and install the Deep Learning Toolbox Model for ShuffleNet Network support package.

Type shufflenet at the command line.

shufflenet

If the Deep Learning Toolbox Model for ShuffleNet Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing shufflenet at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

shufflenet

ans = 

  DAGNetwork with properties:
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         Layers: [173×1 nnet.cnn.layer.Layer]
    Connections: [188×2 table]

Transfer Learning with ShuffleNet

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the ShuffleNet network instead of GoogLeNet.

net = shufflenet

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained ShuffleNet convolutional neural network
DAGNetwork object

Pretrained ShuffleNet convolutional neural network, returned as a DAGNetwork object.

References
[1] ImageNet. http://www.image-net.org

[2] Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin, and Jian Sun. "ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices." arXiv preprint arXiv:1707.01083v2
(2017).

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetlarge |
nasnetmobile | plot | resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
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sigmoid
Apply sigmoid activation

Syntax
dlY = sigmoid(dlX)

Description
The sigmoid activation operation applies the sigmoid function to the input data.

This operation is equivalent to

f (x) = 1
1 + e−x .

Note This function applies the sigmoid operation to dlarray data. If you want to apply sigmoid
within a layerGraph object or Layer array, use the following layer:

• sigmoidLayer

dlY = sigmoid(dlX) computes the sigmoid activation of the input dlX by applying the sigmoid
transfer function. All values in dlY are between 0 and 1.

Examples

Apply Sigmoid Activation

Use the sigmoid function to set all values in the input data to a value between 0 and 1.

Create the input data as a single observation of random values with a height and width of seven and
32 channels.

height = 7;
width = 7;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Compute the sigmoid activation.

dlY = sigmoid(dlX);

 sigmoid

1-929



All values in dlY now range between 0 and 1.

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels.
Data Types: single | double

Output Arguments
dlY — Sigmoid activations
dlarray

Sigmoid activations, returned as a dlarray. All values in dlY are between 0 and 1. The output dlY
has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlfeval | dlgradient | leakyrelu | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
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sigmoidLayer
Sigmoid layer

Description
A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval
(0,1).

Tip  To use the sigmoid layer for binary or multilabel classification problems, create a custom binary
cross-entropy loss output layer or use a custom training loop.

Creation

Syntax
layer = sigmoidLayer
layer = sigmoidLayer('Name',Name)

Description

layer = sigmoidLayer creates a sigmoid layer.

layer = sigmoidLayer('Name',Name) creates a sigmoid layer and sets the optional Name
property using a name-value pair argument. For example, sigmoidLayer('Name','sig1') creates
a sigmoid layer with the name 'sig1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
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Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Sigmoid Layer

Create a sigmoid layer with the name 'sig1'.

layer = sigmoidLayer('Name', 'sig1')

layer = 
  SigmoidLayer with properties:

    Name: 'sig1'

  Show all properties

More About
Sigmoid Layer

A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval
(0,1).

This operation is equivalent to

f (x) = 1
1 + e−x .

A multilabel classification problem can be thought of as a binary classification problem, where each
class is considered independently of other classes as either present or not present. Solving this type
of problem requires the sigmoid activation function, where for any sample xn the posterior probability
of class Ck is

P(Ck xn) = 1
1 + e−ak

.

The value ak is the weighted sum of all the units that are connected to class k. Performing multilabel
classification requires a sigmoid layer followed by a custom binary cross-entropy loss layer.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | softmaxLayer | tanhLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020b
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softmax
Apply softmax activation to channel dimension

Syntax
dlY = softmax(dlX)
dlY = softmax(dlX,'DataFormat',FMT)

Description
The softmax activation operation applies the softmax function to the channel dimension of the input
data.

The softmax function normalizes the value of the input data across the channel dimension such that it
sums to one. You can regard the output of the softmax function as a probability distribution.

Note This function applies the softmax operation to dlarray data. If you want to apply softmax
within a layerGraph object or Layer array, use the following layer:

• softmaxLayer

dlY = softmax(dlX) computes the softmax activation of the input dlX by applying the softmax
transfer function to the channel dimension of the input data. All values in dlY are between 0 and 1,
and sum to 1. The input dlX is a formatted dlarray with dimension labels. The output dlY is a
formatted dlarray with the same dimension labels as dlX.

dlY = softmax(dlX,'DataFormat',FMT) also specifies dimension format FMT when dlX is not a
formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order as
dlX.

Examples

Apply Softmax Activation

Use the softmax function to set all values in the input data to values between 0 and 1 that sum to 1
over all channels.

Create the input classification data as two observations of random variables. The data can be in any
of 10 categories.

numCategories = 10;
observations = 2;

X = rand(numCategories,observations);
dlX = dlarray(X,'CB');

Compute the softmax activation.
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dlY = softmax(dlX);
totalProb = sum(dlY,1)

dlY =

  10(C) x 2(B) dlarray

    0.1151    0.0578
    0.1261    0.1303
    0.0579    0.1285
    0.1270    0.0802
    0.0959    0.1099
    0.0562    0.0569
    0.0673    0.0753
    0.0880    0.1233
    0.1328    0.1090
    0.1337    0.1288
totalProb =

  1(C) x 2(B) dlarray

    1.0000    1.0000

All values in dlY range between 0 and 1. The values over all channels sum to 1 for each observation.

Input Arguments
dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted
dlarray, you must specify the dimension label format using 'DataFormat',FMT.

dlX must contain a 'C' channel dimension.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
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Data Types: char | string

Output Arguments
dlY — Softmax activations
dlarray

Softmax activations, returned as a dlarray. All values in dlY are between 0 and 1. The output dlY
has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input
data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as
the input data.

More About
Softmax Activation

The softmax function normalizes the input across the channel dimension, such that it sums to one.
For more information, see the definition of “Softmax Layer” on page 1-938 on the softmaxLayer
reference page.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | crossentropy | dlarray | dlfeval | dlgradient | fullyconnect | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Make Predictions Using Model Function”
“Train Network with Multiple Outputs”

Introduced in R2019b
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softmaxLayer
Softmax layer

Description
A softmax layer applies a softmax function to the input.

Creation

Syntax
layer = softmaxLayer
layer = softmaxLayer('Name',Name)

Description

layer = softmaxLayer creates a softmax layer.

layer = softmaxLayer('Name',Name) creates a softmax layer and sets the optional Name
property using a name-value pair. For example, softmaxLayer('Name','sm1') creates a softmax
layer with the name 'sm1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Softmax Layer

Create a softmax layer with the name 'sm1'.

layer = softmaxLayer('Name','sm1')

layer = 
  SoftmaxLayer with properties:

    Name: 'sm1'

Include a softmax layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Softmax Layer

A softmax layer applies a softmax function to the input.

For classification problems, a softmax layer and then a classification layer must follow the final fully
connected layer.
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The output unit activation function is the softmax function:

yr x =
exp ar x

∑
j = 1

k
exp a j x

,

where 0 ≤ yr ≤ 1 and ∑
j = 1

k
y j = 1.

The softmax function is the output unit activation function after the last fully connected layer for
multi-class classification problems:

P cr x, θ =
P x, θ cr P cr

∑
j = 1

k
P x, θ c j P c j

=
exp ar x, θ

∑
j = 1

k
exp a j x, θ

,

where 0 ≤ P cr x, θ ≤ 1 and ∑
j = 1

k
P c j x, θ = 1. Moreover, ar = ln P x, θ cr P cr , P x, θ cr  is the

conditional probability of the sample given class r, and P cr  is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered the multi-
class generalization of the logistic sigmoid function [1].

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
classificationLayer | convolution2dLayer | fullyConnectedLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
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sortClasses
Package: mlearnlib.graphics.chart

Sort classes of confusion matrix chart

Syntax
sortClasses(cm,order)

Description
sortClasses(cm,order) sorts the classes of the confusion matrix chart cm in the order specified
by order. You can sort the classes in their natural order, by the values along the diagonal of the
confusion matrix, or in fixed order that you specify.

Examples

Sort Classes in a Fixed Order

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart.

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels);
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Reorder the classes of the confusion matrix chart so that the classes are in a fixed order.

sortClasses(cm, ...
    ["cat" "dog" "horse" "deer" "bird" "frog", ...
    "airplane" "ship" "automobile" "truck"])
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Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart with column and row summaries

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels, ...
    'ColumnSummary','column-normalized', ...
    'RowSummary','row-normalized');
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To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell
values across each row, that is, by the number of observations that have the same true class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the row summaries to the right
are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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To sort the classes by class-wise precision (positive predictive value), normalize the cell values across
each column, that is, by the number of observations that have the same predicted class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the column summaries at the
bottom are decreasing.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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Input Arguments
cm — Confusion matrix chart
ConfusionMatrixChart object

Confusion matrix chart, specified as a ConfusionMatrixChart object. To create a confusion matrix
chart, use confusionchart,

order — Order in which to sort classes
'auto' | 'ascending-diagonal' | 'descending-diagonal' | array

Order in which to sort the classes of the confusion matrix chart, specified as one of these values:

• 'auto' — Sorts the classes into their natural order as defined by the sort function. For example,
if the class labels of the confusion matrix chart are a string vector, then sort alphabetically. If the
class labels are an ordinal categorical vector, then use the order of the class labels.

• 'ascending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix increase from top left to bottom right.

• 'descending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix decrease from top left to bottom right.

• 'cluster' (Requires Statistics and Machine Learning Toolbox) — Sort the classes to cluster
similar classes. You can customize clustering by using the pdist, linkage, and
optimalleaforder functions. For details, see “Sort Classes to Cluster Similar Classes”
(Statistics and Machine Learning Toolbox).
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• Array — Sort the classes in a unique order specified by a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. The array must be a
permutation of the ClassLabels property of the confusion matrix chart.

Example: sortClasses(cm,'ascending-diagonal')
Example: sortClasses(cm,["owl","cat","toad"])

See Also
Functions
categorical | confusionchart

Properties
ConfusionMatrixChart Properties

Topics
“Deep Learning in MATLAB”

Introduced in R2018b
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squeezenet
SqueezeNet convolutional neural network

Syntax
net = squeezenet
net = squeezenet('Weights','imagenet')

lgraph = squeezenet('Weights','none')

Description
SqueezeNet is a convolutional neural network that is 18 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. This function returns a SqueezeNet v1.1 network, which has similar accuracy to
SqueezeNet v1.0 but requires fewer floating-point operations per prediction [3]. The network has an
image input size of 227-by-227. For more pretrained networks in MATLAB, see “Pretrained Deep
Neural Networks”.

You can use classify to classify new images using the SqueezeNet network. For an example, see
“Classify Image Using SqueezeNet” on page 1-963.

You can retrain a SqueezeNet network to perform a new task using transfer learning. For an example,
see “Interactive Transfer Learning Using SqueezeNet” on page 1-948.

net = squeezenet returns a SqueezeNet network trained on the ImageNet data set.

net = squeezenet('Weights','imagenet') returns a SqueezeNet network trained on the
ImageNet data set. This syntax is equivalent to net = squeezenet.

lgraph = squeezenet('Weights','none') returns the untrained SqueezeNet network
architecture.

Examples

Load SqueezeNet Network

Load a pretrained SqueezeNet network.

net = squeezenet

net = 

  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
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This function returns a DAGNetwork object.

SqueezeNet is included within Deep Learning Toolbox. To load other networks, use functions such as
googlenet to get links to download pretrained networks from the Add-On Explorer.

Interactive Transfer Learning Using SqueezeNet

This example shows how to fine-tune a pretrained SqueezeNet network to classify a new collection of
images. This process is called transfer learning and is usually much faster and easier than training a
new network, because you can apply learned features to a new task using a smaller number of
training images. To prepare a network for transfer learning interactively, use Deep Network Designer.

Extract Data

In the workspace, extract the MathWorks Merch data set. This is a small data set containing 75
images of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards,
screwdriver, and torch).

unzip("MerchData.zip");

Open SqueezeNet in Deep Network Designer

Open Deep Network Designer with SqueezeNet.

deepNetworkDesigner(squeezenet);

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane.
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Explore the network plot. To zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow
keys, or hold down the scroll wheel and drag the mouse. Select a layer to view its properties.
Deselect all layers to view the network summary in the Properties pane.

Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image
Data. The Import Image Data dialog box opens.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

Divide the data into 70% training data and 30% validation data.

Specify augmentation operations to perform on the training images. For this example, apply a random
reflection in the x-axis, a random rotation from the range [-90,90] degrees, and a random rescaling
from the range [1,2]. Data augmentation helps prevent the network from overfitting and memorizing
the exact details of the training images.

Click Import to import the data into Deep Network Designer.

Visualize Data

Using Deep Network Designer, you can visually inspect the distribution of the training and validation
data in the Data pane. You can also view random observations and their labels as a simple check
before training. You can see that, in this example, there are five classes in the data set.
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Edit Network for Transfer Learning

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine
the features that the network extracts into class probabilities, a loss value, and predicted labels. To
retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set.

In most networks, the last layer with learnable weights is a fully connected layer. In some networks,
such as SqueezeNet, the last learnable layer is the final convolutional layer instead. In this case,
replace the convolutional layer with a new convolutional layer with the number of filters equal to the
number of classes.

In the Designer pane, drag a new convolution2dLayer onto the canvas. To match the original
convolutional layer, set FilterSize to 1,1. Change NumFilters to the number of classes in the
new data, in this example, 5.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10. Delete the last 2-D
convolutional layer and connect your new layer instead.
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Replace the output layer. Scroll to the end of the Layer Library and drag a new
classificationLayer onto the canvas. Delete the original output layer and connect your new
layer instead.
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Check Network

To make sure your edited network is ready for training, click Analyze, and ensure the Deep Learning
Network Analyzer reports zero errors.
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Train Network

Specify training options. Select the Training tab and click Training Options.

• Set the initial learn rate to a small value to slow down learning in the transferred layers.
• Specify the validation frequency so that the accuracy on the validation data is calculated once

every epoch.
• Specify a small number of epochs. An epoch is a full training cycle on the entire training data set.

For transfer learning, you do not need to train for as many epochs.
• Specify the mini-batch size, that is, how many images to use in each iteration. To ensure the whole

data set is used during each epoch, set the mini-batch size to evenly divide the number of training
samples.

For this example, set InitialLearnRate to 0.0001, ValidationFrequency to 5, and MaxEpochs to
8. As there are 55 observations, set MiniBatchSize to 11.
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To train the network with the specified training options, click Close and then click Train.

Deep Network Designer allows you to visualize and monitor training progress. You can then edit the
training options and retrain the network, if required.
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Export Results and Generate MATLAB Code

To export the network architecture with the trained weights, on the Training tab, select Export >
Export Trained Network and Results. Deep Network Designer exports the trained network as the
variable trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

trainInfoStruct_1

trainInfoStruct_1 = struct with fields:
               TrainingLoss: [1×40 double]
           TrainingAccuracy: [1×40 double]
             ValidationLoss: [3.3420 NaN NaN NaN 2.1187 NaN NaN NaN NaN 1.4291 NaN NaN NaN NaN 0.8527 NaN NaN NaN NaN 0.5849 NaN NaN NaN NaN 0.4678 NaN NaN NaN NaN 0.3967 NaN NaN NaN NaN 0.3875 NaN NaN NaN NaN 0.3749]
         ValidationAccuracy: [20 NaN NaN NaN 30 NaN NaN NaN NaN 55.0000 NaN NaN NaN NaN 65 NaN NaN NaN NaN 85 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95]
              BaseLearnRate: [1×40 double]
        FinalValidationLoss: 0.3749
    FinalValidationAccuracy: 95

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Classify New Image

Load a new image to classify using the trained network.
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I = imread("MerchDataTest.jpg");

Deep Network Designer resizes the images during training to match the network input size. To view
the network input size, go to the Designer pane and select the imageInputLayer (first layer). This
network has an input size of 227-by-227.

Resize the test image to match the network input size.

I = imresize(I, [227 227]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)
label = YPred;
title(string(label) + ", " + num2str(100*max(probs),3) + "%");
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Programmatic Transfer Learning Using SqueezeNet

This example shows how to fine-tune a pretrained SqueezeNet convolutional neural network to
perform classification on a new collection of images.

SqueezeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.
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Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);

I = imtile(imds, 'Frames', idx);

figure
imshow(I)
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Load Pretrained Network

Load the pretrained SqueezeNet neural network.

net = squeezenet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine
the features that the network extracts into class probabilities, a loss value, and predicted labels. To
retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set.

Extract the layer graph from the trained network.

lgraph = layerGraph(net); 

Find the names of the two layers to replace. You can do this manually or you can use the supporting
function findLayersToReplace to find these layers automatically.

[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] 

ans = 
  1×2 Layer array with layers:
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     1   'conv10'                            Convolution             1000 1×1×512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'ClassificationLayer_predictions'   Classification Output   crossentropyex with 'tench' and 999 other classes

In most networks, the last layer with learnable weights is a fully connected layer. In some networks,
such as SqueezeNet, the last learnable layer is a 1-by-1 convolutional layer instead. In this case,
replace the convolutional layer with a new convolutional layer with the number of filters equal to the
number of classes. To learn faster in the new layers than in the transferred layers, increase the
WeightLearnRateFactor and BiasLearnRateFactor values of the convolutional layer.

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newConvLayer =  convolution2dLayer([1, 1],numClasses,'WeightLearnRateFactor',10,'BiasLearnRateFactor',10,"Name",'new_conv');
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassificatonLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificatonLayer);

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the convolutional layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size to be 11 so that in each
epoch you consider all of the data. The software validates the network every ValidationFrequency
iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',11, ...
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    'MaxEpochs',7, ...
    'InitialLearnRate',2e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with
compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
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Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify Image Using SqueezeNet

Read, resize, and classify an image using SqueezeNet.

First, load a pretrained SqueezeNet model.

net = squeezenet;

Read the image using imread.

I = imread('peppers.png');
figure
imshow(I)
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The pretrained model requires the image size to be the same as the input size of the network.
Determine the input size of the network using the InputSize property of the first layer of the
network.

sz = net.Layers(1).InputSize

sz = 1×3

   227   227     3

Resize the image to the input size of the network.

I = imresize(I,sz(1:2));
figure
imshow(I)
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Classify the image using classify.

label = classify(net,I)

label = categorical
     bell pepper 

Show the image and classification result together.

figure
imshow(I)
title(label)
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Feature Extraction Using SqueezeNet

This example shows how to extract learned image features from a pretrained convolutional neural
network, and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

This very small data set now has 55 training images and 20 validation images. Display some sample
images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

I = imtile(imds, 'Frames', idx);
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figure
imshow(I)

Load Pretrained Network

Load a pretrained SqueezeNet network. SqueezeNet is trained on more than a million images and
can classify images into 1000 object categories, for example, keyboard, mouse, pencil, and many
animals. As a result, the model has learned rich feature representations for a wide range of images.

net = squeezenet;

Analyze the network architecture.

analyzeNetwork(net)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher
level features, constructed using the lower level features of earlier layers. To get the feature
representations of the training and test images, use activations on the global average pooling
layer 'pool10'. To get a lower level representation of the images, use an earlier layer in the
network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = 'pool10';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

Extract the class labels from the training and test data.
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YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy = 1

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Output Arguments
net — Pretrained SqueezeNet convolutional neural network
DAGNetwork object

Pretrained SqueezeNet convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained SqueezeNet convolutional neural network architecture
LayerGraph object

Untrained SqueezeNet convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size." Preprint, submitted November 4, 2016. https://arxiv.org/abs/1602.07360.

[3] Iandola, Forrest N. "SqueezeNet." https://github.com/forresti/SqueezeNet.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, load the network by passing the squeezenet function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('squeezenet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax squeezenet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = squeezenet or by
passing the squeezenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('squeezenet').
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For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax squeezenet('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | Deep Network Designer | densenet201 | googlenet | inceptionresnetv2 |
inceptionv3 | layerGraph | plot | resnet101 | resnet18 | resnet50 | trainNetwork | vgg16
| vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2018a
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stripdims
Remove dlarray labels

Syntax
y = stripdims(dlX)

Description
y = stripdims(dlX) returns the dlarray dlX without any labels.

Examples

Remove Labels from dlarray

Create a labeled dlarray.

dlX = dlarray(randn(3,2,1,2),'SSTU')

dlX = 
  3(S) x 2(S) x 1(T) x 2(U) dlarray

(:,:,1,1) =

    0.5377    0.8622
    1.8339    0.3188
   -2.2588   -1.3077

(:,:,1,2) =

   -0.4336    2.7694
    0.3426   -1.3499
    3.5784    3.0349

Create an array that is the same as dlX but has no labels.

y = stripdims(dlX)

y = 
  3x2x1x2 dlarray

(:,:,1,1) =

    0.5377    0.8622
    1.8339    0.3188
   -2.2588   -1.3077
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(:,:,1,2) =

   -0.4336    2.7694
    0.3426   -1.3499
    3.5784    3.0349

Input Arguments
dlX — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: dlX = dlarray(randn(3,4),'ST')

Output Arguments
y — Unlabeled dlarray
unlabeled dlarray object

Unlabeled dlarray, returned as an unlabeled dlarray object that is the same as the input array
dlX, but without any labels. If dlX is unlabeled, then y = dlX.

Tips
• Use stripdims to ensure that a dlarray behaves like a numeric array of the same size, without

any special behavior due to dimension labels.
• ndims(dlX) can decrease after a stripdims call because the function removes trailing

singleton labels.

dlX = dlarray(ones(3,2), 'SCB');
ndims(dlX)

ans =

     3

dlX = stripdims(dlX);
ndims(dlX)

ans =

     2

See Also
dims | dlarray | finddim

Introduced in R2019b
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tanhLayer
Hyperbolic tangent (tanh) layer

Description
A hyperbolic tangent (tanh) activation layer applies the tanh function on the layer inputs.

Creation
Syntax
layer = tanhLayer
layer = tanhLayer('Name',Name)

Description

layer = tanhLayer creates a hyperbolic tangent layer.

layer = tanhLayer('Name',Name) additionally specifies the optional Name property. For
example, tanhLayer('Name','tanh1') creates a tanh layer with the name 'tanh1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
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Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Hyperbolic Tangent Layer

Create a hyperbolic tangent (tanh) layer with the name 'tanh1'.

layer = tanhLayer('Name','tanh1')

layer = 
  TanhLayer with properties:

    Name: 'tanh1'

  Show all properties

Include a tanh layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    tanhLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    tanhLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Tanh                    Hyperbolic tangent
     5   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Convolution             32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   Tanh                    Hyperbolic tangent
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
batchNormalizationLayer | clippedReluLayer | leakyReluLayer | reluLayer |
trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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trainingOptions
Options for training deep learning neural network

Syntax
options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)

Description
options = trainingOptions(solverName) returns training options for the optimizer specified
by solverName. To train a network, use the training options as an input argument to the
trainNetwork function.

options = trainingOptions(solverName,Name,Value) returns training options with
additional options specified by one or more name-value pair arguments.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum.
Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for
training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training
progress plot.

options = trainingOptions('sgdm', ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.2, ...
    'LearnRateDropPeriod',5, ...
    'MaxEpochs',20, ...
    'MiniBatchSize',64, ...
    'Plots','training-progress')

options = 
  TrainingOptionsSGDM with properties:

                    Momentum: 0.9000
            InitialLearnRate: 0.0100
           LearnRateSchedule: 'piecewise'
         LearnRateDropFactor: 0.2000
         LearnRateDropPeriod: 5
            L2Regularization: 1.0000e-04
     GradientThresholdMethod: 'l2norm'
           GradientThreshold: Inf
                   MaxEpochs: 20
               MiniBatchSize: 64
                     Verbose: 1
            VerboseFrequency: 50
              ValidationData: []
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         ValidationFrequency: 50
          ValidationPatience: Inf
                     Shuffle: 'once'
              CheckpointPath: ''
        ExecutionEnvironment: 'auto'
                  WorkerLoad: []
                   OutputFcn: []
                       Plots: 'training-progress'
              SequenceLength: 'longest'
        SequencePaddingValue: 0
    SequencePaddingDirection: 'right'
        DispatchInBackground: 0
     ResetInputNormalization: 1

Monitor Deep Learning Training Progress

When you train networks for deep learning, it is often useful to monitor the training progress. By
plotting various metrics during training, you can learn how the training is progressing. For example,
you can determine if and how quickly the network accuracy is improving, and whether the network is
starting to overfit the training data.

When you specify 'training-progress' as the 'Plots' value in trainingOptions and start
network training, trainNetwork creates a figure and displays training metrics at every iteration.
Each iteration is an estimation of the gradient and an update of the network parameters. If you
specify validation data in trainingOptions, then the figure shows validation metrics each time
trainNetwork validates the network. The figure plots the following:

• Training accuracy — Classification accuracy on each individual mini-batch.
• Smoothed training accuracy — Smoothed training accuracy, obtained by applying a smoothing

algorithm to the training accuracy. It is less noisy than the unsmoothed accuracy, making it easier
to spot trends.

• Validation accuracy — Classification accuracy on the entire validation set (specified using
trainingOptions).

• Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its
smoothed version, and the loss on the validation set, respectively. If the final layer of your network
is a classificationLayer, then the loss function is the cross entropy loss. For more
information about loss functions for classification and regression problems, see “Output Layers”.

For regression networks, the figure plots the root mean square error (RMSE) instead of the accuracy.

The figure marks each training Epoch using a shaded background. An epoch is a full pass through
the entire data set.

During training, you can stop training and return the current state of the network by clicking the stop
button in the top-right corner. For example, you might want to stop training when the accuracy of the
network reaches a plateau and it is clear that the accuracy is no longer improving. After you click the
stop button, it can take a while for the training to complete. Once training is complete,
trainNetwork returns the trained network.

When training finishes, view the Results showing the final validation accuracy and the reason that
training finished. The final validation metrics are labeled Final in the plots. If your network contains
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batch normalization layers, then the final validation metrics are often different from the validation
metrics evaluated during training. This is because batch normalization layers in the final network
perform different operations than during training.

On the right, view information about the training time and settings. To learn more about training
options, see “Set Up Parameters and Train Convolutional Neural Network”.

Plot Training Progress During Training

Train a network and plot the training progress during training.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for
network validation.

[XTrain,YTrain] = digitTrain4DArrayData;

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Construct a network to classify the digit image data.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
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    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify options for network training. To validate the network at regular intervals during training,
specify validation data. Choose the 'ValidationFrequency' value so that the network is validated
about once per epoch. To plot training progress during training, specify 'training-progress' as
the 'Plots' value.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);
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Input Arguments
solverName — Solver for training network
'sgdm' | 'rmsprop' | 'adam'

Solver for training network, specified as one of the following:

• 'sgdm' — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify
the momentum value using the 'Momentum' name-value pair argument.

• 'rmsprop'— Use the RMSProp optimizer. You can specify the decay rate of the squared gradient
moving average using the 'SquaredGradientDecayFactor' name-value pair argument.

• 'adam'— Use the Adam optimizer. You can specify the decay rates of the gradient and squared
gradient moving averages using the 'GradientDecayFactor' and
'SquaredGradientDecayFactor' name-value pair arguments, respectively.

For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
'InitialLearnRate',0.03,'L2Regularization',0.0005,'LearnRateSchedule','piecew
ise' specifies the initial learning rate as 0.03 and theL2 regularization factor as 0.0005, and
instructs the software to drop the learning rate every given number of epochs by multiplying with a
certain factor.
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Plots and Display

Plots — Plots to display during network training
'none' (default) | 'training-progress'

Plots to display during network training, specified as the comma-separated pair consisting of
'Plots' and one of the following:

• 'none' — Do not display plots during training.
• 'training-progress'— Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network. For more information on the training progress plot, see “Monitor Deep
Learning Training Progress” on page 1-978.

Example: 'Plots','training-progress'

Verbose — Indicator to display training progress information
1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as the comma-
separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The verbose output displays the following information:

Classification Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy Classification accuracy on the mini-batch.
Validation Accuracy Classification accuracy on the validation data. If

you do not specify validation data, then the
function does not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
ClassificationOutputLayer object, then the
loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes.

Validation Loss Loss on the validation data. If the output layer is
a ClassificationOutputLayer object, then
the loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes. If you do not specify validation data, then
the function does not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.
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Regression Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch RMSE Root-mean-squared-error (RMSE) on the mini-

batch.
Validation RMSE RMSE on the validation data. If you do not

specify validation data, then the software does
not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
RegressionOutputLayer object, then the loss
is the half-mean-squared-error.

Validation Loss Loss on the validation data. If the output layer is
a RegressionOutputLayer object, then the
loss is the half-mean-squared-error. If you do not
specify validation data, then the software does
not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.

To specify validation data, use the 'ValidationData' name-value pair.
Example: 'Verbose',false

VerboseFrequency — Frequency of verbose printing
50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as the comma-separated pair consisting of 'VerboseFrequency' and a positive
integer. This option only has an effect when the 'Verbose' value equals true.

If you validate the network during training, then trainNetwork also prints to the command window
every time validation occurs.
Example: 'VerboseFrequency',100

Mini-Batch Options

MaxEpochs — Maximum number of epochs
30 (default) | positive integer

Maximum number of epochs to use for training, specified as the comma-separated pair consisting of
'MaxEpochs' and a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.
Example: 'MaxEpochs',20
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MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as the comma-separated pair
consisting of 'MiniBatchSize' and a positive integer. A mini-batch is a subset of the training set
that is used to evaluate the gradient of the loss function and update the weights. See “Stochastic
Gradient Descent” on page 1-992.
Example: 'MiniBatchSize',256

Shuffle — Option for data shuffling
'once' (default) | 'never' | 'every-epoch'

Option for data shuffling, specified as the comma-separated pair consisting of 'Shuffle' and one of
the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the
'Shuffle' value to 'every-epoch'.

Example: 'Shuffle','every-epoch'

Validation

ValidationData — Data to use for validation during training
image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a
cell array. The format of the validation data depends on the type of task and correspond to valid
inputs to the trainNetwork function.

Specify validation data as one of the following:

Input trainNetwork Argument
Image datastore imds
Datastore ds
Table tbl
Cell array {X,Y} X X

Y Y
Cell array {sequences,Y} sequences sequences

Y Y

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value
pair argument. You can also use the validation data to stop training automatically when the validation
loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience'
name-value pair argument.
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If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals
'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation
50 (default) | positive integer

Frequency of network validation in number of iterations, specified as the comma-separated pair
consisting of 'ValidationFrequency' and a positive integer.

The 'ValidationFrequency' value is the number of iterations between evaluations of validation
metrics. To specify validation data, use the 'ValidationData' name-value pair argument.
Example: 'ValidationFrequency',20

ValidationPatience — Patience of validation stopping
Inf (default) | positive integer

Patience of validation stopping of network training, specified as the comma-separated pair consisting
of 'ValidationPatience' and a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be
larger than or equal to the previously smallest loss before network training stops. To turn on
automatic validation stopping, specify a positive integer as the 'ValidationPatience' value. If
you use the default value of Inf, then the training stops after the maximum number of epochs. To
specify validation data, use the 'ValidationData' name-value pair argument.
Example: 'ValidationPatience',5

Solver Options

InitialLearnRate — Initial learning rate
0.001 | 0.01 | positive scalar

Initial learning rate used for training, specified as the comma-separated pair consisting of
'InitialLearnRate' and a positive scalar. The default value is 0.01 for the 'sgdm' solver and
0.001 for the 'rmsprop' and 'adam' solvers. If the learning rate is too low, then training takes a
long time. If the learning rate is too high, then training might reach a suboptimal result or diverge.
Example: 'InitialLearnRate',0.03
Data Types: single | double

LearnRateSchedule — Option for dropping learning rate during training
'none' (default) | 'piecewise'

Option for dropping the learning rate during training, specified as the comma-separated pair
consisting of 'LearnRateSchedule' and one of the following:

• 'none' — The learning rate remains constant throughout training.
• 'piecewise' — The software updates the learning rate every certain number of epochs by

multiplying with a certain factor. Use the LearnRateDropFactor name-value pair argument to
specify the value of this factor. Use the LearnRateDropPeriod name-value pair argument to
specify the number of epochs between multiplications.
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Example: 'LearnRateSchedule','piecewise'

LearnRateDropPeriod — Number of epochs for dropping the learning rate
10 (default) | positive integer

Number of epochs for dropping the learning rate, specified as the comma-separated pair consisting of
'LearnRateDropPeriod' and a positive integer. This option is valid only when the value of
LearnRateSchedule is 'piecewise'.

The software multiplies the global learning rate with the drop factor every time the specified number
of epochs passes. Specify the drop factor using the LearnRateDropFactor name-value pair
argument.
Example: 'LearnRateDropPeriod',3

LearnRateDropFactor — Factor for dropping the learning rate
0.1 (default) | scalar from 0 to 1

Factor for dropping the learning rate, specified as the comma-separated pair consisting of
'LearnRateDropFactor' and a scalar from 0 to 1. This option is valid only when the value of
LearnRateSchedule is 'piecewise'.

LearnRateDropFactor is a multiplicative factor to apply to the learning rate every time a certain
number of epochs passes. Specify the number of epochs using the LearnRateDropPeriod name-
value pair argument.
Example: 'LearnRateDropFactor',0.1
Data Types: single | double

L2Regularization — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as the comma-separated pair consisting of
'L2Regularization' and a nonnegative scalar. For more information, see “L2 Regularization” on
page 1-995.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters.
For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.
Example: 'L2Regularization',0.0005
Data Types: single | double

Momentum — Contribution of previous step
0.9 (default) | scalar from 0 to 1

Contribution of the parameter update step of the previous iteration to the current iteration of
stochastic gradient descent with momentum, specified as the comma-separated pair consisting of
'Momentum' and a scalar from 0 to 1. A value of 0 means no contribution from the previous step,
whereas a value of 1 means maximal contribution from the previous step.

To specify the 'Momentum' value, you must set solverName to be 'sgdm'. The default value works
well for most problems. For more information about the different solvers, see “Stochastic Gradient
Descent” on page 1-992.
Example: 'Momentum',0.95
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Data Types: single | double

GradientDecayFactor — Decay rate of gradient moving average
0.9 (default) | nonnegative scalar less than 1

Decay rate of gradient moving average for the Adam solver, specified as the comma-separated pair
consisting of 'GradientDecayFactor' and a nonnegative scalar less than 1. The gradient decay
rate is denoted by β1 in [4].

To specify the 'GradientDecayFactor' value, you must set solverName to be 'adam'. The
default value works well for most problems. For more information about the different solvers, see
“Stochastic Gradient Descent” on page 1-992.
Example: 'GradientDecayFactor',0.95
Data Types: single | double

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
0.9 | 0.999 | nonnegative scalar less than 1

Decay rate of squared gradient moving average for the Adam and RMSProp solvers, specified as the
comma-separated pair consisting of 'SquaredGradientDecayFactor' and a nonnegative scalar
less than 1. The squared gradient decay rate is denoted by β2 in [4].

To specify the 'SquaredGradientDecayFactor' value, you must set solverName to be 'adam' or
'rmsprop'. Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging
lengths of 10, 100, and 1000 parameter updates, respectively. The default value is 0.999 for the Adam
solver. The default value is 0.9 for the RMSProp solver.

For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.
Example: 'SquaredGradientDecayFactor',0.99
Data Types: single | double

Epsilon — Denominator offset
10-8 (default) | positive scalar

Denominator offset for Adam and RMSProp solvers, specified as the comma-separated pair consisting
of 'Epsilon' and a positive scalar. The solver adds the offset to the denominator in the network
parameter updates to avoid division by zero.

To specify the 'Epsilon' value, you must set solverName to be 'adam' or 'rmsprop'. The default
value works well for most problems. For more information about the different solvers, see “Stochastic
Gradient Descent” on page 1-992.
Example: 'Epsilon',1e-6
Data Types: single | double

ResetInputNormalization — Option to reset input layer normalization
true (default) | false

Option to reset input layer normalization, specified as one of the following:

• true – Reset the input layer normalization statistics and recalculate them at training time.
• false – Calculate normalization statistics at training time when they are empty.
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Gradient Clipping

GradientThreshold — Gradient threshold
Inf (default) | positive scalar

Gradient threshold, specified as the comma-separated pair consisting of 'GradientThreshold' and
Inf or a positive scalar. If the gradient exceeds the value of GradientThreshold, then the gradient
is clipped according to GradientThresholdMethod.
Example: 'GradientThreshold',6

GradientThresholdMethod — Gradient threshold method
'l2norm' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as the comma-separated pair consisting of 'GradientThresholdMethod' and one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.
Example: 'GradientThresholdMethod','global-l2norm'

Sequence Options

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'
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Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
Example: 'SequencePaddingValue',-1

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' (default) | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep
learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If
you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.
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To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Datastores used for multi-GPU training or parallel training must be partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.

If you use the 'multi-gpu' option with a partitionable input datastore and the
'DispatchInBackground' option, then the software starts a parallel pool with size equal to the
default pool size. Workers with unique GPUs perform training computation. The remaining workers
are used for background dispatch.
Example: 'ExecutionEnvironment','cpu'

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as the comma-separated pair
consisting of 'WorkerLoad' and one of the following:

• Scalar from 0 to 1 — Fraction of workers on each machine to use for network training
computation. If you train the network using data in a mini-batch datastore with background
dispatch enabled, then the remaining workers fetch and preprocess data in the background.

• Positive integer — Number of workers on each machine to use for network training computation.
If you train the network using data in a mini-batch datastore with background dispatch enabled,
then the remaining workers fetch and preprocess data in the background.

• Numeric vector — Network training load for each worker in the parallel pool. For a vector W,
worker i gets a fraction W(i)/sum(W) of the work (number of examples per mini-batch). If you
train a network using data in a mini-batch datastore with background dispatch enabled, then you
can assign a worker load of 0 to use that worker for fetching data in the background. The
specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for
training computation. The default for pools with GPUs is to use all workers with a unique GPU for
training computation, and the remaining workers for background dispatch. If the pool does not have
access to GPUs and CPUs are used for training, then the default is to use one worker per machine for
background data dispatch.

DispatchInBackground — Use background dispatch
false (default) | true

Use background dispatch (asynchronous prefetch queuing) to read training data from datastores,
specified as false or true. Background dispatch requires Parallel Computing Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.

Checkpoints

CheckpointPath — Path for saving checkpoint networks
'' (default) | character vector

Path for saving the checkpoint networks, specified as the comma-separated pair consisting of
'CheckpointPath' and a character vector.
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• If you do not specify a path (that is, you use the default ''), then the software does not save any
checkpoint networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path after every
epoch and assigns a unique name to each network. You can then load any checkpoint network and
resume training from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the
checkpoint networks. If the path you specify does not exist, then trainingOptions returns an
error.

For more information about saving network checkpoints, see “Save Checkpoint Networks and
Resume Training”.
Example: 'CheckpointPath','C:\Temp\checkpoint'
Data Types: char

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as the comma-separated pair consisting of
'OutputFcn' and a function handle or cell array of function handles. trainNetwork calls the
specified functions once before the start of training, after each iteration, and once after training has
finished. trainNetwork passes a structure containing information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done"

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return true. If any output function returns true, then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training”.
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Data Types: function_handle | cell

Output Arguments
options — Training options
TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM

Training options, returned as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object. To train a neural network, use the training options as an input
argument to the trainNetwork function.

If solverName equals 'sgdm', 'rmsprop', or 'adam', then the training options are returned as a
TrainingOptionsSGDM, TrainingOptionsRMSProp, or TrainingOptionsADAM object,
respectively.

You can edit training option properties of TrainingOptionsSGDM, TrainingOptionsADAM, and
TrainingOptionsRMSProp objects directly. For example, to change the mini-batch size after using
the trainingOptions function, you can edit the MiniBatchSize property directly:

options = trainingOptions('sgdm');
options.MiniBatchSize = 64;

Tips
• For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For

an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your
task, then you can create a custom training loop using automatic differentiation. To learn more,
see “Define Deep Learning Network for Custom Training Loops”.

Algorithms
Initial Weights and Biases

For convolutional and fully connected layers, the initialization for the weights and biases are given by
the WeightsInitializer and BiasInitializer properties of the layers, respectively. For
examples showing how to change the initialization for the weights and biases, see “Specify Initial
Weights and Biases in Convolutional Layer” on page 1-254 and “Specify Initial Weights and Biases in
Fully Connected Layer” on page 1-478.

Stochastic Gradient Descent

The standard gradient descent algorithm updates the network parameters (weights and biases) to
minimize the loss function by taking small steps at each iteration in the direction of the negative
gradient of the loss,

θℓ + 1 = θℓ− α∇E θℓ ,

where ℓis the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function. In the standard gradient descent algorithm, the gradient of the loss function, ∇E θ , is
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evaluated using the entire training set, and the standard gradient descent algorithm uses the entire
data set at once.

By contrast, at each iteration the stochastic gradient descent algorithm evaluates the gradient and
updates the parameters using a subset of the training data. A different subset, called a mini-batch, is
used at each iteration. The full pass of the training algorithm over the entire training set using mini-
batches is one epoch. Stochastic gradient descent is stochastic because the parameter updates
computed using a mini-batch is a noisy estimate of the parameter update that would result from using
the full data set. You can specify the mini-batch size and the maximum number of epochs by using the
'MiniBatchSize' and 'MaxEpochs' name-value pair arguments, respectively.

Stochastic Gradient Descent with Momentum

The stochastic gradient descent algorithm can oscillate along the path of steepest descent towards
the optimum. Adding a momentum term to the parameter update is one way to reduce this oscillation
[2]. The stochastic gradient descent with momentum (SGDM) update is

θℓ + 1 = θℓ− α∇E θℓ + γ θℓ− θℓ− 1 ,

where γ determines the contribution of the previous gradient step to the current iteration. You can
specify this value using the 'Momentum' name-value pair argument. To train a neural network using
the stochastic gradient descent with momentum algorithm, specify solverName as 'sgdm'. To
specify the initial value of the learning rate α, use the 'InitialLearnRate' name-value pair
argument. You can also specify different learning rates for different layers and parameters. For more
information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

RMSProp

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. Other
optimization algorithms seek to improve network training by using learning rates that differ by
parameter and can automatically adapt to the loss function being optimized. RMSProp (root mean
square propagation) is one such algorithm. It keeps a moving average of the element-wise squares of
the parameter gradients,

vℓ = β2vℓ− 1 + (1− β2)[∇E θℓ ]2

β2 is the decay rate of the moving average. Common values of the decay rate are 0.9, 0.99, and 0.999.
The corresponding averaging lengths of the squared gradients equal 1/(1-β2), that is, 10, 100, and
1000 parameter updates, respectively. You can specify β2 by using the
'SquaredGradientDecayFactor' name-value pair argument. The RMSProp algorithm uses this
moving average to normalize the updates of each parameter individually,

θℓ + 1 = θℓ−
α∇E θℓ

vℓ + ϵ

where the division is performed element-wise. Using RMSProp effectively decreases the learning
rates of parameters with large gradients and increases the learning rates of parameters with small
gradients. ɛ is a small constant added to avoid division by zero. You can specify ɛ by using the
'Epsilon' name-value pair argument, but the default value usually works well. To use RMSProp to
train a neural network, specify solverName as 'rmsprop'.
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Adam

Adam (derived from adaptive moment estimation) [4] uses a parameter update that is similar to
RMSProp, but with an added momentum term. It keeps an element-wise moving average of both the
parameter gradients and their squared values,

mℓ = β1mℓ− 1 + (1− β1)∇E θℓ

vℓ = β2vℓ− 1 + (1− β2)[∇E θℓ ]2

You can specify the β1 and β2 decay rates using the 'GradientDecayFactor' and
'SquaredGradientDecayFactor' name-value pair arguments, respectively. Adam uses the moving
averages to update the network parameters as

θℓ + 1 = θℓ−
αml
vl + ϵ

If gradients over many iterations are similar, then using a moving average of the gradient enables the
parameter updates to pick up momentum in a certain direction. If the gradients contain mostly noise,
then the moving average of the gradient becomes smaller, and so the parameter updates become
smaller too. You can specify ɛ by using the 'Epsilon' name-value pair argument. The default value
usually works well, but for certain problems a value as large as 1 works better. To use Adam to train a
neural network, specify solverName as 'adam'. The full Adam update also includes a mechanism to
correct a bias the appears in the beginning of training. For more information, see [4].

Specify the learning rate α for all optimization algorithms using the'InitialLearnRate' name-
value pair argument. The effect of the learning rate is different for the different optimization
algorithms, so the optimal learning rates are also different in general. You can also specify learning
rates that differ by layers and by parameter. For more information, see “Set Up Parameters in
Convolutional and Fully Connected Layers”.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge
within a few iterations. This "gradient explosion" is indicated by a training loss that goes to NaN or
Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning
rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and
does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

• Norm-based gradient clipping rescales the gradient based on a threshold, and does not change the
direction of the gradient. The 'l2norm' and 'global-l2norm' values of
GradientThresholdMethod are norm-based gradient clipping methods.

• Value-based gradient clipping clips any partial derivative greater than the threshold, which can
result in the gradient arbitrarily changing direction. Value-based gradient clipping can have
unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The
'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping
method.

For examples, see “Time Series Forecasting Using Deep Learning” and “Sequence-to-Sequence
Classification Using Deep Learning”.
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L2 Regularization

Adding a regularization term for the weights to the loss function E θ  is one way to reduce overfitting
[1], [2]. The regularization term is also called weight decay. The loss function with the regularization
term takes the form

ER θ = E θ + λΩ w ,

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization
function Ω w  is

Ω w = 1
2wTw .

Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the
'L2Regularization' name-value pair argument. You can also specify different regularization
factors for different layers and parameters. For more information, see “Set Up Parameters in
Convolutional and Fully Connected Layers”.

The loss function that the software uses for network training includes the regularization term.
However, the loss value displayed in the command window and training progress plot during training
is the loss on the data only and does not include the regularization term.

Compatibility Considerations
'ValidationPatience' training option default is Inf
Behavior changed in R2018b

Starting in R2018b, the default value of the 'ValidationPatience' training option is Inf, which
means that automatic stopping via validation is turned off. This behavior prevents the training from
stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the
'ValidationPatience' option to 5.

Different file name for checkpoint networks
Behavior changed in R2018b

Starting in R2018b, when saving checkpoint networks, the software assigns file names beginning
with net_checkpoint_. In previous versions, the software assigns file names beginning with
convnet_checkpoint_.

If you have code that saves and loads checkpoint networks, then update your code to load files with
the new name.

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

[2] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge,
Massachusetts, 2012.
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Topics
“Create Simple Deep Learning Network for Classification”
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Introduced in R2016a
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TrainingOptionsADAM
Training options for Adam optimizer

Description
Training options for Adam (adaptive moment estimation) optimizer, including learning rate
information, L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsADAM object using trainingOptions and specifying 'adam' as the
solverName input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress'— Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network.

Verbose — Indicator to display training progress information
1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch
loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean
square error (RMSE) is shown instead of accuracy. If you validate the network during training, then
the displayed information also includes the validation loss and validation accuracy (or RMSE).
Data Types: logical

VerboseFrequency — Frequency of verbose printing
positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This property only has an effect when the Verbose value
equals true.
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If you validate the network during training, then trainNetwork prints to the command window
every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs
positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch
positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid
discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training
image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a
cell array. The format of the validation data depends on the type of task and correspond to valid
inputs to the trainNetwork function.

Specify validation data as one of the following:

Input trainNetwork Argument
Image datastore imds
Datastore ds
Table tbl
Cell array {X,Y} X X

Y Y
Cell array {sequences,Y} sequences sequences
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Input trainNetwork Argument
Y Y

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value
pair argument. You can also use the validation data to stop training automatically when the validation
loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience'
name-value pair argument.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals
'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation
positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics.

ValidationPatience — Patience of validation stopping
positive integer | Inf

Patience of validation stopping of network training, specified as a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be
larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate
positive scalar

Initial learning rate used for training, specified as a positive scalar. If the learning rate is too low,
then training takes a long time. If the learning rate is too high, then training can reach a suboptimal
result.

LearnRateScheduleSettings — Settings for learning rate schedule
structure

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:

• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
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• DropPeriod — The number of epochs that passes between adjustments to the learning rate
during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularizer
nonnegative scalar

Factor for L2 regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L2 regularizer for network layers with learnable parameters.

GradientDecayFactor — Decay rate of gradient moving average
scalar from 0 to 1

Decay rate of gradient moving average, specified as a scalar from 0 to 1. For more information about
the different solvers, see “Stochastic Gradient Descent” on page 1-992.

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
scalar from 0 to 1

Decay rate of squared gradient moving average, specified as a scalar from 0 to 1. For more
information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Epsilon — Denominator offset
positive scalar

Denominator offset, specified as a positive scalar. The solver adds the offset to the denominator in the
network parameter updates to avoid division by zero.

ResetInputNormalization — Option to reset input layer normalization
true (default) | false

Option to reset input layer normalization, specified as one of the following:

• true – Reset the input layer normalization statistics and recalculate them at training time.
• false – Calculate normalization statistics at training time when they are empty.

Gradient Clipping

GradientThreshold — Gradient threshold
positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the
value of GradientThreshold, then the gradient is clipped according to
GradientThresholdMethod.

GradientThresholdMethod — Gradient threshold method
'l2norm' | 'global-l2norm' | 'absolutevalue'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:
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• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

Sequence Options

SequenceLength — Option to pad or truncate sequences
'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.
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To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep
learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If
you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using trainingOptions.
Data Types: char | string

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a
numeric vector. This property has an effect only when the ExecutionEnvironment value equals
'multi-gpu' or 'parallel'.
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Checkpoints

CheckpointPath — Path for saving checkpoint networks
character vector

Path where checkpoint networks are saved, specified as a character vector.
Data Types: char

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return true. If any output function returns true, then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training” .
Data Types: function_handle | cell

Examples
Create Training Options for the Adam Optimizer

Create a set of options for training a neural network using the Adam optimizer. Set the maximum
number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration.
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Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on
the training progress plot.

options = trainingOptions('adam', ...
    'InitialLearnRate',3e-4, ...
    'SquaredGradientDecayFactor',0.99, ...
    'MaxEpochs',20, ...
    'MiniBatchSize',64, ...
    'Plots','training-progress')

options = 
  TrainingOptionsADAM with properties:

           GradientDecayFactor: 0.9000
    SquaredGradientDecayFactor: 0.9900
                       Epsilon: 1.0000e-08
              InitialLearnRate: 3.0000e-04
             LearnRateSchedule: 'none'
           LearnRateDropFactor: 0.1000
           LearnRateDropPeriod: 10
              L2Regularization: 1.0000e-04
       GradientThresholdMethod: 'l2norm'
             GradientThreshold: Inf
                     MaxEpochs: 20
                 MiniBatchSize: 64
                       Verbose: 1
              VerboseFrequency: 50
                ValidationData: []
           ValidationFrequency: 50
            ValidationPatience: Inf
                       Shuffle: 'once'
                CheckpointPath: ''
          ExecutionEnvironment: 'auto'
                    WorkerLoad: []
                     OutputFcn: []
                         Plots: 'training-progress'
                SequenceLength: 'longest'
          SequencePaddingValue: 0
      SequencePaddingDirection: 'right'
          DispatchInBackground: 0
       ResetInputNormalization: 1

References
[1] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint

arXiv:1412.6980 (2014).
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“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2018a
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TrainingOptionsRMSProp
Training options for RMSProp optimizer

Description
Training options for RMSProp (root mean square propagation) optimizer, including learning rate
information, L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsRMSProp object using trainingOptions and specifying 'rmsprop' as
the solverName input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress'— Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network.

Verbose — Indicator to display training progress information
1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch
loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean
square error (RMSE) is shown instead of accuracy. If you validate the network during training, then
the displayed information also includes the validation loss and validation accuracy (or RMSE).
Data Types: logical

VerboseFrequency — Frequency of verbose printing
positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This property only has an effect when the Verbose value
equals true.
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If you validate the network during training, then trainNetwork prints to the command window
every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs
positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch
positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid
discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training
image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a
cell array. The format of the validation data depends on the type of task and correspond to valid
inputs to the trainNetwork function.

Specify validation data as one of the following:

Input trainNetwork Argument
Image datastore imds
Datastore ds
Table tbl
Cell array {X,Y} X X

Y Y
Cell array {sequences,Y} sequences sequences
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Input trainNetwork Argument
Y Y

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value
pair argument. You can also use the validation data to stop training automatically when the validation
loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience'
name-value pair argument.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals
'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation
positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics.

ValidationPatience — Patience of validation stopping
positive integer | Inf

Patience of validation stopping of network training, specified as a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be
larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate
positive scalar

Initial learning rate used for training, specified as a positive scalar. If the learning rate is too low,
then training takes a long time. If the learning rate is too high, then training can reach a suboptimal
result.

LearnRateScheduleSettings — Settings for learning rate schedule
structure

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:

• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
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• DropPeriod — The number of epochs that passes between adjustments to the learning rate
during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularizer
nonnegative scalar

Factor for L2 regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L2 regularizer for network layers with learnable parameters.

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
scalar from 0 to 1

Decay rate of squared gradient moving average, specified as a scalar from 0 to 1. For more
information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Epsilon — Denominator offset
positive scalar

Denominator offset, specified as a positive scalar. The solver adds the offset to the denominator in the
network parameter updates to avoid division by zero.

ResetInputNormalization — Option to reset input layer normalization
true (default) | false

Option to reset input layer normalization, specified as one of the following:

• true – Reset the input layer normalization statistics and recalculate them at training time.
• false – Calculate normalization statistics at training time when they are empty.

Gradient Clipping

GradientThreshold — Gradient threshold
positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the
value of GradientThreshold, then the gradient is clipped according to
GradientThresholdMethod.

GradientThresholdMethod — Gradient threshold method
'l2norm' | 'global-l2norm' | 'absolutevalue'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.
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• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

Sequence Options

SequenceLength — Option to pad or truncate sequences
'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
scalar
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Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep
learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If
you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using trainingOptions.
Data Types: char | string

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a
numeric vector. This property has an effect only when the ExecutionEnvironment value equals
'multi-gpu' or 'parallel'.

Checkpoints

CheckpointPath — Path for saving checkpoint networks
character vector

Path where checkpoint networks are saved, specified as a character vector.
Data Types: char
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OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return true. If any output function returns true, then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training” .
Data Types: function_handle | cell

Examples
Create Training Options for the RMSProp Optimizer

Create a set of options for training a neural network using the RMSProp optimizer. Set the maximum
number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration.
Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on
the training progress plot.

options = trainingOptions('rmsprop', ...
    'InitialLearnRate',3e-4, ...
    'SquaredGradientDecayFactor',0.99, ...
    'MaxEpochs',20, ...
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    'MiniBatchSize',64, ...
    'Plots','training-progress')

options = 
  TrainingOptionsRMSProp with properties:

    SquaredGradientDecayFactor: 0.9900
                       Epsilon: 1.0000e-08
              InitialLearnRate: 3.0000e-04
             LearnRateSchedule: 'none'
           LearnRateDropFactor: 0.1000
           LearnRateDropPeriod: 10
              L2Regularization: 1.0000e-04
       GradientThresholdMethod: 'l2norm'
             GradientThreshold: Inf
                     MaxEpochs: 20
                 MiniBatchSize: 64
                       Verbose: 1
              VerboseFrequency: 50
                ValidationData: []
           ValidationFrequency: 50
            ValidationPatience: Inf
                       Shuffle: 'once'
                CheckpointPath: ''
          ExecutionEnvironment: 'auto'
                    WorkerLoad: []
                     OutputFcn: []
                         Plots: 'training-progress'
                SequenceLength: 'longest'
          SequencePaddingValue: 0
      SequencePaddingDirection: 'right'
          DispatchInBackground: 0
       ResetInputNormalization: 1

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2018a
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TrainingOptionsSGDM
Training options for stochastic gradient descent with momentum

Description
Training options for stochastic gradient descent with momentum, including learning rate information,
L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsSGDM object using trainingOptions and specifying 'sgdm' as the
solverName input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress'— Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network.

Verbose — Indicator to display training progress information
1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch
loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean
square error (RMSE) is shown instead of accuracy. If you validate the network during training, then
the displayed information also includes the validation loss and validation accuracy (or RMSE).
Data Types: logical

VerboseFrequency — Frequency of verbose printing
positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This property only has an effect when the Verbose value
equals true.
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If you validate the network during training, then trainNetwork prints to the command window
every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs
positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch
positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid
discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training
image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a
cell array. The format of the validation data depends on the type of task and correspond to valid
inputs to the trainNetwork function.

Specify validation data as one of the following:

Input trainNetwork Argument
Image datastore imds
Datastore ds
Table tbl
Cell array {X,Y} X X

Y Y
Cell array {sequences,Y} sequences sequences
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Input trainNetwork Argument
Y Y

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value
pair argument. You can also use the validation data to stop training automatically when the validation
loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience'
name-value pair argument.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals
'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation
positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics.

ValidationPatience — Patience of validation stopping
positive integer | Inf

Patience of validation stopping of network training, specified as a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be
larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate
positive scalar

Initial learning rate used for training, specified as a positive scalar. If the learning rate is too low,
then training takes a long time. If the learning rate is too high, then training can reach a suboptimal
result.

LearnRateScheduleSettings — Settings for learning rate schedule
structure

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:

• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
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• DropPeriod — The number of epochs that passes between adjustments to the learning rate
during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularizer
nonnegative scalar

Factor for L2 regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L2 regularizer for network layers with learnable parameters.

Momentum — Contribution of previous gradient step
scalar from 0 to 1

Contribution of the gradient step from the previous iteration to the current iteration of the training,
specified as a scalar value from 0 to 1. A value of 0 means no contribution from the previous step,
whereas a value of 1 means maximal contribution from the previous step. For more information about
the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Gradient Clipping

GradientThreshold — Gradient threshold
positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the
value of GradientThreshold, then the gradient is clipped according to
GradientThresholdMethod.

GradientThresholdMethod — Gradient threshold method
'l2norm' | 'global-l2norm' | 'absolutevalue'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

ResetInputNormalization — Option to reset input layer normalization
true (default) | false

Option to reset input layer normalization, specified as one of the following:

• true – Reset the input layer normalization statistics and recalculate them at training time.
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• false – Calculate normalization statistics at training time when they are empty.

Sequence Options

SequenceLength — Option to pad or truncate sequences
'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified
length that is greater than the longest sequence length in the mini-batch, and then split the
sequences into smaller sequences of the specified length. If splitting occurs, then the software
creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively,
try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to
a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode
property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to
'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM
layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option
to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when
SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing
so can propagate errors throughout the network.
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Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep
learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If
you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available,
then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using trainingOptions.
Data Types: char | string

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a
numeric vector. This property has an effect only when the ExecutionEnvironment value equals
'multi-gpu' or 'parallel'.

Checkpoints

CheckpointPath — Path for saving checkpoint networks
character vector

Path where checkpoint networks are saved, specified as a character vector.
Data Types: char

OutputFcn — Output functions
function handle | cell array of function handles
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Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return true. If any output function returns true, then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training” .
Data Types: function_handle | cell

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum.
Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for
training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training
progress plot.

options = trainingOptions('sgdm', ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.2, ...
    'LearnRateDropPeriod',5, ...
    'MaxEpochs',20, ...
    'MiniBatchSize',64, ...
    'Plots','training-progress')

1 Deep Learning Functions

1-1020



options = 
  TrainingOptionsSGDM with properties:

                    Momentum: 0.9000
            InitialLearnRate: 0.0100
           LearnRateSchedule: 'piecewise'
         LearnRateDropFactor: 0.2000
         LearnRateDropPeriod: 5
            L2Regularization: 1.0000e-04
     GradientThresholdMethod: 'l2norm'
           GradientThreshold: Inf
                   MaxEpochs: 20
               MiniBatchSize: 64
                     Verbose: 1
            VerboseFrequency: 50
              ValidationData: []
         ValidationFrequency: 50
          ValidationPatience: Inf
                     Shuffle: 'once'
              CheckpointPath: ''
        ExecutionEnvironment: 'auto'
                  WorkerLoad: []
                   OutputFcn: []
                       Plots: 'training-progress'
              SequenceLength: 'longest'
        SequencePaddingValue: 0
    SequencePaddingDirection: 'right'
        DispatchInBackground: 0
     ResetInputNormalization: 1

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2016a
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trainNetwork
Train neural network for deep learning

Syntax
net = trainNetwork(imds,layers,options)
net = trainNetwork(ds,layers,options)

net = trainNetwork(X,Y,layers,options)
net = trainNetwork(sequences,Y,layers,options)

net = trainNetwork(tbl,layers,options)
net = trainNetwork(tbl,responseNames,layers,options)

[net,info] = trainNetwork( ___ )

Description
For classification and regression tasks, you can use trainNetwork to train a convolutional neural
network (ConvNet, CNN) for image data, a recurrent neural network (RNN) such as a long short-term
memory (LSTM) or a gated recurrent unit (GRU) network for sequence data, or a multi-layer
perceptron (MLP) network for numeric feature data. You can train on either a CPU or a GPU. For
image classification and image regression, you can train using multiple GPUs or in parallel. Using
GPU, multi-GPU, and parallel options requires Parallel Computing Toolbox. To use a GPU for deep
learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. To
specify training options, including options for the execution environment, use the trainingOptions
function.

net = trainNetwork(imds,layers,options) trains a network specified by layers for image
classification tasks using the images and labels in the image datastore imds and the training options
defined by options.

net = trainNetwork(ds,layers,options) trains a network using the data returned by the
datastore ds. For networks with multiple inputs, use this syntax with a datastore that returns
multiple columns of data, such as a combined datastore.

net = trainNetwork(X,Y,layers,options) trains a network using the image or feature data
specified by the numeric array X with categorical or numeric responses specified by Y.

net = trainNetwork(sequences,Y,layers,options) trains a recurrent network (for example,
an LSTM or GRU network) for the sequence data specified by sequences and responses specified by
Y.

net = trainNetwork(tbl,layers,options) trains a network using the data in the table tbl.

net = trainNetwork(tbl,responseNames,layers,options) trains a network using the data
in the table tbl and specifies the table columns containing the responses.

[net,info] = trainNetwork( ___ ) also returns information on the training using any of the
previous syntaxes.
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Examples

Train Network for Image Classification

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by
applying random transformations to digit images created with different fonts. Each digit image is 28-
by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
    drawnow;
end
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Divide the datastore so that each category in the training set has 750 images and the testing set has
the remaining images from each label.

numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize');

splitEachLabel splits the image files in digitData into two new datastores, imdsTrain and
imdsTest.

Define the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to the default settings for the stochastic gradient descent with momentum. Set the
maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(imdsTrain,layers,options);
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Run the trained network on the test set, which was not used to train the network, and predict the
image labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data
matching the classifications from classify to the number of images in the test data.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9420

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
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        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);
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Train Network for Image Regression

Load the sample data, which consists of synthetic images of handwritten digits. The third output
contains the corresponding angles in degrees by which each image has been rotated.

Load the training images as 4-D arrays using digitTrain4DArrayData. The output XTrain is a 28-
by-28-by-1-by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain contains the rotation angles in degrees.

[XTrain,~,YTrain] = digitTrain4DArrayData;

Display 20 random training images using imshow.

figure
numTrainImages = numel(YTrain);
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)    
    imshow(XTrain(:,:,:,idx(i)))
    drawnow;
end
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Specify the convolutional neural network architecture. For regression problems, include a regression
layer at the end of the network.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];

Specify the network training options. Set the initial learn rate to 0.001.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.001, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);
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Test the performance of the network by evaluating the prediction accuracy of the test data. Use
predict to predict the angles of rotation of the validation images.

[XTest,~,YTest] = digitTest4DArrayData;
YPred = predict(net,XTest);

Evaluate the performance of the model by calculating the root-mean-square error (RMSE) of the
predicted and actual angles of rotation.

rmse = sqrt(mean((YTest - YPred).^2))

rmse = single
    6.0356

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
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title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')

Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5×1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex
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Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);

Load the test set and classify the sequences into speakers.

[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)
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acc = 0.9514

Train Network with Numeric Features

If you have a data set of numeric features (for example a collection of numeric data without spatial or
time dimensions), then you can train a deep learning network using a feature input layer.

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');

Convert the labels for prediction to categorical using the convertvars function.

labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');

To train a network using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. In this data set,
there are two categorical features with names "SensorCondition" and "ShaftCondition".

categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');

Loop over the categorical input variables. For each variable:

• Convert the categorical values to one-hot encoded vectors using the onehotencode function.
• Add the one-hot vectors to the table using the addvars function. Specify to insert the vectors

after the column containing the corresponding categorical data.
• Remove the corresponding column containing the categorical data.

for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end

Split the vectors into separate columns using the splitvars function.

tbl = splitvars(tbl);

View the first few rows of the table. Notice that the categorical predictors have been split into
multiple columns with the categorical values as the variable names.

head(tbl)

ans=8×23 table
    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    ____________    _____________    __________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13                0                1                1              0           No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12                0                1                1              0           No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13                0                1                0              1           No Tooth Fault  
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      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39                0                1                0              1           No Tooth Fault  

View the class names of the data set.

classNames = categories(tbl{:,labelName})

classNames = 2×1 cell
    {'No Tooth Fault'}
    {'Tooth Fault'   }

Next, partition the data set into training and test partitions. Set aside 15% of the data for testing.

Determine the number of observations for each partition.

numObservations = size(tbl,1);
numObservationsTrain = floor(0.85*numObservations);
numObservationsTest = numObservations - numObservationsTrain;

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxTest = idx(numObservationsTrain+1:end);

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = tbl(idxTrain,:);
tblTest = tbl(idxTest,:);

Define a network with a feature input layer and specify the number of features. Also, configure the
input layer to normalize the data using Z-score normalization.

numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
 
layers = [
    featureInputLayer(numFeatures,'Normalization', 'zscore')
    fullyConnectedLayer(50)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options.

miniBatchSize = 16;

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
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    'Plots','training-progress', ...
    'Verbose',false);

Train the network using the architecture defined by layers, the training data, and the training
options.

net = trainNetwork(tblTrain,layers,options);

Predict the labels of the test data using the trained network and calculate the accuracy. The accuracy
is the proportion of the labels that the network predicts correctly.

YPred = classify(net,tblTest,'MiniBatchSize',miniBatchSize);
YTest = tblTest{:,labelName};

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9688

Input Arguments
imds — Image datastore
ImageDatastore object

Image datastore containing images and labels, specified as an ImageDatastore object.

Create an image datastore using the imageDatastore function. To use the names of the folders
containing the images as labels, set the 'LabelSource' option to 'foldernames'. Alternatively,
specify the labels manually using the Labels property of the image datastore.
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The trainNetwork function supports image datastores for image classification networks only. To use
image datastores for regression networks, create a transformed or combined datastore using the
transform and combine functions. For more information, see the ds input argument.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning
including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is
usually significantly slower.

ds — Datastore
datastore

Datastore for out-of-memory data and preprocessing.

The table below lists the datastores that are directly compatible with trainNetwork. You can use
other built-in datastores for training deep learning networks by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by trainNetwork. For networks with multiple inputs, the datastore must be a combined or
transformed datastore, or a custom mini-batch datastore. For more information, see “Datastores for
Deep Learning”.

Type of Datastore Description
CombinedDatastore Horizontally concatenate the data read from two or more underlying

datastores.
TransformedDatasto
re

Transform batches of read data from an underlying datastore according to
your own preprocessing pipeline.

AugmentedImageData
store

Apply random affine geometric transformations, including resizing,
rotation, reflection, shear, and translation, for training deep neural
networks.

PixelLabelImageDat
astore

Apply identical affine geometric transformations to images and
corresponding ground truth labels for training semantic segmentation
networks (requires Computer Vision Toolbox).

RandomPatchExtract
ionDatastore

Extract pairs of random patches from images or pixel label images
(requires Image Processing Toolbox). You optionally can apply identical
random affine geometric transformations to the pairs of patches.

DenoisingImageData
store

Apply randomly generated Gaussian noise for training denoising networks
(requires Image Processing Toolbox).

Custom mini-batch
datastore

Create mini-batches of sequence, time series, text, or feature data. For
details, see “Develop Custom Mini-Batch Datastore”.

The datastore must return data in a table or a cell array. The format of the datastore output depends
on the network architecture.
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Network Architecture Datastore Output Example Output
Single input layer Table or cell array with two

columns.

The first and second columns
specify the predictors and
responses, respectively.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

data = read(ds)

data =

  4×2 table

        Predictors        Response
    __________________    ________

    {224×224×3 double}       2    
    {224×224×3 double}       7    
    {224×224×3 double}       9    
    {224×224×3 double}       9  
data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {[2]}
    {224×224×3 double}    {[7]}
    {224×224×3 double}    {[9]}
    {224×224×3 double}    {[9]}

Multiple input layers Cell array with (numInputs +
1) columns, where numInputs
is the number of network inputs.

The first numInputs columns
specify the predictors for each
input and the last column
specifies the responses.

The order of inputs is given by
the InputNames property of the
layer graph layers.

data = read(ds)

data =

  4×3 cell array

    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[9]}
    {224×224×3 double}    {128×128×3 double}    {[9]}

The format of the predictors depend on the type of data.

Data Format of Predictors
2-D image h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
image, respectively.

3-D image h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the image, respectively.

Vector sequence c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length.
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Data Format of Predictors
2-D image sequence h-by-w-by-c-by-s array, where h, w, and c

correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

Features c-by-1 column vector, where c is the number of
features.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.

The trainNetwork function does not support networks with multiple sequence input layers.

The format of the responses depend on the type of task.

Task Format of Responses
Classification Categorical scalar
Regression • Scalar

• Numeric vector
• 3-D numeric array representing an image

Sequence-to-sequence classification 1-by-s sequence of categorical labels, where s is
the sequence length of the corresponding
predictor sequence.

Sequence-to-sequence regression R-by-s matrix, where R is the number of
responses and s is the sequence length of the
corresponding predictor sequence.

For responses returned in tables, the elements must be a categorical scalar, a numeric scalar, a
numeric row vector, or a 1-by-1 cell array containing a numeric array.

X — Image or feature data
numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of
input:
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Input Description
2-D images A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width,

and number of channels of the images, respectively, and N is the number of
images.

3-D images A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height,
width, depth, and number of channels of the images, respectively, and N is
the number of images.

Features A N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input
data.

If the array contains NaNs, then they are propagated through the network.

sequences — Sequence or time series data
cell array of numeric arrays | numeric array

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, or a numeric array representing a single sequence.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

To specify sequences using a datastore, use the ds input argument.

Y — Responses
categorical vector of labels | numeric array | cell array of categorical sequences | cell array of
numeric sequences

Responses, specified as a categorical vector of labels, a numeric array, a cell array of categorical
sequences, or cell array of numeric sequences. The format of Y depends on the type of task.
Responses must not contain NaNs.

Classification

Task Format
Image or feature classification N-by-1 categorical vector of labels, where N is

the number of observations.Sequence-to-label classification
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Task Format
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence must have the same number of
time steps as the corresponding predictor
sequence.

For sequence-to-sequence classification tasks
with one observation, sequences can also be a
vector. In this case, Y must be a categorical
sequence of labels.

Regression

Task Format
2-D image regression • N-by-R matrix, where N is the number of

images and R is the number of responses.
• h-by-w-by-c-by-N numeric array, where h, w,

and c are the height, width, and number of
channels of the images, respectively, and N is
the number of images.

3-D image regression • N-by-R matrix, where N is the number of
images and R is the number of responses.

• h-by-w-by-d-by-c-by-N numeric array, where h,
w, d, and c are the height, width, depth, and
number of channels of the images,
respectively, and N is the number of images.

Sequence-to-one regression N-by-R matrix, where N is the number of
sequences and R is the number of responses.

Sequence-to-sequence regression N-by-1 cell array of numeric sequences, where N
is the number of sequences. The sequences are
matrices with R rows, where R is the number of
responses. Each sequence must have the same
number of time steps as the corresponding
predictor sequence.

For sequence-to-sequence regression tasks with
one observation, sequences can be a matrix. In
this case, Y must be a matrix of responses.

Feature regression N-by-R matrix, where N is the number of
observations and R is the number of responses.

Normalizing the responses often helps to stabilize and speed up training of neural networks for
regression. For more information, see “Train Convolutional Neural Network for Regression”.

tbl — Input data
table

Input data, specified as a table containing predictors and responses. Each row in the table
corresponds to an observation.
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The arrangement of predictors and responses in the table columns depends on the type of task.

Classification

Task Predictors Responses
Image classification • Absolute or relative file path

to an image, specified as a
character vector in a single
column

• Image specified as a 1-by-1
cell array containing a 3-D
numeric array

Predictors must be in the first
column of the table.

Categorical label

Sequence-to-label classification Absolute or relative file path to
a MAT file containing sequence
or time series data.

The MAT file must contain a
time series represented by a
matrix with rows corresponding
to data points and columns
corresponding to time steps.

Predictors must be in the first
column of the table.

Categorical label
Sequence-to-sequence
classification

Absolute or relative file path to
a MAT file. The MAT file must
contain a time series
represented by a categorical
vector, with entries
corresponding to labels for each
time step.

Feature classification Numeric scalar.

If you do not specify the
responseNames argument,
then the predictors must be in
the first numFeatures columns
of the table, where
numFeatures is the number of
features of the input data.

Categorical label

For classification networks with image or sequence input, if you do not specify responseNames, then
the function, by default, uses the first column of tbl for the predictors and the second column as the
labels. For classification networks with feature input, if you do not specify the responseNames
argument, then the function, by default, uses the first (numColumns - 1) columns of tbl for the
predictors and the last column for the labels, where numFeatures is the number of features in the
input data.
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Regression

Task Predictors Responses
Image regression • Absolute or relative file path

to an image, specified as a
character vector

• Image specified as a 1-by-1
cell array containing a 3-D
numeric array

Predictors must be in the first
column of the table.

• One or more columns of
scalar values

• Numeric row vector
• 1-by-1 cell array containing a

3-D numeric array

Sequence-to-one regression Absolute or relative file path to
a MAT file containing sequence
or time series data.

The MAT file must contain a
time series represented by a
matrix with rows corresponding
to data points and columns
corresponding to time steps.

Predictors must be in the first
column of the table.

• One or more columns of
scalar values

• Numeric row vector
Sequence-to-sequence
regression

Absolute or relative file path to
a MAT file. The MAT file must
contain a time series
represented by a matrix, where
rows correspond to responses
and columns correspond to time
steps.

Feature regression Features specified in one or
more columns as scalars.

If you do not specify the
responseNames argument,
then the predictors must be in
the first numFeatures columns
of the table, where
numFeatures is the number of
features of the input data.

One or more columns of scalar
values

For regression networks with image or sequence input, if you do not specify responseNames, then
the function, by default, uses the first column of tbl for the predictors and the subsequent columns
as responses. For regression networks with feature input, if you do not specify the responseNames
argument, then the function, by default, uses the first numFeatures columns for the predictors and
the subsequent columns for the responses, where numFeatures is the number of features in the
input data.

Normalizing the responses often helps to stabilize and speed up training of neural networks for
regression. For more information, see “Train Convolutional Neural Network for Regression”.

Responses cannot contain NaNs. If the predictor data contains NaNs, then they are propagated
through the training. However, in most cases, the training fails to converge.
Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array
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Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

layers — Network layers
Layer array | LayerGraph object

Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input
argument. In this case, the returned network is a SeriesNetwork object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple
inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph
object and then use that layer graph as the input argument to trainNetwork.

For a list of built-in layers, see “List of Deep Learning Layers”.

options — Training options
TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function.

Output Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, returned as a SeriesNetwork object or a DAGNetwork object.

If you train the network using a Layer array, then net is a SeriesNetwork object. If you train the
network using a LayerGraph object, then net is a DAGNetwork object.

info — Training information
structure

Training information, returned as a structure, where each field is a scalar or a numeric vector with
one element per training iteration.

For classification tasks, info contains the following fields:

• TrainingLoss — Loss function values
• TrainingAccuracy — Training accuracies
• ValidationLoss — Loss function values
• ValidationAccuracy — Validation accuracies
• BaseLearnRate — Learning rates
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• FinalValidationLoss — Final validation loss
• FinalValidationAccuracy — Final validation accuracy

For regression tasks, info contains the following fields:

• TrainingLoss — Loss function values
• TrainingRMSE — Training RMSE values
• ValidationLoss — Loss function values
• ValidationRMSE — Validation RMSE values
• BaseLearnRate — Learning rates
• FinalValidationLoss — Final validation loss
• FinalValidationRMSE — Final validation RMSE

The structure only contains the fields ValidationLoss, ValidationAccuracy, ValidationRMSE ,
FinalValidationLoss , FinalValidationAccuracy and FinalValidationRMSE when
options specifies validation data. The 'ValidationFrequency' option of trainingOptions
determines which iterations the software calculates validation metrics. The final validation metrics
are scalar. The other fields of the structure are row vectors, where each element corresponds to a
training iteration. For iterations when the software does not calculate validation metrics, the
corresponding values in the structure are NaN.

If your network contains batch normalization layers, then the final validation metrics are often
different from the validation metrics evaluated during training. This is because batch normalization
layers in the final network perform different operations than during training. For more information,
see batchNormalizationLayer.

More About
Save Checkpoint Networks and Resume Training

Deep Learning Toolbox enables you to save networks as .mat files after each epoch during training.
This periodic saving is especially useful when you have a large network or a large data set, and
training takes a long time. If the training is interrupted for some reason, you can resume training
from the last saved checkpoint network. If you want trainNetwork to save checkpoint networks,
then you must specify the name of the path by using the 'CheckpointPath' name-value pair
argument of trainingOptions. If the path that you specify does not exist, then trainingOptions
returns an error.

trainNetwork automatically assigns unique names to checkpoint network files. In the example
name, net_checkpoint__351__2018_04_12__18_09_52.mat, 351 is the iteration number,
2018_04_12 is the date, and 18_09_52 is the time at which trainNetwork saves the network. You
can load a checkpoint network file by double-clicking it or using the load command at the command
line. For example:

load net_checkpoint__351__2018_04_12__18_09_52.mat

You can then resume training by using the layers of the network as an input argument to
trainNetwork. For example:

trainNetwork(XTrain,YTrain,net.Layers,options)
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You must manually specify the training options and the input data, because the checkpoint network
does not contain this information. For an example, see “Resume Training from Checkpoint Network”.

Floating-Point Arithmetic

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform
computations using single-precision, floating-point arithmetic. Functions for deep learning include
trainNetwork, predict, classify, and activations. The software uses single-precision
arithmetic when you train networks using both CPUs and GPUs.

References
[1] Kudo, M., J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pp. 1103–1111.

[2] Kudo, M., J. Toyama, and M. Shimbo. Japanese Vowels Data Set. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run computation in parallel, set the 'ExecutionEnvironment' option to 'multi-gpu' or
'parallel'.

Use trainingOptions to set the 'ExecutionEnvironment' and supply the options to
trainNetwork. If you do not set 'ExecutionEnvironment', then trainNetwork runs on a GPU if
available.

For details, see “Scale Up Deep Learning in Parallel and in the Cloud”.

See Also
DAGNetwork | Deep Network Designer | LayerGraph | SeriesNetwork | analyzeNetwork |
assembleNetwork | classify | predict | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“Define Custom Deep Learning Layers”
“List of Deep Learning Layers”

Introduced in R2016a

1 Deep Learning Functions

1-1044



transposedConv2dLayer
Transposed 2-D convolution layer

Syntax
layer = transposedConv2dLayer(filterSize,numFilters)
layer = transposedConv2dLayer(filterSize,numFilters,Name,Value)

Description
A transposed 2-D convolution layer upsamples feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

layer = transposedConv2dLayer(filterSize,numFilters) returns a transposed 2-D
convolution layer and sets the filterSize and numFilters properties.

layer = transposedConv2dLayer(filterSize,numFilters,Name,Value) returns a
transposed 2-D convolutional layer and specifies additional options using one or more name-value
pair arguments.

Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a
stride of 4 in the horizontal and vertical directions.

layer = transposedConv2dLayer(11,96,'Stride',4);

Input Arguments
filterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector of two positive integers [h w], where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use
the same value for both dimensions.
Example: [5 5] specifies filters of height 5 and width 5.

numFilters — Number of filters
positive integer
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Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the output of the convolutional layer.
Example: 96

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Cropping',1

Transposed Convolution

Stride — Up-sampling factor
1 (default) | vector of two positive integers | positive integer

Up-sampling factor of the input, specified as one of the following:

• A vector of two positive integers [a b], where a is the vertical stride and b is the horizontal
stride.

• A positive integer the corresponds to both the vertical and horizontal stride.

Example: 'Stride',[2 1]

Cropping — Output size reduction
0 (default) | 'same' | nonnegative integer | vector of two nonnegative integers

Output size reduction, specified as one of the following:

• 'same' – Set the cropping so that the output size equals inputSize .* Stride, where
inputSize is the height and width of the layer input. If you set the 'Cropping' option to
'same', then the software automatically sets the CroppingMode property of the layer to 'same'.

The software trims an equal amount from the top and bottom, and the left and right, if possible. If
the vertical crop amount has an odd value, then the software trims an extra row from the bottom.
If the horizontal crop amount has an odd value, then the software trims an extra column from the
right.

• A positive integer – Crop the specified amount of data from all the edges.
• A vector of nonnegative integers [a b] - Crop a from the top and bottom and crop b from the left

and right.
• A vector [t b l r] - Crop t, b, l, r from the top, bottom, left, and right of the input,

respectively.

If you set the 'Cropping' option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.
Example: [1 2]

NumChannels — Number of channels for each filter
'auto' (default) | positive integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or a positive integer.
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This parameter must be equal to the number of channels of the input to this convolutional layer. For
example, if the input is a color image, then the number of channels for the input must be 3. If the
number of filters for the convolutional layer prior to the current layer is 16, then the number of
channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
filterSize(1)*filterSize(2)*NumChannels, numOut =
filterSize(1)*filterSize(2)*numFilters, and NumChannels is the number of input
channels.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
filterSize(1)*filterSize(2)*NumChannels and NumChannels is the number of input
channels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array
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Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a filterSize(1)-by-filterSize(2)-by-numFilters-by-
NumChannels array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-numFilters array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.
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The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

Output Arguments
layer — Transposed 2-D convolution layer
TransposedConvolution2DLayer object

Transposed 2-D convolution layer, returned as a TransposedConvolution2DLayer object.

Compatibility Considerations
Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.
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[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support asymmetric cropping of the input. For example, specifying a
vector [t b l r] for the 'Cropping' parameter to crop the top, bottom, left, and right of the
input is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
SoftmaxLayer | TransposedConvolution2DLayer | averagePooling2dLayer |
maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2017b
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transposedConv3dLayer
Transposed 3-D convolution layer

Syntax
layer = transposedConv3dLayer(filterSize,numFilters)
layer = transposedConv3dLayer(filterSize,numFilters,Name,Value)

Description
A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

layer = transposedConv3dLayer(filterSize,numFilters) returns a transposed 3-D
convolution layer and sets the FilterSize and NumFilters properties.

layer = transposedConv3dLayer(filterSize,numFilters,Name,Value) returns a
transposed 3-D convolutional layer and specifies additional options using one or more name-value
pair arguments.

Examples

Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of
11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])

layer = 
  TransposedConvolution3DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: [11 11 11]
     NumChannels: 'auto'
      NumFilters: 32
          Stride: [4 4 2]
    CroppingMode: 'manual'
    CroppingSize: [2x3 double]

   Learnable Parameters
         Weights: []
            Bias: []

  Show all properties
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Input Arguments
filterSize — Height, width, and depth of filters
vector of three positive integers

Height, width, and depth of the filters, specified as a vector [h w d] of three positive integers,
where h is the height, w is the width, and d is the depth. FilterSize defines the size of the local
regions to which the neurons connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use
the same value for all three dimensions.
Example: [5 5 5] specifies filters with a height, width, and depth of 5.

numFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the convolutional layer that connect to the same region in the input. This parameter determines
the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Cropping',1

Transposed Convolution

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

Cropping — Output size reduction
0 (default) | 'same' | vector of nonnegative integers | matrix of nonnegative integers

Output size reduction, specified as one of the following:

• 'same' – Set the cropping so that the output size equals inputSize .* Stride, where
inputSize is the height, width, and depth of the layer input. If you set the 'Cropping' option to
'same', then the software automatically sets the CroppingMode property of the layer to 'same'.

The software trims an equal amount from the top and bottom, the left and right, and the front and
back, if possible. If the vertical crop amount has an odd value, then the software trims an extra
row from the bottom. If the horizontal crop amount has an odd value, then the software trims an
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extra column from the right. If the depth crop amount has an odd value, then the software trims
an extra plane from the back.

• A positive integer – Crop the specified amount of data from all the edges.
• A vector of nonnegative integers [a b c] – Crop a from the top and bottom, crop b from the left

and right, and crop c from the front and back.
• a matrix of nonnegative integers [t l f; b r bk] of nonnegative integers — Crop t, l, f, b, r,

bk from the top, left, front, bottom, right, and back of the input, respectively.

Example: [1 2 2]

NumChannels — Number of channels for each filter
'auto' (default) | positive integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or a positive integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For
example, if the input is a color image, then the number of channels for the input must be 3. If the
number of filters for the convolutional layer prior to the current layer is 16, then the number of
channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
filterSize(1)*filterSize(2)*filterSize(3)*NumChannels, numOut =
filterSize(1)*filterSize(2)*filterSize(3)*numFilters, and NumChannels is the
number of input channels.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
filterSize(1)*filterSize(2)*filterSize(3)*NumChannels and NumChannels is the
number of input channels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:
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• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-
numFilters-by-NumChannels array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias 1-by-1-by-1-by-numFilters array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar
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Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

Output Arguments
layer — Transposed 3-D convolution layer
TransposedConvolution3DLayer object

Transposed 3-D convolution layer, returned as a TransposedConvolution3dLayer object.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.
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[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
SoftmaxLayer | TransposedConvolution3dLayer | averagePooling3dLayer |
maxPooling3dLayer | transposedConv2dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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TransposedConvolution2DLayer
Transposed 2-D convolution layer

Description
A transposed 2-D convolution layer upsamples feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

Creation
Create a transposed convolution 2-D output layer using transposedConv2dLayer.

Properties
Transposed Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector of two positive integers [h w], where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use
the same value for both dimensions.
Example: [5 5] specifies filters of height 5 and width 5.

NumFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the convolutional layer that connect to the same region in the input. This parameter determines
the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

CroppingMode — Method to determine cropping size
'manual' (default) | 'same'
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Method to determine cropping size, specified as 'manual' or same.

The software automatically sets the value of CroppingMode based on the 'Cropping' value you
specify when creating the layer.

• If you set the 'Cropping' option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.

• If you set the 'Cropping' option to 'same', then the software automatically sets the
CroppingMode property of the layer to 'same' and set the cropping so that the output size
equals inputSize .* Stride, where inputSize is the height and width of the layer input.

To specify the cropping size, use the 'Cropping' option of transposedConv2dLayer.

CroppingSize — Output size reduction
[0 0 0 0] (default) | vector of four nonnegative integers

Output size reduction, specified as a vector of four nonnegative integers [t b l r], where t, b, l, r
are the amounts to crop from the top, bottom, left, and right, respectively.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1 0 1]

Cropping — Output size reduction
[0 0] (default) | vector of two nonnegative integers

Note Cropping property will be removed in a future release. Use CroppingSize instead. To specify
the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.

Output size reduction, specified as a vector of two nonnegative integers [a b], where a corresponds
to the cropping from the top and bottom and b corresponds to the cropping from the left and right.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1]

NumChannels — Number of channels for each filter
'auto' (default) | integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or an integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For
example, if the input is a color image, then the number of channels for the input must be 3. If the
number of filters for the convolutional layer prior to the current layer is 16, then the number of
channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
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variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a FilterSize(1)-by-FilterSize(2)-by-
NumFilters-by-NumChannels array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.
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The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFilters array.
Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a
stride of 4 in the horizontal and vertical directions.

layer = transposedConv2dLayer(11,96,'Stride',4);

Compatibility Considerations
Default weights initialization is Glorot
Behavior changed in R2019a
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Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

Cropping property of TransposedConvolution2DLayer will be removed
Not recommended starting in R2019a

Cropping property of TransposedConvolution2DLayer will be removed, use CroppingSize
instead. To update your code, replace all instances of the Cropping property with CroppingSize.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
averagePooling2dLayer | convolution2dLayer | maxPooling2dLayer |
transposedConv2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
“Compare Layer Weight Initializers”

Introduced in R2017b
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TransposedConvolution3dLayer
Transposed 3-D convolution layer

Description
A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

Creation
Create a transposed convolution 3-D output layer using transposedConv3dLayer.

Properties
Transposed Convolution

FilterSize — Height, width, and depth of filters
vector of three positive integers

Height, width, and depth of the filters, specified as a vector [h w d] of three positive integers,
where h is the height, w is the width, and d is the depth. FilterSize defines the size of the local
regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the
height, width, and depth.
Example: [5 5 5] specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the convolutional layer that connect to the same region in the input. This parameter determines
the number of channels (feature maps) in the output of the convolutional layer.
Example: 96

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.
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CroppingMode — Method to determine cropping size
'manual' (default) | 'same'

Method to determine cropping size, specified as 'manual' or 'same'.

The software automatically sets the value of CroppingMode based on the 'Cropping' value you
specify when creating the layer.

• If you set the 'Cropping' option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.

• If you set the 'Cropping' option to 'same', then the software automatically sets the
CroppingMode property of the layer to 'same' and set the cropping so that the output size
equals inputSize .* Stride, where inputSize is the height, width, and depth of the layer
input.

To specify the cropping size, use the 'Cropping' option of transposedConv3dLayer.

CroppingSize — Output size reduction
[0 0 0;0 0 0] (default) | matrix of nonnegative integers

Output size reduction, specified as a matrix of nonnegative integers [t l f; b r bk], t, l, f, b, r,
bk are the amounts to crop from the top, left, front, bottom, right, and back of the input, respectively.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1 0 1 0 1]

NumChannels — Number of channels for each filter
'auto' (default) | integer

Number of channels for each filter, specified 'auto' or an integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For
example, if the input is a color image, then the number of channels for the input must be 3. If the
number of filters for the convolutional layer prior to the current layer is 16, then the number of
channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.
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• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'ones' – Initialize the bias with ones.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When training a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-
NumFilters-by-NumChannels array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-1-by-NumFilters array.
Data Types: single | double

 TransposedConvolution3dLayer

1-1065



Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings specified with the trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you
must specify a nonempty unique layer name. If you train a series network with the layer and Name is
set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of
11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])

layer = 
  TransposedConvolution3DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: [11 11 11]
     NumChannels: 'auto'
      NumFilters: 32
          Stride: [4 4 2]
    CroppingMode: 'manual'
    CroppingSize: [2x3 double]

   Learnable Parameters
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         Weights: []
            Bias: []

  Show all properties

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward

neural networks." In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249-256. 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE
international conference on computer vision, pp. 1026-1034. 2015.

See Also
averagePooling3dLayer | convolution3dLayer | maxPooling3dLayer |
transposedConv2dLayer | transposedConv3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
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unfreezeParameters
Convert nonlearnable network parameters in ONNXParameters to learnable

Syntax
params = unfreezeParameters(params,names)

Description
params = unfreezeParameters(params,names) unfreezes the network parameters specified by
names in the ONNXParameters object params. The function moves the specified parameters from
params.Nonlearnables in the input argument params to params.Learnables in the output
argument params.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network
with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-0 .

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames',...
    'ReadSize', miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

AlexNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')

A function containing the imported ONNX network has been saved to the file alexnetFcn.m.
To learn how to use this function, type: help alexnetFcn.

params = 
  ONNXParameters with properties:
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             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a
model function that contains the network architecture. importONNXFunction saves alexnetFcn in
the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and
bias (B) of convolution and fully connected layers, are updated by the network during training.
Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
      conv1_W: [11×11×3×96 dlarray]
      conv1_B: [96×1 dlarray]
      conv2_W: [5×5×48×256 dlarray]
      conv2_B: [256×1 dlarray]
      conv3_W: [3×3×256×384 dlarray]
      conv3_B: [384×1 dlarray]
      conv4_W: [3×3×192×384 dlarray]
      conv4_B: [384×1 dlarray]
      conv5_W: [3×3×192×256 dlarray]
      conv5_B: [256×1 dlarray]
        fc6_W: [6×6×256×4096 dlarray]
        fc6_B: [4096×1 dlarray]
        fc7_W: [1×1×4096×4096 dlarray]
        fc7_B: [4096×1 dlarray]
        fc8_W: [1×1×4096×1000 dlarray]
        fc8_B: [1000×1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The
parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the
parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

 unfreezeParameters

1-1071



params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    for i = 1:numIterationsPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
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        params.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Display the training progress.
        if plots == "training-progress"
            D = duration(0,0,toc(start),'Format','hh:mm:ss');
            addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
            title("Epoch: " + epoch + ", Elapsed: " + string(D))
            drawnow
        end
    end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
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The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,'Training',false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss,onnxParams.Learnables);

end

The alexnetONNX function generates an ONNX model of the alexnet network. You need Deep
Learning Toolbox Model for AlexNet Network support to access this model.

function alexnetONNX()
    
exportONNXNetwork(alexnet,'alexnet.onnx');

end

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

names — Names of parameters to unfreeze
'all' | string array

Names of the parameters to unfreeze, specified as 'all' or a string array. Unfreeze all nonlearnable
parameters by setting names to 'all'. Unfreeze k nonlearnable parameters by defining the
parameter names in the 1-by-k string array names.
Example: ["gpu_0_sl_pred_b_0", "gpu_0_sl_pred_w_0"]
Data Types: char | string

Output Arguments
params — Network parameters
ONNXParameters object
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Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by unfreezeParameters.

See Also
ONNXParameters | freezeParameters | importONNXFunction

Introduced in R2020b
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validate
Quantize and validate a deep neural network

Syntax
validationResults = validate(quantObj, valData)
validationResults = validate(quantObj, valData, quantOpts)

Description
validationResults = validate(quantObj, valData) quantizes the weights, biases, and
activations in the convolution layers of the network, and validates the network specified by
dlquantizer object, quantObj and using the data specified by valData.

validationResults = validate(quantObj, valData, quantOpts) quantizes the weights,
biases, and activations in the convolution layers of the network, and validates the network specified
by dlquantizer object, quantObj, using the data specified by valData, and the optional argument
quantOpts that specifies a metric function to evaluate the performance of the quantized network.

To learn about the products required to quantize a deep neural network, see “Quantization Workflow
Prerequisites”.

Examples

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
squeezenet neural network after retraining the network to classify new images according to the
“Train Deep Learning Network to Classify New Images” example. In this example, the memory
required for the network is reduced approximately 75% through quantization while the accuracy of
the network is not affected.

Load the pretrained network.

net

net = 

  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
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layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults =

  95x5 table

                   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue  
    __________________________________________________    _________________________    ________________________    __________    ___________

    {'conv1_relu_conv1_Weights'                      }    {'relu_conv1'           }         "Weights"                -0.91985        0.88489
    {'conv1_relu_conv1_Bias'                         }    {'relu_conv1'           }         "Bias"                   -0.07925        0.26343
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    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Weights'}    {'fire2-relu_squeeze1x1'}         "Weights"                   -1.38         1.2477
    {'fire2-squeeze1x1_fire2-relu_squeeze1x1_Bias'   }    {'fire2-relu_squeeze1x1'}         "Bias"                   -0.11641        0.24273
    {'fire2-expand1x1_fire2-relu_expand1x1_Weights'  }    {'fire2-relu_expand1x1' }         "Weights"                 -0.7406        0.90982
    {'fire2-expand1x1_fire2-relu_expand1x1_Bias'     }    {'fire2-relu_expand1x1' }         "Bias"                  -0.060056        0.14602
    {'fire2-expand3x3_fire2-relu_expand3x3_Weights'  }    {'fire2-relu_expand3x3' }         "Weights"                -0.74397        0.66905
    {'fire2-expand3x3_fire2-relu_expand3x3_Bias'     }    {'fire2-relu_expand3x3' }         "Bias"                  -0.051778       0.074239
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Weights'}    {'fire3-relu_squeeze1x1'}         "Weights"                -0.77263        0.68897
    {'fire3-squeeze1x1_fire3-relu_squeeze1x1_Bias'   }    {'fire3-relu_squeeze1x1'}         "Bias"                   -0.10141        0.32678
    {'fire3-expand1x1_fire3-relu_expand1x1_Weights'  }    {'fire3-relu_expand1x1' }         "Weights"                -0.72131        0.97287
    {'fire3-expand1x1_fire3-relu_expand1x1_Bias'     }    {'fire3-relu_expand1x1' }         "Bias"                  -0.067043        0.30424
    {'fire3-expand3x3_fire3-relu_expand3x3_Weights'  }    {'fire3-relu_expand3x3' }         "Weights"                -0.61196        0.77431
    {'fire3-expand3x3_fire3-relu_expand3x3_Bias'     }    {'fire3-relu_expand3x3' }         "Bias"                  -0.053612        0.10329
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Weights'}    {'fire4-relu_squeeze1x1'}         "Weights"                -0.74145         1.0888
    {'fire4-squeeze1x1_fire4-relu_squeeze1x1_Bias'   }    {'fire4-relu_squeeze1x1'}         "Bias"                   -0.10886        0.13882
...

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = 

  struct with fields:

       NumSamples: 20
    MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

valResults.MetricResults.Result

ans =

  2x3 table

    NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
    _____________________    ____________    _______________________________

     {'Floating-Point'}           1                    2.9003e+06           
     {'Quantized'     }           1                    7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and explore the behavior of the quantized network. In this example, you quantize the
LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow
Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.
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Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an
augmentedImageDatastore object to resize the data for the network. Then, split the data into
calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
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    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer. Interface options are JTAG and Ethernet. To create the target
object, enter:
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
%% hComputeAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x, snet, validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

To compile and deploy the quantized network, run the validate function of the dlquantizer
object. Use the validate function to quantize the learnable parameters in the convolution layers of
the network and exercise the network. This function uses the output of the compile function to
program the FPGA board by using the programming file. It also downloads the network weights and
biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then
starts programming the FPGA device by using the sof file, displays progress messages, and the time it
takes to deploy the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
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    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
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    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
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        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Input Arguments
quantObj — Network to quantize
dlquantizer object

dlquantizer object specifying the network to quantize.
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valData — Data to use for validation of quantized network
imageDataStore object | augmentedImageDataStore object | pixelLabelImageDataStore
object

Data to use for validation of quantized network, specified as an imageDataStore object, an
augmentedImageDataStore object, or a pixelLabelImageDataStore object.

quantOpts — Options for quantizing network
dlQuantizationOptions object

Options for quantizing the network, specified as a dlquantizationOptions object.

Output Arguments
validationResults — Results of quantization of network
struct

Results of quantization of the network, returned as a struct. The struct contains the following fields.

• NumSamples – The number of sample inputs used to validate the network.
• MetricResults – Struct containing results of the metric function defined in the

dlquantizationOptions object. When more than one metric function is specified in the
dlquantizationOptions object, MetricResults is an array of structs.

MetricResults contains the following fields.

Field Description
MetricFunction Function used to determine the performance of

the quantized network. This function is specified
in the dlquantizationOptions object.

Result Table indicating the results of the metric function
before and after quantization.

The first row in the table contains the information
for the original, floating-point implementation.
The second row contains the information for the
quantized implementation. The output of the
metric function is displayed in the
MetricOutput column, and the size of the
network is displayed in the
LearnableParameterMemory (bytes)
column.

See Also
Apps
Deep Network Quantizer

Functions
calibrate | dlquantizationOptions | dlquantizer
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Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
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vgg16
VGG-16 convolutional neural network

Syntax
net = vgg16
net = vgg16('Weights','imagenet')

layers = vgg16('Weights','none')

Description
VGG-16 is a convolutional neural network that is 16 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-16 network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-16.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load VGG-16 instead of GoogLeNet.

net = vgg16 returns a VGG-16 network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for VGG-16 Network support package. If this
support package is not installed, then the function provides a download link.

net = vgg16('Weights','imagenet') returns a VGG-16 network trained on the ImageNet data
set. This syntax is equivalent to net = vgg16.

layers = vgg16('Weights','none') returns the untrained VGG-16 network architecture. The
untrained model does not require the support package.

Examples

Download VGG-16 Support Package

Download and install Deep Learning Toolbox Model for VGG-16 Network support package.

Type vgg16 at the command line.

vgg16

If Deep Learning Toolbox Model for VGG-16 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing vgg16 at the command line.
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vgg16

ans = 

  SeriesNetwork with properties:

    Layers: [41×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-16 Convolutional Neural Network

Load a pretrained VGG-16 convolutional neural network and examine the layers and classes.

Use vgg16 to load the pretrained VGG-16 network. The output net is a SeriesNetwork object.

net = vgg16

net = 
  SeriesNetwork with properties:

    Layers: [41×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 41 layers. There are 16
layers with learnable weights: 13 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  41x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'relu1_1'   ReLU                    ReLU
     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'relu1_2'   ReLU                    ReLU
     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'relu2_1'   ReLU                    ReLU
     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'relu2_2'   ReLU                    ReLU
    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu3_1'   ReLU                    ReLU
    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu3_2'   ReLU                    ReLU
    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    17   'relu3_3'   ReLU                    ReLU
    18   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    19   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    20   'relu4_1'   ReLU                    ReLU
    21   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    22   'relu4_2'   ReLU                    ReLU
    23   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    24   'relu4_3'   ReLU                    ReLU
    25   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    26   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    27   'relu5_1'   ReLU                    ReLU
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    28   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    29   'relu5_2'   ReLU                    ReLU
    30   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    31   'relu5_3'   ReLU                    ReLU
    32   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    33   'fc6'       Fully Connected         4096 fully connected layer
    34   'relu6'     ReLU                    ReLU
    35   'drop6'     Dropout                 50% dropout
    36   'fc7'       Fully Connected         4096 fully connected layer
    37   'relu7'     ReLU                    ReLU
    38   'drop7'     Dropout                 50% dropout
    39   'fc8'       Fully Connected         1000 fully connected layer
    40   'prob'      Softmax                 softmax
    41   'output'    Classification Output   crossentropyex with 'tench' and 999 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Output Arguments
net — Pretrained VGG-16 convolutional neural network
SeriesNetwork object

Pretrained VGG-16 convolutional neural network returned as a SeriesNetwork object.

layers — Untrained VGG-16 convolutional neural network architecture
Layer array

Untrained VGG-16 convolutional neural network architecture, returned as a Layer array.

References
[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211–252

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).
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~vgg/research/very_deep/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = vgg16 or by passing the
vgg16 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax vgg16('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = vgg16 or by passing
the vgg16 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax vgg16('Weights','none') is not supported for GPU code generation.

See Also
alexnet | densenet201 | googlenet | inceptionresnetv2 | resnet101 | resnet18 | resnet50
| squeezenet | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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vgg19
VGG-19 convolutional neural network

Syntax
net = vgg19
net = vgg19('Weights','imagenet')

layers = vgg19('Weights','none')

Description
VGG-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-19 network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load VGG-19 instead of GoogLeNet.

net = vgg19 returns a VGG-19 network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for VGG-19 Network support package. If this
support package is not installed, then the function provides a download link.

net = vgg19('Weights','imagenet') returns a VGG-19 network trained on the ImageNet data
set. This syntax is equivalent to net = vgg19.

layers = vgg19('Weights','none') returns the untrained VGG-19 network architecture. The
untrained model does not require the support package.

Examples

Download VGG-19 Support Package

This example shows how to download and install Deep Learning Toolbox Model for VGG-19 Network
support package.

Type vgg19 at the command line.

vgg19

If Deep Learning Toolbox Model for VGG-19 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
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support package, click the link, and then click Install. Check that the installation is successful by
typing vgg19 at the command line.

vgg19

ans = 

  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-19 Convolutional Neural Network

Load a pretrained VGG-19 convolutional neural network and examine the layers and classes.

Use vgg19 to load a pretrained VGG-19 network. The output net is a SeriesNetwork object.

net = vgg19

net = 
  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 47 layers. There are 19
layers with learnable weights: 16 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  47x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'relu1_1'   ReLU                    ReLU
     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'relu1_2'   ReLU                    ReLU
     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'relu2_1'   ReLU                    ReLU
     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'relu2_2'   ReLU                    ReLU
    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu3_1'   ReLU                    ReLU
    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu3_2'   ReLU                    ReLU
    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    17   'relu3_3'   ReLU                    ReLU
    18   'conv3_4'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    19   'relu3_4'   ReLU                    ReLU
    20   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    21   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    22   'relu4_1'   ReLU                    ReLU
    23   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    24   'relu4_2'   ReLU                    ReLU

 vgg19

1-1091



    25   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    26   'relu4_3'   ReLU                    ReLU
    27   'conv4_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    28   'relu4_4'   ReLU                    ReLU
    29   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    30   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    31   'relu5_1'   ReLU                    ReLU
    32   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    33   'relu5_2'   ReLU                    ReLU
    34   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    35   'relu5_3'   ReLU                    ReLU
    36   'conv5_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    37   'relu5_4'   ReLU                    ReLU
    38   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    39   'fc6'       Fully Connected         4096 fully connected layer
    40   'relu6'     ReLU                    ReLU
    41   'drop6'     Dropout                 50% dropout
    42   'fc7'       Fully Connected         4096 fully connected layer
    43   'relu7'     ReLU                    ReLU
    44   'drop7'     Dropout                 50% dropout
    45   'fc8'       Fully Connected         1000 fully connected layer
    46   'prob'      Softmax                 softmax
    47   'output'    Classification Output   crossentropyex with 'tench' and 999 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Output Arguments
net — Pretrained VGG-19 convolutional neural network
SeriesNetwork object

Pretrained VGG-19 convolutional neural network returned as a SeriesNetwork object.

layers — Untrained VGG-19 convolutional neural network architecture
Layer array

Untrained VGG-19 convolutional neural network architecture, returned as a Layer array.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = vgg19 or by passing the
vgg19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg19')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax vgg19('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = vgg19 or by passing
the vgg19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg19')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax vgg19('Weights','none') is not supported for GPU code generation.

See Also
alexnet | deepDreamImage | densenet201 | googlenet | inceptionresnetv2 | resnet101 |
resnet18 | resnet50 | squeezenet | vgg16

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
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vggish
VGGish neural network

Syntax
net = vggish

Description
net = vggish returns a pretrained VGGish model.

This function requires both Audio Toolbox™ and Deep Learning Toolbox.

Examples

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish at the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the VGGish model to your temporary
directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Check that the installation is successful by typing vggish at the Command Window. If the network is
installed, then the function returns a SeriesNetwork object.

vggish

ans = 
  SeriesNetwork with properties:

         Layers: [24×1 nnet.cnn.layer.Layer]
     InputNames: {'InputBatch'}
    OutputNames: {'regressionoutput'}

Load Pretrained VGGish Network

Load a pretrained VGGish convolutional neural network and examine the layers and classes.
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Use vggish to load the pretrained VGGish network. The output net is a SeriesNetwork object.

net = vggish

net = 
  SeriesNetwork with properties:

         Layers: [24×1 nnet.cnn.layer.Layer]
     InputNames: {'InputBatch'}
    OutputNames: {'regressionoutput'}

View the network architecture using the Layers property. The network has 24 layers. There are nine
layers with learnable weights, of which six are convolutional layers and three are fully connected
layers.

net.Layers

ans = 
  24×1 Layer array with layers:

     1   'InputBatch'         Image Input         96×64×1 images
     2   'conv1'              Convolution         64 3×3×1 convolutions with stride [1  1] and padding 'same'
     3   'relu'               ReLU                ReLU
     4   'pool1'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
     5   'conv2'              Convolution         128 3×3×64 convolutions with stride [1  1] and padding 'same'
     6   'relu2'              ReLU                ReLU
     7   'pool2'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
     8   'conv3_1'            Convolution         256 3×3×128 convolutions with stride [1  1] and padding 'same'
     9   'relu3_1'            ReLU                ReLU
    10   'conv3_2'            Convolution         256 3×3×256 convolutions with stride [1  1] and padding 'same'
    11   'relu3_2'            ReLU                ReLU
    12   'pool3'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    13   'conv4_1'            Convolution         512 3×3×256 convolutions with stride [1  1] and padding 'same'
    14   'relu4_1'            ReLU                ReLU
    15   'conv4_2'            Convolution         512 3×3×512 convolutions with stride [1  1] and padding 'same'
    16   'relu4_2'            ReLU                ReLU
    17   'pool4'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    18   'fc1_1'              Fully Connected     4096 fully connected layer
    19   'relu5_1'            ReLU                ReLU
    20   'fc1_2'              Fully Connected     4096 fully connected layer
    21   'relu5_2'            ReLU                ReLU
    22   'fc2'                Fully Connected     128 fully connected layer
    23   'EmbeddingBatch'     ReLU                ReLU
    24   'regressionoutput'   Regression Output   mean-squared-error

Use analyzeNetwork to visually explore the network.

analyzeNetwork(net)
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Extract Features Using VGGish

The VGGish network requires you to preprocess and extract features from audio signals by
converting them to the sample rate the network was trained on, and then extracting log mel
spectrograms. This example walks through the required preprocessing and feature extraction to
match the preprocessing and feature extraction used to train VGGish. The vggishFeatures (Audio
Toolbox) function performs these steps for you.

Read in an audio signal to classify. Resample the audio signal to 16 kHz and then convert it to single
precision.

[audioIn,fs0] = audioread( );

fs = 16e3;
audioIn = resample(audioIn,fs,fs0);

audioIn = single(audioIn);

Define mel spectrogram parameters and then extract features using the melSpectrogram (Audio
Toolbox) function.

FFTLength = 512;
numBands = 64;
frequencyRange = [125 7500];
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windowLength = 0.025*fs;
overlapLength = 0.015*fs;

melSpect = melSpectrogram(audioIn,fs, ...
    'Window',hann(windowLength,'periodic'), ...
    'OverlapLength',overlapLength, ...
    'FFTLength',FFTLength, ...
    'FrequencyRange',frequencyRange, ...
    'NumBands',numBands, ...
    'FilterBankNormalization','none', ...
    'WindowNormalization',false, ...
    'SpectrumType','magnitude', ...
    'FilterBankDesignDomain','warped');

Convert the mel spectrogram to the log scale.

melSpect = log(melSpect + single(0.001));

Reorient the mel spectrogram so that time is along the first dimension as rows.

melSpect = melSpect.';
[numSTFTWindows,numBands] = size(melSpect)

numSTFTWindows = 1222

numBands = 64

Partition the spectrogram into frames of length 96 with an overlap of 48. Place the frames along the
fourth dimension.

frameWindowLength = 96;
frameOverlapLength = 48;

hopLength = frameWindowLength - frameOverlapLength;
numHops = floor((numSTFTWindows - frameWindowLength)/hopLength) + 1;

frames = zeros(frameWindowLength,numBands,1,numHops,'like',melSpect);
for hop = 1:numHops
    range = 1 + hopLength*(hop-1):hopLength*(hop - 1) + frameWindowLength;
    frames(:,:,1,hop) = melSpect(range,:);
end

Create a VGGish network.

net = vggish;

Call predict to extract feature embeddings from the spectrogram images. The feature embeddings
are returned as a numFrames-by-128 matrix, where numFrames is the number of individual
spectrograms, and 128 is the number of elements in each feature vector.

features = predict(net,frames);

[numFrames,numFeatures] = size(features)

numFrames = 24

numFeatures = 128

Compare visualizations of the mel spectrogram and the VGGish feature embeddings.
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melSpectrogram(audioIn,fs, ...
    'Window',hann(windowLength,'periodic'), ...
    'OverlapLength',overlapLength, ...
    'FFTLength',FFTLength, ...
    'FrequencyRange',frequencyRange, ...
    'NumBands',numBands, ...
    'FilterBankNormalization','none', ...
    'WindowNormalization',false, ...
    'SpectrumType','magnitude', ...
    'FilterBankDesignDomain','warped');

surf(features,'EdgeColor','none')
view([90,-90])
axis([1 numFeatures 1 numFrames])
xlabel('Feature')
ylabel('Frame')
title('VGGish Feature Embeddings')
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Transfer Learning Using VGGish

In this example, you transfer the learning in the VGGish regression model to an audio classification
task.

Download and unzip the environmental sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10).

url = 'http://ssd.mathworks.com/supportfiles/audio/ESC-10.zip';
downloadFolder = fullfile(tempdir,'ESC-10');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'ESC-10'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'ESC-10'))
end

Create an audioDatastore (Audio Toolbox) object to manage the data and split it into train and
validation sets. Call countEachLabel (Audio Toolbox) to display the distribution of sound classes
and the number of unique labels.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
labelTable = countEachLabel(ads)
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labelTable=10×2 table
        Label         Count
    ______________    _____

    chainsaw           40  
    clock_tick         40  
    crackling_fire     40  
    crying_baby        40  
    dog                40  
    helicopter         40  
    rain               40  
    rooster            38  
    sea_waves          40  
    sneezing           40  

Determine the total number of classes.

numClasses = size(labelTable,1);

Call splitEachLabel (Audio Toolbox) to split the data set into training and validation sets. Inspect
the distribution of labels in the training and validation sets.

[adsTrain, adsValidation] = splitEachLabel(ads,0.8);

countEachLabel(adsTrain)

ans=10×2 table
        Label         Count
    ______________    _____

    chainsaw           32  
    clock_tick         32  
    crackling_fire     32  
    crying_baby        32  
    dog                32  
    helicopter         32  
    rain               32  
    rooster            30  
    sea_waves          32  
    sneezing           32  

countEachLabel(adsValidation)

ans=10×2 table
        Label         Count
    ______________    _____

    chainsaw            8  
    clock_tick          8  
    crackling_fire      8  
    crying_baby         8  
    dog                 8  
    helicopter          8  
    rain                8  
    rooster             8  
    sea_waves           8  
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    sneezing            8  

The VGGish network expects audio to be preprocessed into log mel spectrograms. The supporting
function vggishPreprocess on page 1-0  takes an audioDatastore object and the overlap
percentage between log mel spectrograms as input, and returns matrices of predictors and responses
suitable as input to the VGGish network.

overlapPercentage = ;

[trainFeatures,trainLabels] = vggishPreprocess(adsTrain,overlapPercentage);
[validationFeatures,validationLabels,segmentsPerFile] = vggishPreprocess(adsValidation,overlapPercentage);

Load the VGGish model and convert it to a layerGraph object.

net = vggish;

lgraph = layerGraph(net.Layers);

Use removeLayers to remove the final regression output layer from the graph. After you remove the
regression layer, the new final layer of the graph is a ReLU layer named 'EmbeddingBatch'.

lgraph = removeLayers(lgraph,'regressionoutput');
lgraph.Layers(end)

ans = 
  ReLULayer with properties:

    Name: 'EmbeddingBatch'

Use addLayers to add a fullyConnectedLayer, a softmaxLayer, and a classificationLayer
to the graph.

lgraph = addLayers(lgraph,fullyConnectedLayer(numClasses,'Name','FCFinal'));
lgraph = addLayers(lgraph,softmaxLayer('Name','softmax'));
lgraph = addLayers(lgraph,classificationLayer('Name','classOut'));

Use connectLayers to append the fully connected, softmax, and classification layers to the layer
graph.

lgraph = connectLayers(lgraph,'EmbeddingBatch','FCFinal');
lgraph = connectLayers(lgraph,'FCFinal','softmax');
lgraph = connectLayers(lgraph,'softmax','classOut');

To define training options, use trainingOptions.

miniBatchSize = 128;
options = trainingOptions('adam', ...
    'MaxEpochs',5, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{validationFeatures,validationLabels}, ...
    'ValidationFrequency',50, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.5, ...
    'LearnRateDropPeriod',2);
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To train the network, use trainNetwork.

[trainedNet, netInfo] = trainNetwork(trainFeatures,trainLabels,lgraph,options);

Training on single GPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:00 |       10.94% |       26.03% |       2.2253 |       2.0317 |          0.0010 |
|       2 |          50 |       00:00:05 |       93.75% |       83.75% |       0.1884 |       0.7001 |          0.0010 |
|       3 |         100 |       00:00:10 |       96.88% |       80.07% |       0.1150 |       0.7838 |          0.0005 |
|       4 |         150 |       00:00:15 |       92.97% |       81.99% |       0.1656 |       0.7612 |          0.0005 |
|       5 |         200 |       00:00:20 |       92.19% |       79.04% |       0.1738 |       0.8192 |          0.0003 |
|       5 |         210 |       00:00:21 |       95.31% |       80.15% |       0.1389 |       0.8581 |          0.0003 |
|======================================================================================================================|

Each audio file was split into several segments to feed into the VGGish network. Combine the
predictions for each file in the validation set using a majority-rule decision.

validationPredictions = classify(trainedNet,validationFeatures);

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
    validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
    idx = idx + segmentsPerFile(ii);
end

Use confusionchart to evaluate the performance of the network on the validation set.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
cm = confusionchart(adsValidation.Labels,validationPredictionsPerFile);
cm.Title = sprintf('Confusion Matrix for Validation Data \nAccuracy = %0.2f %%',mean(validationPredictionsPerFile==adsValidation.Labels)*100);
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
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Supporting Functions
function [predictor,response,segmentsPerFile] = vggishPreprocess(ads,overlap)
% This function is for example purposes only and may be changed or removed
% in a future release.

% Create filter bank
FFTLength = 512;
numBands = 64;
fs0 = 16e3;
filterBank = designAuditoryFilterBank(fs0, ...
    'FrequencyScale','mel', ...
    'FFTLength',FFTLength, ...
    'FrequencyRange',[125 7500], ...
    'NumBands',numBands, ...
    'Normalization','none', ...
    'FilterBankDesignDomain','warped');

% Define STFT parameters
windowLength = 0.025 * fs0;
hopLength = 0.01 * fs0;
win = hann(windowLength,'periodic');

% Define spectrogram segmentation parameters
segmentDuration = 0.96; % seconds
segmentRate = 100; % hertz
segmentLength = segmentDuration*segmentRate; % Number of spectrums per auditory spectrograms
segmentHopDuration = (100-overlap) * segmentDuration / 100; % Duration (s) advanced between auditory spectrograms
segmentHopLength = round(segmentHopDuration * segmentRate); % Number of spectrums advanced between auditory spectrograms
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% Preallocate cell arrays for the predictors and responses
numFiles = numel(ads.Files);
predictor = cell(numFiles,1);
response = predictor;
segmentsPerFile = zeros(numFiles,1);

% Extract predictors and responses for each file
for ii = 1:numFiles
    [audioIn,info] = read(ads);

    x = single(resample(audioIn,fs0,info.SampleRate));

    Y = stft(x, ...
        'Window',win, ...
        'OverlapLength',windowLength-hopLength, ...
        'FFTLength',FFTLength, ...
        'FrequencyRange','onesided');
    Y = abs(Y);

    logMelSpectrogram = log(filterBank*Y + single(0.01))';
    
    % Segment log-mel spectrogram
    numHops = floor((size(Y,2)-segmentLength)/segmentHopLength) + 1;
    segmentedLogMelSpectrogram = zeros(segmentLength,numBands,1,numHops);
    for hop = 1:numHops
        segmentedLogMelSpectrogram(:,:,1,hop) = logMelSpectrogram(1+segmentHopLength*(hop-1):segmentLength+segmentHopLength*(hop-1),:);
    end

    predictor{ii} = segmentedLogMelSpectrogram;
    response{ii} = repelem(info.Label,numHops);
    segmentsPerFile(ii) = numHops;
end

% Concatenate predictors and responses into arrays
predictor = cat(4,predictor{:});
response = cat(2,response{:});
end

Output Arguments
net — Pretrained VGGish neural network
SeriesNetwork object

Pretrained VGGish neural network, returned as a SeriesNetwork object.

References
[1] Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing

Moore, Manoj Plakal, and Marvin Ritter. 2017. “Audio Set: An Ontology and Human-Labeled
Dataset for Audio Events.” In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 776–80. New Orleans, LA: IEEE. https://doi.org/10.1109/
ICASSP.2017.7952261.

[2] Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
Moore, Manoj Plakal, et al. 2017. “CNN Architectures for Large-Scale Audio Classification.”
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In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
131–35. New Orleans, LA: IEEE. https://doi.org/10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
audioFeatureExtractor | classifySound | melSpectrogram | vggish | vggishFeatures

Introduced in R2020b
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xception
Xception convolutional neural network

Syntax
net = xception
net = xception('Weights','imagenet')

lgraph = xception('Weights','none')

Description
Xception is a convolutional neural network that is 71 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 299-by-299. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Xception model. Follow the steps of “Classify
Image Using GoogLeNet” and replace GoogLeNet with Xception.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Xception instead of GoogLeNet.

net = xception returns an Xception network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for Xception Network support package. If
this support package is not installed, then the function provides a download link.

net = xception('Weights','imagenet') returns an Xception network trained on the ImageNet
data set. This syntax is equivalent to net = xception.

lgraph = xception('Weights','none') returns the untrained Xception network architecture.
The untrained model does not require the support package.

Examples

Download Xception Support Package

Download and install the Deep Learning Toolbox Model for Xception Network support package.

Type xception at the command line.

xception

If the Deep Learning Toolbox Model for Xception Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing xception at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

xception

ans = 

  DAGNetwork with properties:

         Layers: [171×1 nnet.cnn.layer.Layer]
    Connections: [182×2 table]

Output Arguments
net — Pretrained Xception convolutional neural network
DAGNetwork object

Pretrained Xception convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained Xception convolutional neural network architecture
LayerGraph object

Untrained Xception convolutional neural network architecture, returned as a LayerGraph object.

References
[1] ImageNet. http://www.image-net.org

[2] Chollet, F., 2017. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv
preprint, pp.1610-02357.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = xception or by passing
the xception function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('xception')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax xception('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = xception or by
passing the xception function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('xception')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
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• The syntax xception('Weights','none') is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot |
resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
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yamnet
YAMNet neural network

Syntax
net = yamnet

Description
net = yamnet returns a pretrained YAMNet model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download YAMNet

Download and unzip the Audio Toolbox™ model for YAMNet.

Type yamnet at the Command Window. If the Audio Toolbox model for YAMNet is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnet at the Command Window. If the network is
installed, then the function returns a SeriesNetwork object.

yamnet

ans = 
  SeriesNetwork with properties:

         Layers: [86×1 nnet.cnn.layer.Layer]
     InputNames: {'input_1'}
    OutputNames: {'Sound'}

Load Pretrained YAMNet

Load a pretrained YAMNet convolutional neural network and examine the layers and classes.
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Use yamnet to load the pretrained YAMNet network. The output net is a SeriesNetwork object.

net = yamnet

net = 
  SeriesNetwork with properties:

         Layers: [86×1 nnet.cnn.layer.Layer]
     InputNames: {'input_1'}
    OutputNames: {'Sound'}

View the network architecture using the Layers property. The network has 86 layers. There are 28
layers with learnable weights: 27 convolutional layers, and 1 fully connected layer.

net.Layers

ans = 
  86x1 Layer array with layers:

     1   'input_1'                    Image Input              96×64×1 images
     2   'conv2d'                     Convolution              32 3×3×1 convolutions with stride [2  2] and padding 'same'
     3   'b'                          Batch Normalization      Batch normalization with 32 channels
     4   'activation'                 ReLU                     ReLU
     5   'depthwise_conv2d'           Grouped Convolution      32 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
     6   'L11'                        Batch Normalization      Batch normalization with 32 channels
     7   'activation_1'               ReLU                     ReLU
     8   'conv2d_1'                   Convolution              64 1×1×32 convolutions with stride [1  1] and padding 'same'
     9   'L12'                        Batch Normalization      Batch normalization with 64 channels
    10   'activation_2'               ReLU                     ReLU
    11   'depthwise_conv2d_1'         Grouped Convolution      64 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    12   'L21'                        Batch Normalization      Batch normalization with 64 channels
    13   'activation_3'               ReLU                     ReLU
    14   'conv2d_2'                   Convolution              128 1×1×64 convolutions with stride [1  1] and padding 'same'
    15   'L22'                        Batch Normalization      Batch normalization with 128 channels
    16   'activation_4'               ReLU                     ReLU
    17   'depthwise_conv2d_2'         Grouped Convolution      128 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    18   'L31'                        Batch Normalization      Batch normalization with 128 channels
    19   'activation_5'               ReLU                     ReLU
    20   'conv2d_3'                   Convolution              128 1×1×128 convolutions with stride [1  1] and padding 'same'
    21   'L32'                        Batch Normalization      Batch normalization with 128 channels
    22   'activation_6'               ReLU                     ReLU
    23   'depthwise_conv2d_3'         Grouped Convolution      128 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    24   'L41'                        Batch Normalization      Batch normalization with 128 channels
    25   'activation_7'               ReLU                     ReLU
    26   'conv2d_4'                   Convolution              256 1×1×128 convolutions with stride [1  1] and padding 'same'
    27   'L42'                        Batch Normalization      Batch normalization with 256 channels
    28   'activation_8'               ReLU                     ReLU
    29   'depthwise_conv2d_4'         Grouped Convolution      256 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    30   'L51'                        Batch Normalization      Batch normalization with 256 channels
    31   'activation_9'               ReLU                     ReLU
    32   'conv2d_5'                   Convolution              256 1×1×256 convolutions with stride [1  1] and padding 'same'
    33   'L52'                        Batch Normalization      Batch normalization with 256 channels
    34   'activation_10'              ReLU                     ReLU
    35   'depthwise_conv2d_5'         Grouped Convolution      256 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    36   'L61'                        Batch Normalization      Batch normalization with 256 channels
    37   'activation_11'              ReLU                     ReLU
    38   'conv2d_6'                   Convolution              512 1×1×256 convolutions with stride [1  1] and padding 'same'
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    39   'L62'                        Batch Normalization      Batch normalization with 512 channels
    40   'activation_12'              ReLU                     ReLU
    41   'depthwise_conv2d_6'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    42   'L71'                        Batch Normalization      Batch normalization with 512 channels
    43   'activation_13'              ReLU                     ReLU
    44   'conv2d_7'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    45   'L72'                        Batch Normalization      Batch normalization with 512 channels
    46   'activation_14'              ReLU                     ReLU
    47   'depthwise_conv2d_7'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    48   'L81'                        Batch Normalization      Batch normalization with 512 channels
    49   'activation_15'              ReLU                     ReLU
    50   'conv2d_8'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    51   'L82'                        Batch Normalization      Batch normalization with 512 channels
    52   'activation_16'              ReLU                     ReLU
    53   'depthwise_conv2d_8'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    54   'L91'                        Batch Normalization      Batch normalization with 512 channels
    55   'activation_17'              ReLU                     ReLU
    56   'conv2d_9'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    57   'L92'                        Batch Normalization      Batch normalization with 512 channels
    58   'activation_18'              ReLU                     ReLU
    59   'depthwise_conv2d_9'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    60   'L101'                       Batch Normalization      Batch normalization with 512 channels
    61   'activation_19'              ReLU                     ReLU
    62   'conv2d_10'                  Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    63   'L102'                       Batch Normalization      Batch normalization with 512 channels
    64   'activation_20'              ReLU                     ReLU
    65   'depthwise_conv2d_10'        Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    66   'L111'                       Batch Normalization      Batch normalization with 512 channels
    67   'activation_21'              ReLU                     ReLU
    68   'conv2d_11'                  Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    69   'L112'                       Batch Normalization      Batch normalization with 512 channels
    70   'activation_22'              ReLU                     ReLU
    71   'depthwise_conv2d_11'        Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    72   'L121'                       Batch Normalization      Batch normalization with 512 channels
    73   'activation_23'              ReLU                     ReLU
    74   'conv2d_12'                  Convolution              1024 1×1×512 convolutions with stride [1  1] and padding 'same'
    75   'L122'                       Batch Normalization      Batch normalization with 1024 channels
    76   'activation_24'              ReLU                     ReLU
    77   'depthwise_conv2d_12'        Grouped Convolution      1024 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    78   'L131'                       Batch Normalization      Batch normalization with 1024 channels
    79   'activation_25'              ReLU                     ReLU
    80   'conv2d_13'                  Convolution              1024 1×1×1024 convolutions with stride [1  1] and padding 'same'
    81   'L132'                       Batch Normalization      Batch normalization with 1024 channels
    82   'activation_26'              ReLU                     ReLU
    83   'global_average_pooling2d'   Global Average Pooling   Global average pooling
    84   'dense'                      Fully Connected          521 fully connected layer
    85   'softmax'                    Softmax                  softmax
    86   'Sound'                      Classification Output    crossentropyex with 'Speech' and 520 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical
     Speech 
     Child speech, kid speaking 
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     Conversation 
     Narration, monologue 
     Babbling 
     Speech synthesizer 
     Shout 
     Bellow 
     Whoop 
     Yell 

Use analyzeNetwork to visually explore the network.

analyzeNetwork(net)

YAMNet was released with a corresponding sound class ontology, which you can explore using the
yamnetGraph (Audio Toolbox) object.

ygraph = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')

1 Deep Learning Functions

1-1112



The ontology graph plots all 521 possible sound classes. Plot a subgraph of the sounds related to
respiratory sounds.

allRespiratorySounds = dfsearch(ygraph,"Respiratory sounds");
ygraphSpeech = subgraph(ygraph,allRespiratorySounds);
plot(ygraphSpeech)
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Classify Sounds Using YAMNet

The YAMNet network requires you to preprocess and extract features from audio signals by
converting them to the sample rate the network was trained on, and then extracting overlapping log-
mel spectrograms. This example walks through the required preprocessing and feature extraction
necessary to match the preprocessing and feature extraction used to train YAMNet. The
classifySound (Audio Toolbox) function performs these steps for you.

Read in an audio signal to classify it. Resample the audio signal to 16 kHz and then convert it to
single precision.

[audioIn,fs0] = audioread('Counting-16-44p1-mono-15secs.wav');

fs = 16e3;
audioIn = resample(audioIn,fs,fs0);

audioIn = single(audioIn);

Define mel spectrogram parameters and then extract features using the melSpectrogram (Audio
Toolbox) function.

FFTLength = 512;
numBands = 64;
frequencyRange = [125 7500];

1 Deep Learning Functions

1-1114



windowLength = 0.025*fs;
overlapLength = 0.015*fs;

melSpect = melSpectrogram(audioIn,fs, ...
    'Window',hann(windowLength,'periodic'), ...
    'OverlapLength',overlapLength, ...
    'FFTLength',FFTLength, ...
    'FrequencyRange',frequencyRange, ...
    'NumBands',numBands, ...
    'FilterBankNormalization','none', ...
    'WindowNormalization',false, ...
    'SpectrumType','magnitude', ...
    'FilterBankDesignDomain','warped');

Convert the mel spectrogram to the log scale.

melSpect = log(melSpect + single(0.001));

Reorient the mel spectrogram so that time is along the first dimension as rows.

melSpect = melSpect.';
[numSTFTWindows,numBands] = size(melSpect)

numSTFTWindows = 1551

numBands = 64

Partition the spectrogram into frames of length 96 with an overlap of 48. Place the frames along the
fourth dimension.

frameWindowLength = 96;
frameOverlapLength = 48;

hopLength = frameWindowLength - frameOverlapLength;
numHops = floor((numSTFTWindows - frameWindowLength)/hopLength) + 1;

frames = zeros(frameWindowLength,numBands,1,numHops,'like',melSpect);
for hop = 1:numHops
    range = 1 + hopLength*(hop-1):hopLength*(hop - 1) + frameWindowLength;
    frames(:,:,1,hop) = melSpect(range,:);
end

Create a YAMNet network.

net = yamnet();

Classify the spectrogram images.

classes = classify(net,frames);

Classify the audio signal as the most frequently occurring sound.

  mySound = mode(classes)

mySound = categorical
     Speech 
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Transfer Learning Using YAMNet

Download and unzip the air compressor data set [1] on page 1-0 . This data set consists of
recordings from air compressors in a healthy state or one of 7 faulty states.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Create an audioDatastore (Audio Toolbox) object to manage the data and split it into train and
validation sets.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate for later use. Reset the datastore to
return the read pointer to the beginning of the data set. Listen to the audio signal and plot the signal
in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

reset(adsTrain)

sound(x,fs)

figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel('Time (s)')
title('State = ' + string(fileInfo.Label))
axis tight
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Create an audioFeatureExtractor (Audio Toolbox) object to extract the Bark spectrum from audio
signals. Use the same window, overlap length, frequency range, and number of bands as YAMNet was
trained on. Depending on your transfer learning task, you can modify the input features more or less
from the input features YAMNet was trained on.

afe = audioFeatureExtractor('SampleRate',fs, ...
    'Window',hann(0.025*fs,'periodic'), ...
    'OverlapLength',round(0.015*fs), ...
    'barkSpectrum',true);
setExtractorParams(afe,'barkSpectrum','NumBands',64);

Extract Bark spectrograms from the train set. There are multiple Bark spectrograms for each audio
signal. Replicate the labels so that they are in one-to-one correspondence with the spectrograms.

numSpectrumsPerSpectrogram = 96;
numSpectrumsOverlapBetweenSpectrograms = 48;
numSpectrumsHopBetweenSpectrograms = numSpectrumsPerSpectrogram - numSpectrumsOverlapBetweenSpectrograms;

emptyLabelVector = adsTrain.Labels;
emptyLabelVector(:) = [];

trainFeatures = [];
trainLabels = emptyLabelVector;
while hasdata(adsTrain)
    [audioIn,fileInfo] = read(adsTrain);
    features = extract(afe,audioIn);
    features = log10(features + single(0.001));
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    [numSpectrums,numBands] = size(features);
    numSpectrograms = floor((numSpectrums - numSpectrumsPerSpectrogram)/numSpectrumsHopBetweenSpectrograms) + 1;
    for hop = 1:numSpectrograms
        range = 1 + numSpectrumsHopBetweenSpectrograms*(hop-1):numSpectrumsHopBetweenSpectrograms*(hop-1) + numSpectrumsPerSpectrogram;
        trainFeatures = cat(4,trainFeatures,features(range,:));
        trainLabels = cat(1,trainLabels,fileInfo.Label);
    end
end

Extract features from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = emptyLabelVector;
while hasdata(adsValidation)
    [audioIn,fileInfo] = read(adsValidation);
    features = extract(afe,audioIn);
    features = log10(features + single(0.001));
    [numSpectrums,numBands] = size(features);
    numSpectrograms = floor((numSpectrums - numSpectrumsPerSpectrogram)/numSpectrumsHopBetweenSpectrograms) + 1;
    for hop = 1:numSpectrograms
        range = 1 + numSpectrumsHopBetweenSpectrograms*(hop-1):numSpectrumsHopBetweenSpectrograms*(hop-1) + numSpectrumsPerSpectrogram;
        validationFeatures = cat(4,validationFeatures,features(range,:));
        validationLabels = cat(1,validationLabels,fileInfo.Label);
    end
end

The air compressor data set has only eight classes. Read in YAMNet, convert it to a layerGraph, and
then replace the final fullyConnectedLayer and the final classificationLayer to reflect the
new task.

uniqueLabels = unique(adsTrain.Labels);
numLabels = numel(uniqueLabels);

net = yamnet;

lgraph = layerGraph(net.Layers);

newDenseLayer = fullyConnectedLayer(numLabels,"Name","dense");
lgraph = replaceLayer(lgraph,"dense",newDenseLayer);

newClassificationLayer = classificationLayer("Name","Sounds","Classes",uniqueLabels);
lgraph = replaceLayer(lgraph,"Sound",newClassificationLayer);

To define training options, use trainingOptions.

miniBatchSize = 128;
validationFrequency = floor(numel(trainLabels)/miniBatchSize);
options = trainingOptions('adam', ...
    'InitialLearnRate',3e-4, ...
    'MaxEpochs',2, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{single(validationFeatures),validationLabels}, ...
    'ValidationFrequency',validationFrequency);

To train the network, use trainNetwork.
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trainNetwork(single(trainFeatures),trainLabels,lgraph,options);

References

[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

Output Arguments
net — Pretrained YAMNet neural network
SeriesNetwork object

Pretrained YAMNet neural network, returned as a SeriesNetwork object.

References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
audioFeatureExtractor | classifySound | designAuditoryFilterBank | melSpectrogram |
vggish | yamnetGraph

Introduced in R2020b
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Approximation, Clustering, and Control
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adapt
Adapt neural network to data as it is simulated

Syntax
[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai)

To Get Help
Type help network/adapt.

Description
This function calculates network outputs and errors after each presentation of an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes

net Network
P Network inputs
T Network targets (default = zeros)
Pi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function net.adaptFcn with the adaption
parameters net.adaptParam:

net Updated network
Y Network outputs
E Network errors
Pf Final input delay conditions
Af Final layer delay conditions
tr Training record (epoch and perf)

Note that T is optional and is only needed for networks that require targets. Pi and Pf are also
optional and only need to be used for networks that have input or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs
and outputs, and allows sequences of inputs to be presented,

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q
matrix.

T Nt-by-TS cell array Each element T{i,ts} is a Vi-by-Q matrix.
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Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q
matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

Y No-by-TS cell array Each element Y{i,ts} is a Ui-by-Q matrix.
E No-by-TS cell array Each element E{i,ts} is a Ui-by-Q matrix.
Pf Ni-by-ID cell array Each element Pf{i,k} is an Ri-by-Q

matrix.
Af Nl-by-LD cell array Each element Af{i,k} is an Si-by-Q

matrix.

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
ID = net.numInputDelays
LD = net.numLayerDelays
TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to most recent:

Pi{i,k} = Input i at time ts = k - ID
Pf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for
networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a
single matrix:

P (sum of Ri)-by-Q matrix
T (sum of Vi)-by-Q matrix
Pi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
Y (sum of Ui)-by-Q matrix
E (sum of Ui)-by-Q matrix
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Pf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

Examples
Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define the
operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here linearlayer is used to create a layer with an input range of [-1 1], one neuron, input delays
of 0 and 1, and a learning rate of 0.1. The linear layer is then simulated.

net = linearlayer([0 1],0.1);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Because this is the first call to adapt, the default Pi
is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note that the errors are quite large. Here the network adapts to another 12 time steps (using the
previous Pf as the new initial delay conditions).

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
for i = 1:100
  [net,y,e] = adapt(net,p3,t3);
end
mse(e)

The error after 100 passes through the sequence is very small. The network has adapted to the
relationship between the input and target signals.

Algorithms
adapt calls the function indicated by net.adaptFcn, using the adaption parameter values indicated
by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each step in the sequence
of inputs is presented to the network one at a time. The network’s weight and bias values are updated
after each step, before the next step in the sequence is presented. Thus the network is updated TS
times.
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See Also
init | revert | sim | train

Introduced before R2006a
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adaptwb
Adapt network with weight and bias learning rules

Syntax
[net,ar,Ac] = adapt(net,Pd,T,Ai)

Description
This function is normally not called directly, but instead called indirectly through the function adapt
after setting a network’s adaption function (net.adaptFcn) to this function.

[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,

net Neural network
Pd Delayed processed input states and inputs
T Targets
Ai Initial layer delay states

and returns

net Neural network after adaption
ar Adaption record
Ac Combined initial layer states and layer outputs

Examples
Linear layers use this adaption function. Here a linear layer with input delays of 0 and 1, and a
learning rate of 0.5, is created and adapted to produce some target data t when given some input
data x. The response is then plotted, showing the network’s error going down over time.

x = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)

See Also
adapt

Introduced in R2010b
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adddelay
Add delay to neural network response

Syntax
net = adddelay(net,n)

Description
net = adddelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections increased, and output feedback delays
decreased, by the specified number of delays n. The result is a network that behaves identically,
except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples
Time Delay Network

This example creates, trains, and simulates a time delay network in its original form, on an input time
series X and target series T. Then the delay is removed and later added back. The first and third
outputs will be identical, while the second result will include a new prediction for the following step.

[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)
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net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)

See Also
closeloop | openloop | removedelay

Introduced in R2010b
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boxdist
Distance between two position vectors

Syntax
d = boxdist(pos)

Description
boxdist is a layer distance function that is used to find the distances between the layer’s neurons,
given their positions.

d = boxdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

boxdist is most commonly used with layers whose topology function is gridtop.

Examples
Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use
To change a network so that a layer’s topology uses boxdist, set net.layers{i}.distanceFcn to
'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithms
The box distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = max(abs(Pi-Pj))

See Also
dist | linkdist | mandist | sim

Introduced before R2006a
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bttderiv
Backpropagation through time derivative function

Syntax
bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
bttderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from a network’s performance back through
the network, and in the case of dynamic networks, back through time.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)

See Also
defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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cascadeforwardnet
Cascade-forward neural network

Syntax
cascadeforwardnet(hiddenSizes,trainFcn)

Description
Cascade-forward networks are similar to feed-forward networks, but include a connection from the
input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite input-output
relationship arbitrarily well given enough hidden neurons.

cascadeforwardnet(hiddenSizes,trainFcn) takes these arguments,

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a new cascade-forward neural network.

Examples
Create and Train a Cascade Network

Here a cascade network is created and trained on a simple fitting problem.

[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)

perf =

   1.9372e-05
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See Also
feedforwardnet | network

Topics
“Create, Configure, and Initialize Multilayer Shallow Neural Networks”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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catelements
Concatenate neural network data elements

Syntax
catelements(x1,x2,...,xn)
[x1; x2; ... xn]

Description
catelements(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then
the matrices in the same positions in each argument are concatenated.

Examples
This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)

See Also
catsamples | catsignals | cattimesteps | getelements | nndata | numelements |
setelements

Introduced in R2010b
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catsamples
Concatenate neural network data samples

Syntax
catsamples(x1,x2,...,xn)
[x1 x2 ... xn]
catsamples(x1,x2,...,xn,'pad',v)

Description
catsamples(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then
the matrices in the same positions in each argument are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying numbers of timesteps
(columns of cell arrays) to be concatenated by padding the shorter time series with the value v, until
they are the same length as the longest series. If v is not specified, then the value NaN is used, which
is often used to represent unknown or don't-care inputs or targets.

Examples
This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers of timesteps, are concatenated.

x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')

See Also
catelements | catsignals | cattimesteps | getsamples | nndata | numsamples | setsamples

Introduced in R2010b
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catsignals
Concatenate neural network data signals

Syntax
catsignals(x1,x2,...,xn)
{x1; x2; ...; xn}

Description
catsignals(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as {x1; x2; ...; xn}.

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and the
cell arrays are concatenated as [x1; x2; ...; xn].

Examples
This code concatenates the signals of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)

This code concatenates the signals of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)

See Also
catelements | catsamples | cattimesteps | getsignals | nndata | numsignals | setsignals

Introduced in R2010b
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cattimesteps
Concatenate neural network data timesteps

Syntax
cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}

Description
cattimesteps(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2 ... xn}.

If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays, and the cell
arrays are concatenated as [x1 x2 ... xn].

Examples
This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = cattimesteps(x1,x2)

See Also
catelements | catsamples | catsignals | gettimesteps | nndata | numtimesteps |
settimesteps

Introduced in R2010b
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cellmat
Create cell array of matrices

Syntax
cellmat(A,B,C,D,v)

Description
cellmat(A,B,C,D,v) takes four integer values and one scalar value v, and returns an A-by-B cell
array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples
Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)

See Also
nndata

Introduced in R2010b
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closeloop
Convert neural network open-loop feedback to closed loop

Syntax
net = closeloop(net)
[net,xi,ai] = closeloop(net,xi,ai)

Description
net = closeloop(net) takes a neural network and closes any open-loop feedback. For each
feedback output i whose property net.outputs{i}.feedbackMode is 'open', it replaces its
associated feedback input and their input weights with layer weight connections coming from the
output. The net.outputs{i}.feedbackMode property is set to 'closed', and the
net.outputs{i}.feedbackInput property is set to an empty matrix. Finally, the value of
net.outputs{i}.feedbackDelays is added to the delays of the feedback layer weights (i.e., to the
delays values of the replaced input weights).

[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its current input
delay states xi and layer delay states ai to closed-loop form.

Examples
Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to closed-loop
form.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet
and narnet.

See Also
narnet | narxnet | noloop | openloop

Introduced in R2010b
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combvec
Create all combinations of vectors

Syntax
combvec(A1,A2,...)

Description
combvec(A1,A2,...) takes any number of inputs,

A1 Matrix of N1 (column) vectors
A2 Matrix of N2 (column) vectors

and returns a matrix of (N1*N2*...) column vectors, where the columns consist of all possibilities
of A2 vectors, appended to A1 vectors.

Examples
a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

a3 =

     1     2     3     1     2     3
     4     5     6     4     5     6
     7     7     7     8     8     8
     9     9     9    10    10    10

Introduced before R2006a
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compet
Competitive transfer function

Graph and Symbol

Syntax
A = compet(N,FP)
info = compet('code')

Description
compet is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = compet(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns the S-by-Q matrix A with a 1 in each column where the same column of N has its
maximum value, and 0 elsewhere.

info = compet('code') returns information according to the code string specified:

compet('name') returns the name of this function.

compet('output',FP) returns the [min max] output range.

compet('active',FP) returns the [min max] active input range.

compet('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

compet('fpnames') returns the names of the function parameters.

compet('fpdefaults') returns the default function parameters.

Examples
Here you define a net input vector N, calculate the output, and plot both with bar graphs.

n = [0; 1; -0.5; 0.5];
a = compet(n);
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subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

See Also
sim | softmax

Introduced before R2006a
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competlayer
Competitive layer

Syntax
competlayer(numClasses,kohonenLR,conscienceLR)

Description
Competitive layers learn to classify input vectors into a given number of classes, according to
similarity between vectors, with a preference for equal numbers of vectors per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these arguments,

numClasses Number of classes to classify inputs (default = 5)
kohonenLR Learning rate for Kohonen weights (default = 0.01)
conscienceLR Learning rate for conscience bias (default = 0.001)

and returns a competitive layer with numClasses neurons.

Examples
Create and Train a Competitive Layer

Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);

See Also
lvqnet | patternnet | selforgmap

Introduced in R2010b
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con2seq
Convert concurrent vectors to sequential vectors

Syntax
S = con2seq(b)
S = con2seq(b,TS)

Description
Deep Learning Toolbox software arranges concurrent vectors with a matrix, and sequential vectors
with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential vectors, and back
again.

S = con2seq(b) takes one input,

b R-by-TS matrix

and returns one output,

S 1-by-TS cell array of R-by-1 vectors

S = con2seq(b,TS) can also convert multiple batches,

b N-by-1 cell array of matrices with M*TS columns
TS Time steps

and returns

S N-by-TS cell array of matrices with M columns

Examples
Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here, two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also
concur | seq2con
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concur
Create concurrent bias vectors

Syntax
concur(B,Q)

Description
concur(B,Q)

B S-by-1 bias vector (or an Nl-by-1 cell array of vectors)
Q Concurrent size

and returns an S-by-B matrix of copies of B (or an Nl-by-1 cell array of matrices).

Examples
Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use
To calculate a layer’s net input, the layer’s weighted inputs must be combined with its biases. The
following expression calculates the net input for a layer with the netsum net input function, two input
weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S-by-1 vectors. However, if the network is being
simulated by sim (or adapt or train) in response to Q concurrent vectors, then Z1 and Z2 will be S-
by-Q matrices. Before B can be combined with Z1 and Z2, you must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also
con2seq | netprod | netsum | seq2con | sim

Introduced before R2006a
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configure
Configure network inputs and outputs to best match input and target data

Syntax
net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)

Description
Configuration is the process of setting network input and output sizes and ranges, input
preprocessing settings and output postprocessing settings, and weight initialization settings to match
input and target data.

Configuration must happen before a network’s weights and biases can be initialized. Unconfigured
networks are automatically configured and initialized the first time train is called. Alternately, a
network can be configured manually either by calling this function or by setting a network’s input and
output sizes, ranges, processing settings, and initialization settings properties manually.

net = configure(net,x,t) takes input data x and target data t, and configures the network’s
inputs and outputs to match.

net = configure(net,x) configures only inputs.

net = configure(net,'inputs',x,i) configures the inputs specified with the index vector i. If
i is not specified all inputs are configured.

net = configure(net,'outputs',t,i) configures the outputs specified with the index vector i.
If i is not specified all targets are configured.

Examples
Here a feedforward network is created and manually configured for a simple fitting problem (as
opposed to allowing train to configure it).

[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)

See Also
init | isconfigured | train | unconfigure

Introduced in R2010b
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confusion
Classification confusion matrix

Syntax
[c,cm,ind,per] = confusion(targets,outputs)

Description
[c,cm,ind,per] = confusion(targets,outputs) takes these values:

targets S-by-Q matrix, where each column vector contains a single 1 value, with all other
elements 0. The index of the 1 indicates which of S categories that vector
represents.

outputs S-by-Q matrix, where each column contains values in the range [0,1]. The index
of the largest element in the column indicates which of S categories that vector
represents.

and returns these values:

c Confusion value = fraction of samples misclassified
cm S-by-S confusion matrix, where cm(i,j) is the number of samples whose target

is the ith class that was classified as j
ind S-by-S cell array, where ind{i,j} contains the indices of samples with the ith

target class, but jth output class
per S-by-4 matrix, where each row summarizes four percentages associated with the

ith class:
per(i,1) false negative rate
          = (false negatives)/(all output negatives)
per(i,2) false positive rate
          = (false positives)/(all output positives)
per(i,3) true positive rate
          = (true positives)/(all output positives)
per(i,4) true negative rate
          = (true negatives)/(all output negatives)

[c,cm,ind,per] = confusion(TARGETS,OUTPUTS) takes these values:

targets 1-by-Q vector of 1/0 values representing membership
outputs S-by-Q matrix, of value in [0,1] interval, where values greater than or equal to

0.5 indicate class membership

and returns these values:

c Confusion value = fraction of samples misclassified
cm 2-by-2 confusion matrix

 confusion
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ind 2-by-2 cell array, where ind{i,j} contains the indices of samples whose target
is 1 versus 0, and whose output was greater than or equal to 0.5 versus less
than 0.5

per 2-by-4 matrix where each ith row represents the percentage of false negatives,
false positives, true positives, and true negatives for the class and out-of-class

Examples
[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)

See Also
plotconfusion | roc

Introduced in R2008a
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convwf
Convolution weight function

Syntax
Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf('code')

Description
Weight functions apply weights to an input to get weighted inputs.

Z = convwf(W,P) returns the convolution of a weight matrix W and an input P.

dim = convwf('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size.

dw = convwf('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = convwf('code') returns information about this function. The following codes are defined:

'deriv' Name of derivative function
'fullderiv' Reduced derivative = 2, full derivative = 1, linear derivative = 0
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear derivative =

0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear derivative

= 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,1);
P = rand(8,1);
Z = convwf(W,P)

Network Use
To change a network so an input weight uses convwf, set net.inputWeights{i,j}.weightFcn to
'convwf'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'convwf'.

 convwf
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In either case, call sim to simulate the network with convwf.

Introduced in R2006a
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crossentropy
Neural network performance

Syntax
perf = crossentropy(net,targets,outputs,perfWeights)
perf = crossentropy( ___ ,Name,Value)

Description
perf = crossentropy(net,targets,outputs,perfWeights) calculates a network
performance given targets and outputs, with optional performance weights and other parameters.
The function returns a result that heavily penalizes outputs that are extremely inaccurate (y near 1-
t), with very little penalty for fairly correct classifications (y near t). Minimizing cross-entropy leads
to good classifiers.

The cross-entropy for each pair of output-target elements is calculated as: ce = -t .* log(y).

The aggregate cross-entropy performance is the mean of the individual values: perf =
sum(ce(:))/numel(ce).

Special case (N = 1): If an output consists of only one element, then the outputs and targets are
interpreted as binary encoding. That is, there are two classes with targets of 0 and 1, whereas in 1-of-
N encoding, there are two or more classes. The binary cross-entropy expression is: ce = -t .*
log(y) - (1-t) .* log(1-y) .

perf = crossentropy( ___ ,Name,Value) supports customization according to the specified
name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to design a classification network with cross-entropy and 0.1 regularization,
then calculate performance on the whole dataset.

[x,t] = iris_dataset;
net = patternnet(10);
net.performParam.regularization = 0.1;
net = train(net,x,t);
y = net(x);
perf = crossentropy(net,t,y,{1},'regularization',0.1)

perf = 0.0278

Set crossentropy as Performance Function

This example shows how to set up the network to use the crossentropy during training.

 crossentropy
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net = feedforwardnet(10);
net.performFcn = 'crossentropy';
net.performParam.regularization = 0.1;
net.performParam.normalization = 'none';

Input Arguments
net — neural network
network object

Neural network, specified as a network object.
Example: net = feedforwardnet(10);

targets — neural network target values
matrix or cell array of numeric values

Neural network target values, specified as a matrix or cell array of numeric values. Network target
values define the desired outputs, and can be specified as an N-by-Q matrix of Q N-element vectors, or
an M-by-TS cell array where each element is an Ni-by-Q matrix.  In each of these cases, N or Ni
indicates a vector length, Q the number of samples, M the number of signals for neural networks with
multiple outputs, and TS is the number of time steps for time series data.  targets must have the
same dimensions as outputs.

The target matrix columns consist of all zeros and a single 1 in the position of the class being
represented by that column vector. When N = 1, the software uses cross entropy for binary encoding,
otherwise it uses cross entropy for 1-of-N encoding. NaN values are allowed to indicate unknown or
don't-care output values.  The performance of NaN target values is ignored.
Data Types: double | cell

outputs — neural network output values
matrix or cell array of numeric values

Neural network output values, specified as a matrix or cell array of numeric values. Network output
values can be specified as an N-by-Q matrix of Q N-element vectors, or an M-by-TS cell array where
each element is an Ni-by-Q matrix. In each of these cases, N or Ni indicates a vector length, Q the
number of samples, M the number of signals for neural networks with multiple outputs and TS is the
number of time steps for time series data. outputs must have the same dimensions as targets.

Outputs can include NaN to indicate unknown output values, presumably produced as a result of NaN
input values (also representing unknown or don't-care values). The performance of NaN output values
is ignored.

General case (N>=2): The columns of the output matrix represent estimates of class membership,
and should sum to 1. You can use the softmax transfer function to produce such output values. Use
patternnet to create networks that are already set up to use cross-entropy performance with a
softmax output layer.
Data Types: double | cell

perfWeights — performance weights
{1} (default) | vector or cell array of numeric values

Performance weights, specified as a vector or cell array of numeric values. Performance weights are
an optional argument defining the importance of each performance value, associated with each target
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value, using values between 0 and 1. Performance values of 0 indicate targets to ignore, values of 1
indicate targets to be treated with normal importance. Values between 0 and 1 allow targets to be
treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to indicate which
classifications (or misclassifications) have relatively greater benefits (or costs). They can be useful in
time series problems where obtaining a correct output on some time steps, such as the last time step,
is more important than others. Performance weights can also be used to encourage a neural network
to best fit samples whose targets are known most accurately, while giving less importance to targets
which are known to be less accurate.

perfWeights can have the same dimensions as targets and outputs. Alternately, each dimension
of the performance weights can either match the dimension of targets and outputs, or be 1. For
instance, if targets is an N-by-Q matrix defining Q samples of N-element vectors, the performance
weights can be N-by-Q indicating a different importance for each target value, or N-by-1 defining a
different importance for each row of the targets, or 1-by-Q indicating a different importance for each
sample, or be the scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be a cell array
of the same size, a row cell array (indicating the relative importance of each time step), a column cell
array (indicating the relative importance of each neural network output), or a cell array of a single
matrix or just the matrix (both cases indicating that all matrices have the same importance values).

For any problem, a perfWeights value of {1} (the default) or the scalar 1 indicates all performances
have equal importance.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'normalization','standard' specifies the inputs and targets to be normalized to the
range (-1,+1).

regularization — proportion of performance attributed to weight/bias values
0 (default) | numeric value in the range (0,1)

Proportion of performance attributed to weight/bias values, specified as a double between 0 (the
default) and 1. A larger value penalizes the network for large weights, and the more likely the
network function will avoid overfitting.
Example: 'regularization',0
Data Types: single | double

normalization — Normalization mode for outputs, targets, and errors
'none' (default) | 'standard' | 'percent'

Normalization mode for outputs, targets, and errors, specified as 'none', 'standard', or
'percent'. 'none' performs no normalization. 'standard' results in outputs and targets being
normalized to (-1, +1), and therefore errors in the range (-2, +2).'percent' normalizes outputs and
targets to (-0.5, 0.5) and errors to (-1, 1).
Example: 'normalization','standard'
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Data Types: char

Output Arguments
perf — network performance
double

Network performance, returned as a double in the range (0,1).

See Also
mae | mse | patternnet | sae | softmax | sse

Introduced in R2013b
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defaultderiv
Default derivative function

Syntax
defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function chooses the recommended derivative algorithm for the type of network whose
derivatives are being calculated. For static networks, defaultderiv calls staticderiv; for
dynamic networks it calls bttderiv to calculate the gradient and fpderiv to calculate the Jacobian.

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (or N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs
elements, and TS is the number of timesteps).

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)

See Also
bttderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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dist
Euclidean distance weight function

Syntax
Z = dist(W,P,FP)
dim = dist('size',S,R,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)
info = dist('code')

Description
Weight functions apply weights to an input to get weighted inputs.

Z = dist(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns the S-by-Q matrix of vector distances.

dim = dist('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = dist('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

dist is also a layer distance function which can be used to find the distances between neurons in a
layer.

D = dist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

info = dist('code') returns information about this function. The following codes are supported:

'deriv' Name of derivative function
'fullderiv' Full derivative = 1, linear derivative = 0
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear derivative =

0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters
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Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
find their distances.

pos = rand(3,10);
D = dist(pos)

Network Use
You can create a standard network that uses dist by calling newpnn or newgrnn.

To change a network so an input weight uses dist, set net.inputWeights{i,j}.weightFcn to
'dist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set net.layers{i}.distanceFcn to
'dist'.

In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

Algorithms
The Euclidean distance d between two vectors X and Y is

d = sum((x-y).^2).^0.5

See Also
dotprod | linkdist | mandist | negdist | normprod | sim

Introduced before R2006a
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distdelaynet
Distributed delay network

Syntax
distdelaynet(delays,hiddenSizes,trainFcn)

Description
Distributed delay networks are similar to feedforward networks, except that each input and layer
weights has a tap delay line associated with it. This allows the network to have a finite dynamic
response to time series input data. This network is also similar to the time delay neural network
(timedelaynet), which only has delays on the input weight.

distdelaynet(delays,hiddenSizes,trainFcn) takes these arguments,

delays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a distributed delay neural network.

Examples
Distributed Delay Network

Here a distributed delay neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

perf =

    0.0323
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See Also
narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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divideblock
Divide targets into three sets using blocks of indices

Syntax
[trainInd,valInd,testInd] = divideblock(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = divideblock(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs:

Q Number of targets to divide up.
trainRatio Ratio of targets for training. Default = 0.7.
valRatio Ratio of targets for validation. Default = 0.15.
testRatio Ratio of targets for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also
divideind | divideint | dividerand | dividetrain

Introduced in R2008a
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divideind
Divide targets into three sets using specified indices

Syntax
[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description
[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd) separates targets
into three sets: training, validation, and testing, according to indices provided. It actually returns the
same indices it receives as arguments; its purpose is to allow the indices to be used for training,
validation, and testing for a network to be set manually.

It takes the following inputs,

Q Number of targets to divide up
trainInd Training indices
valInd Validation indices
testInd Test indices

and returns

trainInd Training indices (unchanged)
valInd Validation indices (unchanged)
testInd Test indices (unchanged)

Examples
[trainInd,valInd,testInd] = ...
divideind(3000,1:2000,2001:2500,2501:3000);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also
divideblock | divideint | dividerand | dividetrain

Introduced in R2008a
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divideint
Divide targets into three sets using interleaved indices

Syntax
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q Number of targets to divide up.
trainRatio Ratio of vectors for training. Default = 0.7.
valRatio Ratio of vectors for validation. Default = 0.15.
testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also
divideblock | divideind | dividerand | dividetrain

Introduced in R2008a
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dividerand
Divide targets into three sets using random indices

Syntax
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q Number of targets to divide up.
trainRatio Ratio of vectors for training. Default = 0.7.
valRatio Ratio of vectors for validation. Default = 0.15.
testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also
divideblock | divideind | divideint | dividetrain

Introduced in R2008a
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dividetrain
Assign all targets to training set

Syntax
[trainInd,valInd,testInd] = dividetrain(Q)

Description
[trainInd,valInd,testInd] = dividetrain(Q) assigns all targets to the training set and no
targets to the validation or test sets. It takes the following inputs:

Q Number of targets to divide up.

and returns

trainInd Training indices equal to 1:Q
valInd Empty validation indices, []
testInd Empty test indices, []

Examples
[trainInd,valInd,testInd] = dividetrain(250);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also
divideblock | divideind | divideint | dividerand

Introduced in R2010b
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dotprod
Dot product weight function

Syntax
Z = dotprod(W,P,FP)
dim = dotprod('size',S,R,FP)
dw = dotprod('dw',W,P,Z,FP)
info = dotprod('code')

Description
Weight functions apply weights to an input to get weighted inputs.

Z = dotprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns the S-by-Q dot product of W and P.

dim = dotprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = dotprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = dotprod('code') returns information about this function. The following codes are
defined:

'deriv' Name of derivative function
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear derivative =

0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear derivative

= 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)
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Network Use
You can create a standard network that uses dotprod by calling feedforwardnet.

To change a network so an input weight uses dotprod, set net.inputWeights{i,j}.weightFcn
to 'dotprod'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See Also
dist | feedforwardnet | negdist | normprod | sim

Introduced before R2006a
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elliotsig
Elliot symmetric sigmoid transfer function

Syntax
A = elliotsig(N)

Description
Transfer functions convert a neural network layer’s net input into its net output.

A = elliotsig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an
S-by-Q matrix A of output vectors, where each element of N is squashed from the interval [-inf
inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple
computing hardware as it does not require any exponential or trigonometric functions. Its
disadvantage is that it only flattens out for large inputs, so its effect is not as local as other sigmoid
functions. This might result in more training iterations, or require more neurons to achieve the same
accuracy.

Examples
Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliotsig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliotsig';

See Also
elliot2sig | logsig | tansig

Introduced in R2012b
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elliot2sig
Elliot 2 symmetric sigmoid transfer function

Syntax
A = elliot2sig(N)

Description
Transfer functions convert a neural network layer’s net input into its net output. This function is a
variation on the original Elliot sigmoid function. It has a steeper slope, closer to tansig, but is not as
smooth at the center.

A = elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an
S-by-Q matrix A of output vectors, where each element of N is squashed from the interval [-inf
inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple
computing hardware as it does not require any exponential or trigonometric functions. Its
disadvantage is that it departs from the classic sigmoid shape around zero.

Examples
Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliot2sig';

See Also
elliotsig | logsig | tansig

Introduced in R2012b
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elmannet
Elman neural network

Syntax
elmannet(layerdelays,hiddenSizes,trainFcn)

Description
Elman networks are feedforward networks (feedforwardnet) with the addition of layer recurrent
connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and bttderiv), the Elman
network is no longer recommended except for historical and research purposes. For more accurate
learning try time delay (timedelaynet), layer recurrent (layrecnet), NARX (narxnet), and NAR
(narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output relationship
arbitrarily well, given enough neurons in the hidden layers. However, Elman networks use simplified
derivative calculations (using staticderiv, which ignores delayed connections) at the expense of
less reliable learning.

elmannet(layerdelays,hiddenSizes,trainFcn) takes these arguments,

layerdelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns an Elman neural network.

Examples
Here an Elman neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = elmannet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

See Also
layrecnet | narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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errsurf
Error surface of single-input neuron

Syntax
errsurf(P,T,WV,BV,F)

Description
errsurf(P,T,WV,BV,F) takes these arguments,

P 1-by-Q matrix of input vectors
T 1-by-Q matrix of target vectors
WV Row vector of values of W
BV Row vector of values of B
F Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])

See Also
plotes

Introduced before R2006a
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extendts
Extend time series data to given number of timesteps

Syntax
extendts(x,ts,v)

Description
extendts(x,ts,v) takes these values,

x Neural network time series data
ts Number of timesteps
v Value

and returns the time series data either extended or truncated to match the specified number of
timesteps. If the value v is specified, then extended series are filled in with that value, otherwise they
are extended with random values.

Examples
Here, a 20-timestep series is created and then extended to 25 timesteps with the value zero.

x = nndata(5,4,20);
y = extendts(x,25,0)

See Also
catsamples | nndata | preparets

Introduced in R2010b
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feedforwardnet
Generate feedforward neural network

Syntax
net = feedforwardnet(hiddenSizes,trainFcn)

Description
net = feedforwardnet(hiddenSizes,trainFcn) returns a feedforward neural network with a
hidden layer size of hiddenSizes and training function, specified by trainFcn.

Feedforward networks consist of a series of layers. The first layer has a connection from the network
input. Each subsequent layer has a connection from the previous layer. The final layer produces the
network’s output.

You can use feedforward networks for any kind of input to output mapping. A feedforward network
with one hidden layer and enough neurons in the hidden layers can fit any finite input-output
mapping problem.

Specialized versions of the feedforward network include fitting and pattern recognition networks. For
more information, see the fitnet and patternnet functions.

A variation on the feedforward network is the cascade forward network, which has additional
connections from the input to every layer, and from each layer to all following layers. For more
information on cascade forward networks, see the cascadeforwardnet function.

Examples

Construct and Train a Feedforward Neural Network

This example shows how to use a feedforward neural network to solve a simple problem.

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a feedforward network with one hidden layer of size 10.

net = feedforwardnet(10);

Train the network net using the training data.

net = train(net,x,t);

View the trained network.

view(net)
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Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,y,t)

perf = 1.4639e-04

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'
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For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments
net — Feedforward network
network object

Feedforward neural network, returned as a network object.

See Also
cascadeforwardnet | fitnet | network | patternnet

Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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fixunknowns
Process data by marking rows with unknown values

Syntax
[y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)

Description
fixunknowns processes matrices by replacing each row containing unknown values (represented by
NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row’s mean. The second row
contains 1 and 0 values, indicating which values in the first row were known or unknown,
respectively.

[y,ps] = fixunknowns(X) takes these inputs,

X N-by-Q matrix

and returns

Y M-by-Q matrix with M - N rows added
PS Process settings that allow consistent processing of values

[y,ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.

Y = fixunknowns('apply',X,PS) returns Y, given X and settings PS.

X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.

name = fixunknowns('name') returns the name of this process method.

fp = fixunknowns('pdefaults') returns the default process parameter structure.

pd = fixunknowns('pdesc') returns the process parameter descriptions.

fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples
Here is how to format a matrix with a mixture of known and unknown values in its second row:
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x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

More About
Recode Data with NaNs Using fixunknowns

If you have input data with unknown values, you can represent them with NaN values. For example,
here are five 2-element vectors with unknown values in the first element of two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the function fixunknowns to
transform each row with NaN values (in this case only the first row) into two rows that encode that
same information numerically.

[p2,ps] = fixunknowns(p1);

Here is how the first row of values was recoded as two rows.

p2 =
   1  2  3  2  2
   1  0  1  1  0
   3  1 -1  2  4

The first new row is the original first row, but with the mean value for that row (in this case 2)
replacing all NaN values. The elements of the second new row are now either 1, indicating the
original element was a known value, or 0 indicating that it was unknown. The original second row is
now the new third row. In this way both known and unknown values are encoded numerically in a way
that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in the same way, using
the settings ps returned by fixunknowns when it was used to transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunkowns is only recommended for input processing. Unknown targets represented
by NaN values can be handled directly by the toolbox learning algorithms. For instance, performance
functions used by backpropagation algorithms recognize NaN values as unknown or unimportant
values.

See Also
mapminmax | mapstd | processpca

Introduced in R2006a
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formwb
Form bias and weights into single vector

Syntax
formwb(net,b,IW,LW)

Description
formwb(net,b,IW,LW) takes a neural network and bias b, input weight IW, and layer weight LW
values, and combines the values into a single vector.

Examples
Here a network is created, configured, and its weights and biases formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)

See Also
getwb | separatewb | setwb

Introduced in R2010b
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fpderiv
Forward propagation derivative function

Syntax
fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
fpderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from inputs to outputs, and in the case of
dynamic networks, forward through time.

fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (or N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs
elements, and TS is the number of timesteps).

fpderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)

See Also
bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
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fromnndata
Convert data from standard neural network cell array form

Syntax
fromnndata(x,toMatrix,columnSample,cellTime)

Description
fromnndata(x,toMatrix,columnSample,cellTime) takes these arguments,

net Neural network
toMatrix True if result is to be in matrix form
columnSample True if samples are to be represented as columns, false if rows
cellTime True if time series are to be represented as a cell array, false if

represented with a matrix

and returns the original data reformatted accordingly.

Examples
Here time-series data is converted from a matrix representation to standard cell array
representation, and back. The original data consists of a 5-by-6 matrix representing one time-series
sample consisting of a 5-element vector over 6 timesteps arranged in a matrix with the samples as
columns.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false;     % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Here data is defined in standard neural network data cell form. Converting this data does not change
it. The data consists of three time series samples of 2-element signals over 3 timesteps.

x = {rands(2,3);rands(2,3);rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)

See Also
tonndata

Introduced in R2010b
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gadd
Generalized addition

Syntax
gadd(a,b)

Description
gadd(a,b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples
Add Matrix and Cell Array Values

This example shows how to add matrix and cell array values.

gadd([1 2 3; 4 5 6],[10;20])

ans = 2×3

    11    12    13
    24    25    26

gadd({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[2]}    {[5]}
    {[8]}    {[6]}

gadd({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[11]}    {[12]}    {[13]}    {[14]}
    {[21]}    {[22]}    {[23]}    {[24]}
    {[31]}    {[32]}    {[33]}    {[34]}

See Also
gdivide | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b
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gdivide
Generalized division

Syntax
gdivide(a,b)

Description
gdivide(a,b) takes two matrices or cell arrays, and divides them in an element-wise manner.

Examples
Divide Matrix and Cell Array Values

This example shows how to divide matrix and cell array values.

gdivide([1 2 3; 4 5 6],[10;20])

ans = 2×3

    0.1000    0.2000    0.3000
    0.2000    0.2500    0.3000

gdivide({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[     1]}    {[0.6667]}
    {[0.6000]}    {[     2]}

gdivide({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}    {[0.4000]}
    {[0.0500]}    {[0.1000]}    {[0.1500]}    {[0.2000]}
    {[0.0333]}    {[0.0667]}    {[0.1000]}    {[0.1333]}

See Also
gadd | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b

 gdivide

2-61



gensim
Generate Simulink block for shallow neural network simulation

Syntax
gensim(net,st)

To Get Help
Type help network/gensim.

Description
This function generates a Simulink® block for a shallow neural network. gensim does not support
deep learning networks such as convolutional or LSTM networks. For more information on code
generation for deep learning, see “Deep Learning Code Generation”.

gensim(net,st) creates a Simulink system containing a block that simulates neural network net.

gensim(net,st) takes these inputs:

net Neural network
st Sample time (default = 1)

and creates a Simulink system containing a block that simulates neural network net with a sampling
time of st.

If net has no input or layer delays (net.numInputDelays and net.numLayerDelays are both 0),
you can use –1 for st to get a network that samples continuously.

Examples
Generate a Simulink Block for a Feedforward Network

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)

Generate a Simulink Block for a NARX Network

Create a NARX network.

[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);
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Convert the network to closed loop.

net = closeloop(net);
view(net)

Prepare the data and simulate the network’s closed loop response.

[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Convert the network to a Simulink system with workspace input and output ports.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');

Initialize the delay states. Note that this is an important step to obtain the same output as in
MATLAB.

setsiminit(sysName,netName,net,xi,ai,1);

Define the model input X1 in the workspace, simulate the system programmatically.

x1 = nndata2sim(xs,1,1);
out = sim(sysName,'ReturnWorkspaceOutputs','on','StopTime',num2str(x1.time(end)));
ysim = sim2nndata(out.y1);

Introduced before R2006a
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genFunction
Generate MATLAB function for simulating shallow neural network

Syntax
genFunction(net,pathname)
genFunction( ___ ,'MatrixOnly','yes')
genFunction( ___ ,'ShowLinks','no')

Description
This function generates a MATLAB function for simulating a shallow neural network. genFunction
does not support deep learning networks such as convolutional or LSTM networks. For more
information on code generation for deep learning, see “Deep Learning Code Generation”.

genFunction(net,pathname) generates a complete stand-alone MATLAB function for simulating a
neural network including all settings, weight and bias values, module functions, and calculations in
one file. The result is a standalone MATLAB function file. You can also use this function with MATLAB
Compiler and MATLAB Coder™ tools.

genFunction( ___ ,'MatrixOnly','yes') overrides the default cell/matrix notation and instead
generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For
static networks, the matrix columns are interpreted as independent samples. For dynamic networks,
the matrix columns are interpreted as a series of time steps. The default value is 'no'.

genFunction( ___ ,'ShowLinks','no') disables the default behavior of displaying links to
generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static neural
network.

First, train a static network and calculate its outputs for the training data.

[x,t] = bodyfat_dataset;
bodyfatNet = feedforwardnet(10);
bodyfatNet = train(bodyfatNet,x,t);
y = bodyfatNet(x);

Next, generate and test a MATLAB function. Then the new function is compiled to a shared/
dynamically linked library with mcc.

genFunction(bodyfatNet,'bodyfatFcn');
y2 = bodyfatFcn(x);
accuracy2 = max(abs(y-y2))
mcc -W lib:libBodyfat -T link:lib bodyfatFcn
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Next, generate another version of the MATLAB function that supports only matrix arguments (no cell
arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function,
which is also tested.
genFunction(bodyfatNet,'bodyfatFcn','MatrixOnly','yes');
y3 = bodyfatFcn(x);
accuracy3 = max(abs(y-y3))
 
x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}
y4 = bodyfatodeGen(x);
accuracy4 = max(abs(y-y4))

Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a dynamic neural
network.

First, train a dynamic network and calculate its outputs for the training data.

[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);

Next, generate and test a MATLAB function. Use the function to create a shared/dynamically linked
library with mcc.

genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell
arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function,
which is also tested.
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat(X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y)-y3))
 
x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Input Arguments
net — neural network
network object

Neural network, specified as a network object.
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Example: net = feedforwardnet(10);

pathname — location and name of generated function file
(default) | character string

Location and name of generated function file, specified as a character string. If you do not specify a
file name extension of .m, it is automatically appended. If you do not specify a path to the file, the
default location is the current working folder.
Example: 'myFcn.m'
Data Types: char

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can use genFunction in the Deep Learning Toolbox to generate a standalone MATLAB
function for a trained neural network. You can generate C/C++ code from this standalone
MATLAB function. To generate Simulink blocks, use the genSim function. See “Deploy Shallow
Neural Network Functions”.

See Also
gensim

Topics
“Deploy Shallow Neural Network Functions”

Introduced in R2013b
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getelements
Get neural network data elements

Syntax
getelements(x,ind)

Description
getelements(x,ind) returns the elements of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns as x, whose elements (1,i) are
matrices containing the ind rows of [x{:,i}].

Examples
This code gets elements 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getelements(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getelements(x,[1 3])

See Also
catelements | getsamples | getsignals | gettimesteps | nndata | numelements |
setelements

Introduced in R2010b
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getsamples
Get neural network data samples

Syntax
getsamples(x,ind)

Description
getsamples(x,ind) returns the samples of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose elements are the ind columns of
the matrices in x.

Examples
This code gets samples 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsamples(x,[1 3])

See Also
catsamples | getelements | getsignals | gettimesteps | nndata | numsamples | setsamples

Introduced in R2010b
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getsignals
Get neural network data signals

Syntax
getsignals(x,ind)

Description
getsignals(x,ind) returns the signals of neural network data x indicated by the indices ind. The
neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will return an empty matrix.

If x is a cell array, the result is the ind rows of x.

Examples
This code gets signal 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)

See Also
catsignals | getelements | getsamples | gettimesteps | nndata | numsignals | setsignals

Introduced in R2010b
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getsiminit
Get Simulink neural network block initial input and layer delays states

Syntax
[xi,ai] = getsiminit(sysName,netName,net)

Description
[xi,ai] = getsiminit(sysName,netName,net) takes these arguments,

sysName The name of the Simulink system containing the neural network block
netName The name of the Simulink neural network block
net The original neural network

and returns,

xi Initial input delay states
ai Initial layer delay states

Examples
Here a NARX network is designed. The NARX network has a standard input and an open-loop
feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed-loop, and the data is reformatted to simulate the network’s
closed-loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output ports. Its delay
states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical
to the values set with setsiminit.)
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[xi,ai] = getsiminit(sysName,netName,net);

See Also
gensim | nndata2sim | setsiminit | sim2nndata

Introduced in R2010b
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gettimesteps
Get neural network data timesteps

Syntax
gettimesteps(x,ind)

Description
gettimesteps(x,ind) returns the timesteps of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will return an empty matrix.

If x is a cell array the result is the ind columns of x.

Examples
This code gets timestep 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)

See Also
cattimesteps | getelements | getsamples | getsignals | nndata | numtimesteps |
settimesteps

Introduced in R2010b
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getwb
Get network weight and bias values as single vector

Syntax
getwb(net)

Description
getwb(net) returns a neural network’s weight and bias values as a single vector.

Examples
Here a feedforward network is trained to fit some data, then its bias and weight values are formed
into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net)

See Also
formwb | separatewb | setwb

Introduced in R2010b
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gmultiply
Generalized multiplication

Syntax
gmultiply(a,b)

Description
gmultiply(a,b) takes two matrices or cell arrays, and multiplies them in an element-wise manner.

Examples
Multiply Matrix and Cell Array Values

This example shows how to multiply matrix and cell array values.

gmultiply([1 2 3; 4 5 6],[10;20])

ans = 2×3

    10    20    30
    80   100   120

gmultiply({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[ 1]}    {[6]}
    {[15]}    {[8]}

gmultiply({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[10]}    {[20]}    {[30]}    {[ 40]}
    {[20]}    {[40]}    {[60]}    {[ 80]}
    {[30]}    {[60]}    {[90]}    {[120]}

See Also
gadd | gdivide | gnegate | gsqrt | gsubtract

Introduced in R2010b
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gnegate
Generalized negation

Syntax
gnegate(x)

Description
gnegate(x) takes a matrix or cell array of matrices, and negates their element values.

Examples
Negate a Cell Array

This example shows how to negate a cell array:

x = {[1 2; 3 4],[1 -3; -5 2]};
y = gnegate(x);
y{1}, y{2}

ans = 2×2

    -1    -2
    -3    -4

ans = 2×2

    -1     3
     5    -2

See Also
gadd | gdivide | gmultiply | gsqrt | gsubtract

Introduced in R2010b
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gpu2nndata
Reformat neural data back from GPU

Syntax
X = gpu2nndata(Y,Q)
X = gpu2nndata(Y)
X = gpu2nndata(Y,Q,N,TS)

Description
Training and simulation of neural networks require that matrices be transposed. But they do not
require (although they are more efficient with) padding of column length so that each column is
memory aligned. This function copies data back from the current GPU and reverses this transform. It
can be used on data formatted with nndata2gpu or on the results of network simulation.

X = gpu2nndata(Y,Q) copies the QQ-by-N gpuArray Y into RAM, takes the first Q rows and
transposes the result to get an N-by-Q matrix representing Q N-element vectors.

X = gpu2nndata(Y) calculates Q as the index of the last row in Y that is not all NaN values (those
rows were added to pad Y for efficient GPU computation by nndata2gpu). Y is then transformed as
before.

X = gpu2nndata(Y,Q,N,TS) takes a QQ-by-(N*TS) gpuArray where N is a vector of signal sizes, Q is
the number of samples (less than or equal to the number of rows after alignment padding QQ), and TS
is the number of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and then it is partitioned and
transposed into an M-by-TS cell array, where M is the number of elements in N. Each Y{i,ts} is an
N(i)-by-Q matrix.

Examples
Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy from the GPU a neural network cell array data representing four time series, each consisting of
five time steps of 2-element and 3-element signals.

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

See Also
nndata2gpu
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Introduced in R2012b
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gridtop
Grid layer topology function

Syntax
gridtop(dimensions)

Description
pos = gridtop calculates neuron positions for layers whose neurons are arranged in an N-
dimensional grid.

gridtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Grid Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
grid pattern.

pos = gridtop([8 5]);
plotsom(pos)
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See Also
hextop | randtop | tritop

Introduced before R2006a

 gridtop

2-79



gsqrt
Generalized square root

Syntax
gsqrt(x)

Description
gsqrt(x) takes a matrix or cell array of matrices, and generates the element-wise square root of the
matrices.

Examples
Compute Element-Wise Square Root

This example shows how to get the element-wise square root of a cell array:

gsqrt({1 2; 3 4})

ans=2×2 cell array
    {[     1]}    {[1.4142]}
    {[1.7321]}    {[     2]}

See Also
gadd | gdivide | gmultiply | gnegate | gsubtract

Introduced in R2010b
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gsubtract
Generalized subtraction

Syntax
gsubtract(a,b)

Description
gsubtract(a,b) takes two matrices or cell arrays, and subtracts them in an element-wise manner.

Examples
Subtract Matrix and Cell Array Values

This example shows how to subtract matrix and cell array values.

gsubtract([1 2 3; 4 5 6],[10;20])

ans = 2×3

    -9    -8    -7
   -16   -15   -14

gsubtract({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[ 0]}    {[-1]}
    {[-2]}    {[ 2]}

gsubtract({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[ -9]}    {[ -8]}    {[ -7]}    {[ -6]}
    {[-19]}    {[-18]}    {[-17]}    {[-16]}
    {[-29]}    {[-28]}    {[-27]}    {[-26]}

See Also
gadd | gdivide | gmultiply | gnegate | gsqrt

Introduced in R2010b
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hardlim
Hard-limit transfer function

Graph and Symbol

Syntax
A = hardlim(N,FP)

Description
hardlim is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = hardlim(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1s where N ≥ 0.

info = hardlim('code') returns information according to the code string specified:

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.

hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.

Examples
Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)
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Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';

Algorithms
hardlim(n) = 1 if n ≥ 0

                         0 otherwise

See Also
hardlims | sim

Introduced before R2006a
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hardlims
Symmetric hard-limit transfer function

Graph and Symbol

Syntax
A = hardlims(N,FP)

Description
hardlims is a neural transfer function. Transfer functions calculate a layer’s output from its net
input.

A = hardlims(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q +1/–1 matrix with +1s where N ≥ 0.

info = hardlims('code') returns information according to the code string specified:

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.

hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.

Examples
Here is how to create a plot of the hardlims transfer function.
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n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithms
hardlims(n) = 1 if n ≥ 0, –1 otherwise.

See Also
hardlim | sim

Introduced before R2006a
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hextop
Hexagonal layer topology function

Syntax
hextop(dimensions)

Description
hextop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional
hexagonal pattern.

hextop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Hexagonal Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
hexagonal pattern.

pos = hextop([8 5]);
plotsom(pos)
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See Also
gridtop | randtop | tritop

Introduced before R2006a
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ind2vec
Convert indices to vectors

Syntax
ind2vec(ind)
ind2vec(ind,N)

Description
ind2vec and vec2ind allow indices to be represented either by themselves, or as vectors containing
a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

ind Row vector of indices

and returns a sparse matrix of vectors, with one 1 in each column, as indicated by ind.

ind2vec(ind,N) returns an N-by-M matrix, where N can be equal to or greater than the maximum
index.

Examples
Here four indices are defined and converted to vector representation.

ind = [1 3 2 3];
vec = ind2vec(ind)

vec =
   (1,1)        1
   (3,2)        1
   (2,3)        1
   (3,4)        1

Here a vector with all zeros in the last row is converted to indices and back, while preserving the
number of rows.

vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'

vec =
     0     1     0
     0     0     1
     1     0     0
     0     0     0

[ind,n] = vec2ind(vec)

ind =
     3     1     2

n =
     4
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vec2 = full(ind2vec(ind,n))

vec2 =
     0     1     0
     0     0     1
     1     0     0
     0     0     0

See Also
ind2sub | sub2ind | vec2ind

Introduced before R2006a
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init
Initialize neural network

Syntax
net = init(net)

To Get Help
Type help network/init.

Description
net = init(net) returns neural network net with weight and bias values updated according to
the network initialization function, indicated by net.initFcn, and the parameter values, indicated
by net.initParam.

Examples
Here a perceptron is created, and then configured so that its input, output, weight, and bias
dimensions match the input and target data.

x = [0 1 0 1; 0 0 1 1];
t = [0 0 0 1];
net = perceptron;
net = configure(net,x,t);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

net = train(net,x,t);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by perceptron networks.

Algorithms
init calls net.initFcn to initialize the weight and bias values according to the parameter values
net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each layer’s weights and biases
according to its net.layers{i}.initFcn.
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Backpropagation networks have net.layers{i}.initFcn set to 'initnw', which calculates the
weight and bias values for layer i using the Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which initializes each weight and
bias with its own initialization function. The most common weight and bias initialization function is
rands, which generates random values between –1 and 1.

See Also
adapt | initlay | initnw | initwb | rands | revert | sim | train

Introduced before R2006a
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initcon
Conscience bias initialization function

Syntax
initcon (S,PR)

Description
initcon is a bias initialization function that initializes biases for learning with the learncon
learning function.

initcon (S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of R = [Pmin Pmax] (default = [1 1])

and returns an S-by-1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize weights, but it is not
recommended for that purpose.

Examples
Here initial bias values are calculated for a five-neuron layer.

b = initcon(5)

Network Use
You can create a standard network that uses initcon to initialize weights by calling competlayer.

To prepare the bias of layer i of a custom network to initialize with initcon,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init.

Algorithms
learncon updates biases so that each bias value b(i) is a function of the average output c(i) of
the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded to equal numbers of
vectors in the past.
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See Also
competlayer | init | initlay | initwb | learncon

Introduced before R2006a
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initlay
Layer-by-layer network initialization function

Syntax
net = initlay(net)
info = initlay('code')

Description
initlay is a network initialization function that initializes each layer i according to its own
initialization function net.layers{i}.initFcn.

net = initlay(net) takes

net Neural network

and returns the network with each layer updated.

info = initlay('code') returns useful information for each supported code character vector:

'pnames' Names of initialization parameters
'pdefaults' Default initialization parameters

initlay does not have any initialization parameters.

Network Use
You can create a standard network that uses initlay by calling feedforwardnet,
cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set each net.layers{i}.initFcn to a layer initialization function. (Examples of such
functions are initwb and initnw.)

To initialize the network, call init.

Algorithms
The weights and biases of each layer i are initialized according to net.layers{i}.initFcn.

See Also
cascadeforwardnet | feedforwardnet | init | initnw | initwb
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initlvq
LVQ weight initialization function

Syntax
initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)

Description
initlvq('configure',x) takes input data x and returns initialization settings for an LVQ weights
associated with that input.

initlvq('configure',net,'IW',i,j,settings) takes a network, and indices indicating an
input weight to layer i from input j, and that weights settings, and returns new weight values.

initlvq('configure',net,'LW',i,j,settings) takes a network, and indices indicating a
layer weight to layer i from layer j, and that weights settings, and returns new weight values.

initlvq('configure',net,'b',i,) takes a network, and an index indicating a bias for layer i,
and returns new bias values.

See Also
init | lvqnet

Introduced in R2010b
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initnw
Nguyen-Widrow layer initialization function

Syntax
net = initnw(net,i)

Description
initnw is a layer initialization function that initializes a layer’s weights and biases according to the
Nguyen-Widrow initialization algorithm. This algorithm chooses values in order to distribute the
active region of each neuron in the layer approximately evenly across the layer’s input space. The
values contain a degree of randomness, so they are not the same each time this function is called.

initnw requires that the layer it initializes have a transfer function with a finite active input range.
This includes transfer functions such as tansig and satlin, but not purelin, whose active input
range is the infinite interval [-inf, inf]. Transfer functions, such as tansig, will return their
active input range as follows:

activeInputRange = tansig('active')
activeInputRange =
    -2     2

net = initnw(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the default random generator is
set to the same seed before each call to initnw, it will generate different weight and bias values
each time.

Network Use
You can create a standard network that uses initnw by calling feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be initialized with initnw,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network, call init.
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Algorithms
The Nguyen-Widrow method generates initial weight and bias values for a layer so that the active
regions of the layer’s neurons are distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (because all the neurons are in the input space).
• Training works faster (because each area of the input space has neurons). The Nguyen-Widrow

method can only be applied to layers

• With a bias
• With weights whose weightFcn is dotprod
• With netInputFcn set to netsum
• With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer’s weights and biases.

See Also
cascadeforwardnet | feedforwardnet | init | initlay | initwb

Introduced before R2006a
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initwb
By weight and bias layer initialization function

Syntax
initwb(net,i)

Description
initwb is a layer initialization function that initializes a layer’s weights and biases according to their
own initialization functions.

initwb(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use
You can create a standard network that uses initwb by calling perceptron or linearlayer.

To prepare a custom network to be initialized with initwb,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to a weight initialization function. Set each

net.layerWeights{i,j}.initFcn to a weight initialization function. Set each
net.biases{i}.initFcn to a bias initialization function. Examples of initialization functions
are rands (for weights and biases) and midpoint (for weights only).

To initialize the network, call init.

Algorithms
Each weight (bias) in layer i is set to new values calculated according to its weight (bias)
initialization function.

See Also
init | initlay | initnw | linearlayer | perceptron

Introduced before R2006a
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initzero
Zero weight and bias initialization function

Syntax
W = initzero(S,PR)
b = initzero(S,[1 1])

Description
W = initzero(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R weight matrix of zeros.

b = initzero(S,[1 1]) returns an S-by-1 bias vector of zeros.

Examples
Here initial weights and biases are calculated for a layer with two inputs ranging over [0 1] and
[-2 2] and four neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

See Also
init | initlay | initwb

Introduced before R2006a
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isconfigured
Indicate if network inputs and outputs are configured

Syntax
[flag,inputflags,outputflags] = isconfigured(net)

Description
[flag,inputflags,outputflags] = isconfigured(net) takes a neural network and returns
three values,

flag True if all network inputs and outputs are configured (have non-zero
sizes)

inputflags Vector of true/false values for each configured/unconfigured input
outputflags Vector of true/false values for each configured/unconfigured output

Examples
Here are the flags returned for a new network before and after being configured:

net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)

See Also
configure | unconfigure

Introduced in R2010b
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layrecnet
Layer recurrent neural network

Syntax
layrecnet(layerDelays,hiddenSizes,trainFcn)

Description
Layer recurrent neural networks are similar to feedforward networks, except that each layer has a
recurrent connection with a tap delay associated with it. This allows the network to have an infinite
dynamic response to time series input data. This network is similar to the time delay
(timedelaynet) and distributed delay (distdelaynet) neural networks, which have finite input
responses.

layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments,

layerDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a layer recurrent neural network.

Examples
Recurrent Neural Network

Use a layer recurrent neural network to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = layrecnet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

perf =

   6.1239e-11

2 Approximation, Clustering, and Control Functions

2-102



See Also
distdelaynet | narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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learncon
Conscience bias learning function

Syntax
[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learncon('code')

Description
learncon is the conscience bias learning function used to increase the net input to neurons that
have the lowest average output until each neuron responds approximately an equal percentage of the
time.

[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B S-by-1 bias vector
P 1-by-Q ones vector
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dB S-by-1 weight (or bias) change matrix
LS New learning state

Learning occurs according to learncon’s learning parameter, shown here with its default value.

LP.lr - 0.001 Learning rate

info = learncon('code') returns useful information for each supported code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Deep Learning Toolbox 2.0 compatibility: The LP.lr described above equals 1 minus the bias time
constant used by trainc in the Deep Learning Toolbox 2.0 software.

Examples
Here you define a random output A and bias vector W for a layer with three neurons. You also define
the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Because learncon only needs these values to calculate a bias change (see “Algorithm” below), use
them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the bias of layer i of a custom network to learn with learncon,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'
4 Set each net.layerWeights{i,j}.learnFcn to 'learncon'. .(Each weight learning

parameter property is automatically set to learncon’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learncon calculates the bias change db for a given neuron by first updating each neuron’s
conscience, i.e., the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest for smaller conscience
values.

b = exp(1-log(c)) - b

(learncon recovers C from the bias values each time it is called.)

See Also
adapt | learnk | learnos | train
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learngd
Gradient descent weight and bias learning function

Syntax
[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngd('code')

Description
learngd is the gradient descent weight and bias learning function.

[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q output gradient with respect to performance x Q weighted input

vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learngd’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learngd('code') returns useful information for each supported code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random gradient gW for a weight going to a layer with three neurons from an input
with two elements. Also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Because learngd only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Algorithms
learngd calculates the weight change dW for a given neuron from the neuron’s input P and error E,
and the weight (or bias) learning rate LR, according to the gradient descent dw = lr*gW.

See Also
adapt | learngdm | train

Introduced before R2006a
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learngdm
Gradient descent with momentum weight and bias learning function

Syntax
[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngdm('code')

Description
learngdm is the gradient descent with momentum weight and bias learning function.

[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learngdm’s learning parameters, shown here with their default values.

LP.lr - 0.01 Learning rate
LP.mc - 0.9 Momentum constant

info = learngdm('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random gradient G for a weight going to a layer with three neurons from an input
with two elements. Also define a learning rate of 0.5 and momentum constant of 0.8:

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Because learngdm only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so. Use the default initial learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Algorithms
learngdm calculates the weight change dW for a given neuron from the neuron’s input P and error E,
the weight (or bias) W, learning rate LR, and momentum constant MC, according to gradient descent
with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state LS.

See Also
adapt | learngd | train

Introduced before R2006a
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learnh
Hebb weight learning rule

Syntax
[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnh('code')

Description
learnh is the Hebb weight learning function.

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnh’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnh('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P and output A for a layer with a two-element input and three
neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Because learnh only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnh,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnh'. (Each weight learning parameter

property is automatically set to learnh’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnh calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the Hebb learning rule:

dw = lr*a*p'

References
Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also
adapt | learnhd | train

Introduced before R2006a

2 Approximation, Clustering, and Control Functions

2-112



learnhd
Hebb with decay weight learning rule

Syntax
[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnhd('code')

Description
learnhd is the Hebb weight learning function.

[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnhd’s learning parameters, shown here with default values.

LP.dr - 0.01 Decay rate
LP.lr - 0.1 Learning rate

info = learnhd('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weights W for a layer with a two-element input and
three neurons. Also define the decay and learning rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Because learnhd only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight learning

parameter property is automatically set to learnhd’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnhd calculates the weight change dW for a given neuron from the neuron’s input P, output A,
decay rate DR, and learning rate LR according to the Hebb with decay learning rule:

dw = lr*a*p' - dr*w

See Also
adapt | learnh | train

Introduced before R2006a
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learnis
Instar weight learning function

Syntax
[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnis('code')

Description
learnis is the instar weight learning function.

[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnis’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnis('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnis only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network so that it can learn with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight learning

parameter property is automatically set to learnis’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnis calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the instar learning rule:

dw = lr*a*(p'-w)

References
Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
adapt | learnk | learnos | train

Introduced before R2006a
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learnk
Kohonen weight learning function

Syntax
[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk('code')

Description
learnk is the Kohonen weight learning function.

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnk’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnk('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

 learnk

2-117



Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnk only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights of layer i of a custom network to learn with learnk,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning parameter

property is automatically set to learnk’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnk calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise

References
Kohonen, T., Self-Organizing and Associative Memory, New York, Springer-Verlag, 1984

See Also
adapt | learnis | learnos | train

Introduced before R2006a
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learnlv1
LVQ1 weight learning function

Syntax
[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1('code')

Description
learnlv1 is the LVQ1 weight learning function.

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnlv1’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnlv1('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, weight matrix W, and output gradient gA for a layer with
a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv1 only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use
You can create a standard network that uses learnlv1 with lvqnet. To prepare the weights of layer
i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning

parameter property is automatically set to learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnlv1 calculates the weight change dW for a given neuron from the neuron’s input P, output A,
output gradient gA, and learning rate LR, according to the LVQ1 rule, given i, the index of the neuron
whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also
adapt | learnlv2 | train

Introduced before R2006a
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learnlv2
LVQ2.1 weight learning function

Syntax
[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv2('code')

Description
learnlv2 is the LVQ2 weight learning function.

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnlv2’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate
LP.window - 0.25 Window size (0 to 1, typically 0.2 to 0.3)

info = learnlv2('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a sample input P, output A, weight matrix W, and output gradient gA for a layer with a
two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv2 only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use
You can create a standard network that uses learnlv2 with lvqnet.

To prepare the weights of layer i of a custom network to learn with learnlv2,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning

parameter property is automatically set to learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnlv2 implements Learning Vector Quantization 2.1, which works as follows:

For each presentation, if the winning neuron i should not have won, and the runnerup j should have,
and the distance di between the winning neuron and the input p is roughly equal to the distance dj
from the runnerup neuron to the input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move the runnerup neuron
j weights toward the input according to

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))
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See Also
adapt | learnlv1 | train

Introduced before R2006a
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learnos
Outstar weight learning function

Syntax
[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos('code')

Description
learnos is the outstar weight learning function.

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnos’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnos('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnos only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight learning

parameter property is automatically set to learnos’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnos calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the outstar learning rule:

dw = lr*(a-w)*p'

References
Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
adapt | learnis | learnk | train

Introduced before R2006a
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learnp
Perceptron weight and bias learning function

Syntax
[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnp('code')

Description
learnp is the perceptron weight/bias learning function.

[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

info = learnp('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.

p = rand(2,1);
e = rand(3,1);
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Because learnp only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Algorithms
learnp calculates the weight change dW for a given neuron from the neuron’s input P and error E
according to the perceptron learning rule:

dw = 0, if e = 0
     = p', if e = 1
     = -p', if e = -1

This can be summarized as

dw = e*p'

References
Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 1961

See Also
adapt | learnpn | train

Introduced before R2006a
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learnpn
Normalized perceptron weight and bias learning function

Syntax
[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn('code')

Description
learnpn is a weight and bias learning function. It can result in faster learning than learnp when
input vectors have widely varying magnitudes.

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

info = learnpn('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.
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p = rand(2,1);
e = rand(3,1);

Because learnpn only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Limitations
Perceptrons do have one real limitation. The set of input vectors must be linearly separable if a
solution is to be found. That is, if the input vectors with targets of 1 cannot be separated by a line or
hyperplane from the input vectors associated with values of 0, the perceptron will never be able to
classify them correctly.

Algorithms
learnpn calculates the weight change dW for a given neuron from the neuron’s input P and error E
according to the normalized perceptron learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0,  if e = 0
     = pn', if e = 1
     = -pn', if e = -1

The expression for dW can be summarized as

dw = e*pn'

See Also
adapt | learnp | train

Introduced before R2006a
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learnsom
Self-organizing map weight learning function

Syntax
[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsom('code')

Description
learnsom is the self-organizing map weight learning function.

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnsom’s learning parameters, shown here with their default values.

LP.order_lr 0.9 Ordering phase learning rate
LP.order_steps 1000 Ordering phase steps
LP.tune_lr 0.02 Tuning phase learning rate
LP.tune_nd 1 Tuning phase neighborhood distance

info = learnsom('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
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'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and six neurons. You also calculate positions and distances for the neurons, which are arranged in a
2-by-3 hexagonal pattern. Then you define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Because learnsom only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Algorithms
learnsom calculates the weight change dW for a given neuron from the neuron’s input P, activation
A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A, neuron distances D, and the current
neighborhood size ND:

a2(i,q) = 1,  if a(i,q) = 1
         = 0.5, if a(j,q) = 1 and D(i,j) <= nd
         = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases: an ordering phase
and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this phase LR is adjusted from
LP.order_lr down to LP.tune_lr, and ND is adjusted from the maximum neuron distance down to
1. It is during this phase that neuron weights are expected to order themselves in the input space
consistent with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and ND is always set to
LP.tune_nd. During this phase the weights are expected to spread out relatively evenly over the
input space while retaining their topological order, determined during the ordering phase.

See Also
adapt | train

 learnsom

2-131



Introduced before R2006a

2 Approximation, Clustering, and Control Functions

2-132



learnsomb
Batch self-organizing map weight learning function

Syntax
[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsomb('code')

Description
learnsomb is the batch self-organizing map weight learning function.

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns the following:

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnsomb’s learning parameter, shown here with its default value:

LP.init_neighborhood 3 Initial neighborhood size
LP.steps 100 Ordering phase steps

info = learnsomb('code') returns useful information for each code character vector:

'pnames' Returns names of learning parameters.
'pdefaults' Returns default learning parameters.
'needg' Returns 1 if this function uses gW or gA.
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Examples
This example defines a random input P, output A, and weight matrix W for a layer with a 2-element
input and 6 neurons. This example also calculates the positions and distances for the neurons, which
appear in a 2-by-3 hexagonal pattern.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');

Because learnsom only needs these values to calculate a weight change (see Algorithm).

ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use
You can create a standard network that uses learnsomb with selforgmap. To prepare the weights
of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFcn to 'trainr'. (NET.trainParam automatically becomes trainr’s default
parameters.)

2 Set NET.adaptFcn to 'trains'. (NET.adaptParam automatically becomes trains’s default
parameters.)

3 Set each NET.inputWeights{i,j}.learnFcn to 'learnsomb'.
4 Set each NET.layerWeights{i,j}.learnFcn to 'learnsomb'. (Each weight learning

parameter property is automatically set to learnsomb’s default parameters.)

To train the network (or enable it to adapt):

1 Set NET.trainParam (or NET.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnsomb calculates the weight changes so that each neuron’s new weight vector is the weighted
average of the input vectors that the neuron and neurons in its neighborhood responded to with an
output of 1.

The ordering phase lasts as many steps as LP.steps.

During this phase, the neighborhood is gradually reduced from a maximum size of
LP.init_neighborhood down to 1, where it remains from then on.

See Also
adapt | selforgmap | train

Introduced in R2008a
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learnwh
Widrow-Hoff weight/bias learning function

Syntax
[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh('code')

Description
learnwh is the Widrow-Hoff weight/bias learning function, and is also known as the delta or least
mean squared (LMS) rule.

[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to the learnwh learning parameter, shown here with its default value.

LP.lr — 0.01 Learning rate

info = learnwh('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.
You also define the learning rate LR learning parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Because learnwh needs only these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use
You can create a standard network that uses learnwh with linearlayer.

To prepare the weights and the bias of layer i of a custom network to learn with learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically becomes trainb’s default
parameters.

2 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes trains’s default
parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnwh'.
5 Set net.biases{i}.learnFcn to 'learnwh'. Each weight and bias learning parameter

property is automatically set to the learnwh default parameters.

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (or adapt).

Algorithms
learnwh calculates the weight change dW for a given neuron from the neuron’s input P and error E,
and the weight (or bias) learning rate LR, according to the Widrow-Hoff learning rule:

dw = lr*e*pn'

References
Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention Record,
New York IRE, pp. 96–104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, Prentice-Hall, 1985

See Also
adapt | linearlayer | train
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linearlayer
Linear layer

Syntax
linearlayer(inputDelays,widrowHoffLR)

Description
Linear layers are single layers of linear neurons. They may be static, with input delays of 0, or
dynamic, with input delays greater than 0. They can be trained on simple linear time series problems,
but often are used adaptively to continue learning while deployed so they can adjust to changes in the
relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better networks to try
include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

inputDelays Row vector of increasing 0 or positive delays (default = 0)
widrowHoffLR Widrow-Hoff learning rate (default = 0.01)

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly. However, a greater danger is that it
may be too large and learning will become unstable resulting in large changes to weight vectors and
errors increasing instead of decreasing. If a data set is available which characterizes the relationship
the layer is to learn, the maximum stable learning rate can be calculated with maxlinlr.

Examples
Create and Train a Linear Layer

Here a linear layer is trained on a simple time series problem.

x = {0 -1 1 1 0 -1 1 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1};
net = linearlayer(1:2,0.01);
[Xs,Xi,Ai,Ts] = preparets(net,x,t);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

perf =

    0.2396
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See Also
narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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linkdist
Link distance function

Syntax
d = linkdist(pos)

Description
linkdist is a layer distance function used to find the distances between the layer’s neurons given
their positions.

d = linkdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples
Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use
You can create a standard network that uses linkdist as a distance function by calling
selforgmap.

To change a network so that a layer’s topology uses linkdist, set net.layers{i}.distanceFcn
to 'linkdist'.

In either case, call sim to simulate the network with dist.

Algorithms
The link distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = 0, if i == j
     = 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
     = 2, if k exists, Dik = Dkj = 1
     = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
     = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
     = S, if none of the above conditions apply

See Also
dist | mandist | selforgmap | sim
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logsig
Log-sigmoid transfer function

Graph and Symbol

Syntax
A = logsig(N,FP)
dA_dN = logsig('dn',N,A,FP)
info = logsig('code')

Description
logsig is a transfer function. Transfer functions calculate a layer’s output from its net input.

A = logsig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [0, 1].

dA_dN = logsig('dn',N,A,FP) returns the S-by-Q derivative of A with respect to N. If A or FP is
not supplied or is set to [], FP reverts to the default parameters, and A is calculated from N.

info = logsig('code') returns useful information for each code character vector:

logsig('name') returns the name of this function.

logsig('output',FP) returns the [min max] output range.

logsig('active',FP) returns the [min max] active input range.

logsig('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

logsig('fpnames') returns the names of the function parameters.

logsig('fpdefaults') returns the default function parameters.
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Examples
Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'logsig';

Algorithms
logsig(n) = 1 / (1 + exp(-n))

See Also
sim | tansig

Introduced before R2006a
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lvqnet
Learning vector quantization neural network

Syntax
lvqnet(hiddenSize,lvqLR,lvqLF)

Description
LVQ (learning vector quantization) neural networks consist of two layers. The first layer maps input
vectors into clusters that are found by the network during training. The second layer merges groups
of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden neurons. The larger
the hidden layer the more clusters the first layer can learn, and the more complex mapping of input
to target classes can be made. The relative number of first layer clusters assigned to each target class
are determined according to the distribution of target classes at the time of network initialization.
This occurs when the network is automatically configured the first time train is called, or manually
configured with the function configure, or manually initialized with the function init is called.

lvqnet(hiddenSize,lvqLR,lvqLF) takes these arguments,

hiddenSize Size of hidden layer (default = 10)
lvqLR LVQ learning rate (default = 0.01)
lvqLF LVQ learning function (default = 'learnlv1')

and returns an LVQ neural network.

The other option for the lvq learning function is learnlv2.

Examples
Train a Learning Vector Quantization Network

Here, an LVQ network is trained to classify iris flowers.

[x,t] = iris_dataset;
net = lvqnet(10);
net.trainParam.epochs = 50;
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
classes = vec2ind(y);

perf =

    0.0489
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See Also
competlayer | patternnet | selforgmap

Introduced in R2010b
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lvqoutputs
LVQ outputs processing function

Syntax
[X,settings] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)

Description
[X,settings] = lvqoutputs(X) returns its argument unchanged, but stores the ratio of target
classes in the settings for use by initlvq to initialize weights.

X = lvqoutputs('apply',X,PS) returns X.

X = lvqoutputs('reverse',X,PS) returns X.

dx_dy = lvqoutputs('dx_dy',X,X,PS) returns the identity derivative.

See Also
initlvq | lvqnet

Introduced in R2010b
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mae
Mean absolute error performance function

Syntax
perf = mae(E,Y,X,FP)

Description
mae is a network performance function. It measures network performance as the mean of absolute
errors.

perf = mae(E,Y,X,FP) takes E and optional function parameters,

E Matrix or cell array of error vectors
Y Matrix or cell array of output vectors (ignored)
X Vector of all weight and bias values (ignored)
FP Function parameters (ignored)

and returns the mean absolute error.

dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X.

info = mae('code') returns useful information for each code character vector:

mae('name') returns the name of this function.

mae('pnames') returns the names of the training parameters.

mae('pdefaults') returns the default function parameters.

Examples
Create and configure a perceptron to have one input and one neuron:

net = perceptron;
net = configure(net,0,0);

The network is given a batch of inputs P. The error is calculated by subtracting the output A from
target T. Then the mean absolute error is calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = net(p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other arguments are ignored. mae
supports those arguments to conform to the standard performance function argument list.
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Network Use
You can create a standard network that uses mae with perceptron.

To prepare a custom network to be trained with mae, set net.performFcn to 'mae'. This
automatically sets net.performParam to the empty matrix [], because mae has no performance
parameters.

In either case, calling train or adapt, results in mae being used to calculate performance.

See Also
mse | perceptron

Introduced before R2006a
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mandist
Manhattan distance weight function

Syntax
Z = mandist(W,P)
D = mandist(pos)

Description
mandist is the Manhattan distance weight function. Weight functions apply weights to an input to
get weighted inputs.

Z = mandist(W,P) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors

and returns the S-by-Q matrix of vector distances.

mandist is also a layer distance function, which can be used to find the distances between neurons
in a layer.

D = mandist(pos) takes one argument,

pos S row matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
then find their distances.

pos = rand(3,10);
D = mandist(pos)

Network Use
To change a network so an input weight uses mandist, set net.inputWeights{i,j}.weightFcn
to 'mandist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'mandist'.
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To change a network so a layer’s topology uses mandist, set net.layers{i}.distanceFcn to
'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or newgrnn for simulation
examples.

Algorithms
The Manhattan distance D between two vectors X and Y is

D = sum(abs(x-y))

See Also
dist | linkdist | sim

Introduced before R2006a
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mapminmax
Process matrices by mapping row minimum and maximum values to [-1 1]

Syntax
[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)

Description
mapminmax processes matrices by normalizing the minimum and maximum values of each row to
[YMIN, YMAX].

[Y,PS] = mapminmax(X,YMIN,YMAX) takes X and optional parameters

X N-by-Q matrix
YMIN Minimum value for each row of Y (default is –1)
YMAX Maximum value for each row of Y (default is +1)

and returns

Y N-by-Q matrix
PS Process settings that allow consistent processing of values

[Y,PS] = mapminmax(X,FP) takes parameters as a struct: FP.ymin, FP.ymax.

Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.

X = mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

Examples
Here is how to format a matrix so that the minimum and maximum values of each row are mapped to
default interval [-1,+1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.
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x1_again = mapminmax('reverse',y1,PS)

More About
Normalize Inputs and Targets Using mapminmax

Before training, it is often useful to scale the inputs and targets so that they always fall within a
specified range. The function mapminmax scales inputs and targets so that they fall in the range [–
1,1]. The following code illustrates how to use this function.

[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The normalized inputs and
targets pn and tn that are returned will all fall in the interval [–1,1]. The structures ps and ts
contain the settings, in this case the minimum and maximum values of the original inputs and targets.
After the network has been trained, the ps settings should be used to transform any future inputs
that are applied to the network. They effectively become a part of the network, just like the network
weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be trained to produce
outputs in the range [–1,1]. To convert these outputs back into the same units that were used for the
original targets, use the settings ts. The following code simulates the network that was trained in the
previous code, and then converts the network output back into the original units.

an = sim(net,pn);
a = mapminmax('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized network output
a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the trained network is used
with new inputs they should be preprocessed with the minimum and maximums that were computed
for the training set stored in the settings ps. The following code applies a new set of inputs to the
network already trained.

pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so that you only
need to use the sim command.

Algorithms
It is assumed that X has only finite real values, and that the elements of each row are not all equal. (If
xmax=xmin or if either xmax or xmin are non-finite, then y=x and no change occurs.)

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;

See Also
fixunknowns | mapstd | processpca
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Introduced in R2006a
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mapstd
Process matrices by mapping each row’s means to 0 and deviations to 1

Syntax
[Y,PS] = mapstd(X,ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dx_dy = mapstd('dx_dy',X,Y,PS)

Description
mapstd processes matrices by transforming the mean and standard deviation of each row to ymean
and ystd.

[Y,PS] = mapstd(X,ymean,ystd) takes X and optional parameters,

X N-by-Q matrix
ymean Mean value for each row of Y (default is 0)
ystd Standard deviation for each row of Y (default is 1)

and returns

Y N-by-Q matrix
PS Process settings that allow consistent processing of values

[Y,PS] = mapstd(X,FP) takes parameters as a struct: FP.ymean, FP.ystd.

Y = mapstd('apply',X,PS) returns Y, given X and settings PS.

X = mapstd('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples
Here you format a matrix so that the minimum and maximum values of each row are mapped to
default mean and STD of 0 and 1.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)

Reverse the processing of y1 to get x1 again.
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x1_again = mapstd('reverse',y1,PS)

More About
Normalize Network Inputs and Targets Using mapstd

Another approach for scaling network inputs and targets is to normalize the mean and standard
deviation of the training set. The function mapstd normalizes the inputs and targets so that they will
have zero mean and unity standard deviation. The following code illustrates the use of mapstd.

[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);

The original network inputs and targets are given in the matrices p and t. The normalized inputs and
targets pn and tn that are returned will have zero means and unity standard deviation. The settings
structures ps and ts contain the means and standard deviations of the original inputs and original
targets. After the network has been trained, you should use these settings to transform any future
inputs that are applied to the network. They effectively become a part of the network, just like the
network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to produce outputs
with zero mean and unity standard deviation. To convert these outputs back into the same units that
were used for the original targets, use ts. The following code simulates the network that was trained
in the previous code, and then converts the network output back into the original units.

an = sim(net,pn);
a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized network output
a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network is used with
new inputs, you should preprocess them with the means and standard deviations that were computed
for the training set using ps. The following commands apply a new set of inputs to the network
already trained:

pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so that you only
need to use the sim command.

Algorithms
It is assumed that X has only finite real values, and that the elements of each row are not all equal.

y = (x-xmean)*(ystd/xstd) + ymean;

See Also
fixunknowns | mapminmax | processpca

Introduced in R2006a
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maxlinlr
Maximum learning rate for linear layer

Syntax
lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description
maxlinlr is used to calculate learning rates for linearlayer.

lr = maxlinlr(P) takes one argument,

P R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that is to be trained only on
the vectors in P.

lr = maxlinlr(P,'bias') returns the maximum learning rate for a linear layer with a bias.

Examples
Here you define a batch of four two-element input vectors and find the maximum learning rate for a
linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also
learnwh | linearlayer

Introduced before R2006a
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meanabs
Mean of absolute elements of matrix or matrices

Syntax
[m,n] = meanabs(x)

Description
[m,n] = meanabs(x) takes a matrix or cell array of matrices and returns,

m Mean value of all absolute finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meanabs([1 2;3 4])
[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})

See Also
meansqr | sumabs | sumsqr

Introduced in R2010b

 meanabs

2-157



meansqr
Mean of squared elements of matrix or matrices

Syntax
[m,n] = meansqr(x)

Description
[m,n] = meansqr(x) takes a matrix or cell array of matrices and returns,

m Mean value of all squared finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meansqr([1 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})

See Also
meanabs | sumabs | sumsqr

Introduced in R2010b
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midpoint
Midpoint weight initialization function

Syntax
W = midpoint(S,PR)

Description
midpoint is a weight initialization function that sets weight (row) vectors to the center of the input
ranges.

W = midpoint(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-Q matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R matrix with rows set to (Pmin+Pmax)'/2.

Examples
Here initial weight values are calculated for a five-neuron layer with input elements ranging over [0
1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

See Also
init | initlay | initwb

Introduced before R2006a
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minmax
Ranges of matrix rows

Syntax
pr = minmax(P)

Description
pr = minmax(P) takes one argument,

P R-by-Q matrix

and returns the R-by-2 matrix pr of minimum and maximum values for each row of P.

Alternatively, P can be an M-by-N cell array of matrices. Each matrix P{i,j} should have Ri rows and
Q columns. In this case, minmax returns an M-by-1 cell array where the mth element is an Ri-by-2
matrix of the minimum and maximum values of elements for the matrix on the ith row of P.

Examples
x = rands(4,5)
mm = minmax(x)
x = nndata([1;2],3,4)
mm = minmax(x)

Introduced before R2006a

2 Approximation, Clustering, and Control Functions

2-160



mse
Mean squared normalized error performance function

Syntax
perf = mse(net,t,y,ew)

Description
mse is a network performance function. It measures the network’s performance according to the
mean of squared errors.

perf = mse(net,t,y,ew) takes these arguments:

net Neural network
t Matrix or cell array of targets
y Matrix or cell array of outputs
ew Error weights (optional)

and returns the mean squared error.

This function has two optional parameters, which are associated with networks whose
net.trainFcn is set to this function:

• 'regularization' can be set to any value between 0 and 1. The greater the regularization
value, the more squared weights and biases are included in the performance calculation relative
to errors. The default is 0, corresponding to no regularization.

• 'normalization' can be set to 'none' (the default); 'standard', which normalizes errors
between -2 and 2, corresponding to normalizing outputs and targets between -1 and 1; and
'percent', which normalizes errors between -1 and 1. This feature is useful for networks with
multi-element outputs. It ensures that the relative accuracy of output elements with differing
target value ranges are treated as equally important, instead of prioritizing the relative accuracy
of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet or cascadeforwardnet.
To prepare a custom network to be trained with mse, set net.performFcn to 'mse'. This
automatically sets net.performParam to a structure with the default optional parameter values.

Examples

Train Neural Network Using mse Performance Function

This example shows shows how to train a neural network using the mse performance function.

Here a two-layer feedforward network is created and trained to estimate body fat percentage using
the mse performance function and a regularization value of 0.01.
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[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
net.performParam.regularization = 0.01;

MSE is the default performance function for feedforwardnet.

net.performFcn

ans = 
'mse'

Train the network and evaluate performance.

net = train(net, x, t);
y = net(x);
perf = perform(net, t, y)

perf = 20.7769

Alternatively, you can call mse directly.

perf = mse(net, t, y, 'regularization', 0.01)

perf = 20.7769

See Also
mae

Introduced before R2006a
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narnet
Nonlinear autoregressive neural network

Syntax
narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn)

Description
NAR (nonlinear autoregressive) neural networks can be trained to predict a time series from that
series past values.

narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn) takes these arguments,

feedbackDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
feedbackMode One of 'open', 'closed', or 'none' (default is 'open')
trainFcn Training function (default is 'trainlm')

and returns a NAR neural network.

Examples

Train NAR Network and Predict on New Data

Load the simple time-series prediction data and create a NAR network.

T = simplenar_dataset;
net = narnet(1:2,10);

Prepare the time series data using preparets and train the network.

[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)

Calculate the network performance.
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[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

perf =

   1.0100e-09

To predict the output for the next 20 time steps, first simulate the network in closed loop form.

[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)

The network only has one input. In closed loop mode, this input is joined to the output.

To simulate the network 20 time steps ahead, input an empty cell array of length 20. The network
requires only the initial conditions given in Xic and Aic.

y2 = netc(cell(0,20),Xic,Aic)

y2 =

  1x20 cell array

  Columns 1 through 5

    {[0.8346]}    {[0.3329]}    {[0.9084]}    {[1.0000]}    {[0.3190]}

  Columns 6 through 10

    {[0.7329]}    {[0.9801]}    {[0.6409]}    {[0.5146]}    {[0.9746]}

  Columns 11 through 15

    {[0.9077]}    {[0.2807]}    {[0.8651]}    {[0.9897]}    {[0.4093]}

  Columns 16 through 20
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    {[0.6838]}    {[0.9976]}    {[0.7007]}    {[0.4311]}    {[0.9660]}

See Also
narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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narxnet
Nonlinear autoregressive neural network with external input

Syntax
narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn)

Description
NARX (Nonlinear autoregressive with external input) networks can learn to predict one time series
given past values of the same time series, the feedback input, and another time series, called the
external or exogenous time series.

narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn) takes
these arguments,

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)
feedbackDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
feedbackMode One of 'open', 'closed', or 'none' (default is 'open')
trainFcn Training function (default is 'trainlm')

and returns a NARX neural network.

Examples

Train NARX Network and Predict on New Data

Partition the training data. Use Xnew to do prediction in closed loop mode later.

[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);

Train a network, and simulate it on the first 80 observations

net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
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Calculate the network performance.

[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

perf =

    0.0153

Run the prediction for 20 time steps ahead in closed loop mode.

[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)

y2 = netc(Xnew,Xic,Aic)

y2 =

  1x20 cell array

  Columns 1 through 5

    {[-0.0156]}    {[0.1133]}    {[-0.1472]}    {[-0.0706]}    {[0.0355]}
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  Columns 6 through 10

    {[-0.2829]}    {[0.2047]}    {[-0.3809]}    {[-0.2836]}    {[0.1886]}

  Columns 11 through 15

    {[-0.1813]}    {[0.1373]}    {[0.2189]}    {[0.3122]}    {[0.2346]}

  Columns 16 through 20

    {[-0.0156]}    {[0.0724]}    {[0.3395]}    {[0.1940]}    {[0.0757]}

See Also
closeloop | narnet | openloop | preparets | removedelay | timedelaynet

Introduced in R2010b
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nctool
Neural network classification or clustering tool

Syntax
nctool

Description
nctool opens the Neural Net Clustering GUI.

For more information and an example of its usage, see “Cluster Data with a Self-Organizing Map”.

Algorithms
nctool leads you through solving a clustering problem using a self-organizing map. The map forms a
compressed representation of the inputs space, reflecting both the relative density of input vectors in
that space, and a two-dimensional compressed representation of the input-space topology.

See Also
nftool | nprtool | ntstool

Introduced in R2008a
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negdist
Negative distance weight function

Syntax
Z = negdist(W,P)
dim = negdist('size',S,R,FP)
dw = negdist('dz_dw',W,P,Z,FP)

Description
negdist is a weight function. Weight functions apply weights to an input to get weighted inputs.

Z = negdist(W,P) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of negative vector distances.

dim = negdist('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = negdist('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use
You can create a standard network that uses negdist by calling competlayer or selforgmap.

To change a network so an input weight uses negdist, set net.inputWeights{i,j}.weightFcn
to 'negdist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms
negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)
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See Also
competlayer | dist | dotprod | selforgmap | sim

Introduced before R2006a

 negdist
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netinv
Inverse transfer function

Syntax
A = netinv(N,FP)

Description
netinv is a transfer function. Transfer functions calculate a layer’s output from its net input.

A = netinv(N,FP) takes inputs

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns 1/N.

info = netinv('code') returns information about this function. The following codes are
supported:

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples
Here you define 10 five-element net input vectors N and calculate A.

n = rand(5,10);
a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

See Also
logsig | tansig

Introduced in R2006a
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netprod
Product net input function

Syntax
N = netprod({Z1,Z2,...,Zn})
info = netprod('code')

Description
netprod is a net input function. Net input functions calculate a layer’s net input by combining its
weighted inputs and biases.

N = netprod({Z1,Z2,...,Zn}) takes

Zi S-by-Q matrices in a row cell array

and returns an element-wise product of Z1 to Zn.

info = netprod('code') returns information about this function. The following codes are
supported:

'deriv' Name of derivative function
'fullderiv' Full N-by-S-by-Q derivative = 1, element-wise S-by-Q derivative =

0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here netprod combines two sets of weighted input vectors (user-defined).

Z1 = [1 2 4;3 4 1];
Z2 = [-1 2 2; -5 -6 1];
Z = {Z1,Z2};
N = netprod({Z})

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2 each
contain three concurrent vectors, three concurrent copies of B must be created with concur so that
all sizes match.

B = [0; -1];
Z = {Z1, Z2, concur(B,3)};
N = netprod(Z)
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Network Use
You can create a standard network that uses netprod by calling newpnn or newgrnn.

To change a network so that a layer uses netprod, set net.layers{i}.netInputFcn to
'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or newgrnn for
simulation examples.

See Also
concur | netsum | sim

Introduced before R2006a
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netsum
Sum net input function

Syntax
N = netsum({Z1,Z2,...,Zn},FP)
info = netsum('code')

Description
netsum is a net input function. Net input functions calculate a layer’s net input by combining its
weighted inputs and biases.

N = netsum({Z1,Z2,...,Zn},FP) takes Z1 to Zn and optional function parameters,

Zi S-by-Q matrices in a row cell array
FP Row cell array of function parameters (ignored)

and returns the elementwise sum of Z1 to Zn.

info = netsum('code') returns information about this function. The following codes are
supported:

netsum('name') returns the name of this function.

netsum('type') returns the type of this function.

netsum('fpnames') returns the names of the function parameters.

netsum('fpdefaults') returns default function parameter values.

netsum('fpcheck', FP) throws an error for illegal function parameters.

netsum('fullderiv') returns 0 or 1, depending on whether the derivative is S-by-Q or N-by-S-by-Q.

Examples
Here netsum combines two sets of weighted input vectors and a bias. You must use concur to make
b the same dimensions as z1 and z2.

z1 = [1, 2, 4; 3, 4, 1]
z2 = [-1, 2, 2; -5, -6, 1]
b = [0; -1]
n = netsum({z1, z2, concur(b, 3)})

Assign this net input function to the first layer of a network.

net = feedforwardnet(); 
net.layers{1}.netInputFcn = 'netsum';
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See Also
cascadeforwardnet | feedforwardnet | netinv | netprod

Introduced before R2006a
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network
Create custom shallow neural network

Syntax
net = network
net =
network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConne
ct)

To Get Help
Type help network/network.

Tip To learn how to create a deep learning network, see “Specify Layers of Convolutional Neural
Network”.

Description
network creates new custom networks. It is used to create networks that are then customized by
functions such as feedforwardnet and narxnet.

net = network without arguments returns a new neural network with no inputs, layers or outputs.

net =
network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConne
ct) takes these optional arguments (shown with default values):

numInputs Number of inputs, 0
numLayers Number of layers, 0
biasConnect numLayers-by-1 Boolean vector, zeros
inputConnect numLayers-by-numInputs Boolean matrix, zeros
layerConnect numLayers-by-numLayers Boolean matrix, zeros
outputConnect 1-by-numLayers Boolean vector, zeros

and returns

net New network with the given property values

Properties
Architecture Properties

net.numInputs 0 or a positive integer Number of inputs.
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net.numLayers 0 or a positive integer Number of layers.
net.biasConnect numLayer-by-1

Boolean vector
If net.biasConnect(i) is 1, then layer i has
a bias, and net.biases{i} is a structure
describing that bias.

net.inputConnect numLayer-by-
numInputs Boolean
vector

If net.inputConnect(i,j) is 1, then layer i
has a weight coming from input j, and
net.inputWeights{i,j} is a structure
describing that weight.

net.layerConnect numLayer-by-
numLayers Boolean
vector

If net.layerConnect(i,j) is 1, then layer i
has a weight coming from layer j, and
net.layerWeights{i,j} is a structure
describing that weight.

net.outputConnect 1-by-numLayers
Boolean vector

If net.outputConnect(i) is 1, then the
network has an output from layer i, and
net.outputs{i} is a structure describing
that output.

net.numOutputs 0 or a positive integer
(read only)

Number of network outputs according to
net.outputConnect.

net.numInputDelays 0 or a positive integer
(read only)

Maximum input delay according to all
net.inputWeights{i,j}.delays.

net.numLayerDelays 0 or a positive
number (read only)

Maximum layer delay according to all
net.layerWeights{i,j}.delays.

Subobject Structure Properties

net.inputs numInputs-by-1 cell
array

net.inputs{i} is a structure defining input i.

net.layers numLayers-by-1 cell
array

net.layers{i} is a structure defining layer i.

net.biases numLayers-by-1 cell
array

If net.biasConnect(i) is 1, then
net.biases{i} is a structure defining the bias
for layer i.

net.inputWeights numLayers-by-
numInputs cell
array

If net.inputConnect(i,j) is 1, then
net.inputWeights{i,j} is a structure
defining the weight to layer i from input j.

net.layerWeights numLayers-by-
numLayers cell
array

If net.layerConnect(i,j) is 1, then
net.layerWeights{i,j} is a structure
defining the weight to layer i from layer j.

net.outputs 1-by-numLayers cell
array

If net.outputConnect(i) is 1, then
net.outputs{i} is a structure defining the
network output from layer i.

Function Properties

net.adaptFcn Name of a network adaption function or ''
net.initFcn Name of a network initialization function or ''
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net.performFcn Name of a network performance function or ''
net.trainFcn Name of a network training function or ''

Parameter Properties

net.adaptParam Network adaption parameters
net.initParam Network initialization parameters
net.performParam Network performance parameters
net.trainParam Network training parameters

Weight and Bias Value Properties

net.IW numLayers-by-numInputs cell array of input
weight values

net.LW numLayers-by-numLayers cell array of layer
weight values

net.b numLayers-by-1 cell array of bias values

Other Properties

net.userdata Structure you can use to store useful values

Examples
Create Network with One Input and Two Layers

This example shows how to create a network without any inputs and layers, and then set its numbers
of inputs and layers to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Alternatively, you can create the same network with one line of code.

net = network(1,2)

Create Feedforward Network and View Properties

This example shows how to create a one-input, two-layer, feedforward network. Only the first layer
has a bias. An input weight connects to layer 1 from input 1. A layer weight connects to layer 2 from
layer 1. Layer 2 is a network output and has a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])

You can view the network subobjects with the following code.

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
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You can alter the properties of any of the network subobjects. This code changes the transfer
functions of both layers:

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

You can view the weights for the connection from the first input to the first layer as follows. The
weights for a connection from an input to a layer are stored in net.IW. If the values are not yet set,
these result is empty.

net.IW{1,1}

You can view the weights for the connection from the first layer to the second layer as follows.
Weights for a connection from a layer to a layer are stored in net.LW. Again, if the values are not yet
set, the result is empty.

net.LW{2,1}

You can view the bias values for the first layer as follows.

net.b{1}

To change the number of elements in input 1 to 2, set each element’s range:

net.inputs{1}.range = [0 1; -1 1];

To simulate the network for a two-element input vector, the code might look like this:

p = [0.5; -0.1];
y = sim(net,p)

See Also
sim

Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced before R2006a
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newgrnn
Design generalized regression neural network

Syntax
net = newgrnn(P,T,spread)

Description
Generalized regression neural networks (grnns) are a kind of radial basis network that is often used
for function approximation. grnns can be designed very quickly.

net = newgrnn(P,T,spread) takes three inputs,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit data very closely, use a
spread smaller than the typical distance between input vectors. To fit the data more smoothly, use a
larger spread.

Properties
newgrnn creates a two-layer network. The first layer has radbas neurons, and calculates weighted
inputs with dist and net input with netprod. The second layer has purelin neurons, calculates
weighted input with normprod, and net inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread. The second layer
weights W2 are set to T.

Examples
Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)
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References
Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993,
pp. 155–61

See Also
newpnn | newrb | newrbe | sim

Introduced before R2006a
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newlind
Design linear layer

Syntax
net = newlind(P,T,Pi)

Description
net = newlind(P,T,Pi) takes these input arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
Pi 1-by-ID cell array of initial input delay states

where each element Pi{i,k} is an Ri-by-Q matrix, and the default = []; and returns a linear layer
designed to output T (with minimum sum square error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and multiple inputs and
layers by supplying input and target data in cell array form:

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q input matrix
T Nt-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix
Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q matrix,

default = []

and returns a linear network with ID input delays, Ni network inputs, and Nl layers, designed to
output T (with minimum sum square error) given input P.

Examples
You want a linear layer that outputs T given P for the following definitions:

P = [1 2 3];
T = [2.0 4.1 5.9];

Use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

You want another linear layer that outputs the sequence T given the sequence P and two initial input
delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)
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You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and T2, given the
sequences P1 and P2, with three initial input delay states Pi1 for input 1 and three initial delays
states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithms
newlind calculates weight W and bias B values for a linear layer from inputs P and targets T by
solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also
sim

Introduced before R2006a

2 Approximation, Clustering, and Control Functions

2-184



newpnn
Design probabilistic neural network

Syntax
net = newpnn(P,T,spread)

Description
Probabilistic neural networks (PNN) are a kind of radial basis network suitable for classification
problems.

net = newpnn(P,T,spread) takes two or three arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 0.1)

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier. As spread becomes larger,
the designed network takes into account several nearby design vectors.

Examples
Here a classification problem is defined with a set of inputs P and class indices Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithms
newpnn creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has compet neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Only the first layer has
biases.

newpnn sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread. The second-layer
weights W2 are set to T.
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References
Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993,
pp. 35–55

See Also
ind2vec | newgrnn | newrb | newrbe | sim | vec2ind

Introduced before R2006a
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newrb
Design radial basis network

Syntax
net = newrb(P,T,goal,spread,MN,DF)

Description
Radial basis networks can be used to approximate functions. newrb adds neurons to the hidden layer
of a radial basis network until it meets the specified mean squared error goal.

net = newrb(P,T,goal,spread,MN,DF) takes two of these arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
goal Mean squared error goal (default = 0.0)
spread Spread of radial basis functions (default = 1.0)
MN Maximum number of neurons (default is Q)
DF Number of neurons to add between displays (default = 25)

and returns a new radial basis network.

The larger spread is, the smoother the function approximation. Too large a spread means a lot of
neurons are required to fit a fast-changing function. Too small a spread means many neurons are
required to fit a smooth function, and the network might not generalize well. Call newrb with
different spreads to find the best value for a given problem.

Examples
Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithms
newrb creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has purelin neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.
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Initially the radbas layer has no neurons. The following steps are repeated until the network’s mean
squared error falls below goal.

1 The network is simulated.
2 The input vector with the greatest error is found.
3 A radbas neuron is added with weights equal to that vector.
4 The purelin layer weights are redesigned to minimize error.

See Also
newgrnn | newpnn | newrbe | sim

Introduced before R2006a
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newrbe
Design exact radial basis network

Syntax
net = newrbe(P,T,spread)

Description
Radial basis networks can be used to approximate functions. newrbe very quickly designs a radial
basis network with zero error on the design vectors.

net = newrbe(P,T,spread) takes two or three arguments,

P RxQ matrix of Q R-element input vectors
T SxQ matrix of Q S-element target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too large a spread can
cause numerical problems.

Examples
Here you design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithms
newrbe creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has purelin neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread.

The second-layer weights IW{2,1} and biases b{2} are found by simulating the first-layer outputs
A{1} and then solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones] = T
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See Also
newgrnn | newpnn | newrb | sim

Introduced before R2006a
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nftool
Neural Net Fitting tool

Syntax
nftool

Description
nftool opens the Neural Net Fitting GUI.

For more information and an example of its usage, see “Fit Data with a Shallow Neural Network”.

Algorithms
nftool leads you through solving a data fitting problem, solving it with a two-layer feed-forward
network trained with Levenberg-Marquardt.

See Also
nctool | nprtool | ntstool

Introduced in R2006a
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nncell2mat
Combine neural network cell data into matrix

Syntax
[y,i,j] nncell2mat(x)

Description
[y,i,j] nncell2mat(x) takes a cell array of matrices and returns,

y Cell array formed by concatenating matrices
i Array of row sizes
ji Array of column sizes

The row and column sizes returned by nncell2mat can be used to convert the returned matrix back
into a cell of matrices with mat2cell.

Examples
Here neural network data is converted to a matrix and back.

c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)

See Also
nndata | nnsize

Introduced in R2010b
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nncorr
Crross correlation between neural network time series

Syntax
nncorr(a,b,maxlag,'flag')

Description
nncorr(a,b,maxlag,'flag') takes these arguments,

a Matrix or cell array, with columns interpreted as timesteps, and having
a total number of matrix rows of N.

b Matrix or cell array, with columns interpreted as timesteps, and having
a total number of matrix rows of M.

maxlag Maximum number of time lags
flag Type of normalization (default = 'none')

and returns an N-by-M cell array where each {i,j} element is a 2*maxlag+1 length row vector
formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.

The options for the normalization flag are:

• 'biased' — scales the raw cross-correlation by 1/N.
• 'unbiased' — scales the raw correlation by 1/(N-abs(k)), where k is the index into the result.
• 'coeff' — normalizes the sequence so that the correlations at zero lag are 1.0.
• 'none' — no scaling. This is the default.

Examples
Here the autocorrelation of a random 1-element, 1-sample, 20-timestep signal is calculated with a
maximum lag of 10.

a = nndata(1,1,20)
aa = nncorr(a,a,10)

Here the cross-correlation of the first signal with another random 2-element signal are found, with a
maximum lag of 8.

b = nndata(2,1,20)
ab = nncorr(a,b,8)

See Also
confusion | regression
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nndata
Create neural network data

Syntax
nndata(N,Q,TS,v)

Description
nndata(N,Q,TS,v) takes these arguments,

N Vector of M element sizes
Q Number of samples
TS Number of timesteps
v Scalar value

and returns an M-by-TS cell array where each row i has N(i)-by-Q sized matrices of value v. If v is
not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, gettimesteps,
and getsignals.

You can set subsets of neural network data with setelements, setsamples, settimesteps, and
setsignals.

You can concatenate subsets of neural network data with catelements, catsamples,
cattimesteps, and catsignals.

Examples
Here four samples of five timesteps, for a 2-element signal consisting of zero values is created:

x = nndata(2,4,5,0)

To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

See Also
fromnndata | nndata2sim | nnsize | sim2nndata | tonndata

Introduced in R2010b
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nndata2gpu
Format neural data for efficient GPU training or simulation

Syntax
nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)

Description
nndata2gpu requires Parallel Computing Toolbox.

nndata2gpu(x) takes an N-by-Q matrix X of Q N-element column vectors, and returns it in a form for
neural network training and simulation on the current GPU device.

The N-by-Q matrix becomes a QQ-by-N gpuArray where QQ is Q rounded up to the next multiple of 32.
The extra rows (Q+1):QQ are filled with NaN values. The gpuArray has the same precision
('single' or 'double') as X.

[Y,Q,N,TS] = nndata2gpu(X) can also take an M-by-TS cell array of M signals over TS time steps.
Each element of X{i,ts} should be an Ni-by-Q matrix of Q Ni-element vectors, representing the ith
signal vector at time step ts, across all Q time series. In this case, the gpuArray Y returned is QQ-by-
(sum(Ni)*TS). Dimensions Ni, Q, and TS are also returned so they can be used with gpu2nndata to
perform the reverse formatting.

nndata2gpu(X,PRECISION) specifies the default precision of the gpuArray, which can be
'double' or 'single'.

Examples
Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy neural network cell array data, representing four time series, each consisting of five time steps
of 2-element and 3-element signals:

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

See Also
gpu2nndata

Introduced in R2012b
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nndata2sim
Convert neural network data to Simulink time series

Syntax
nndata2sim(x,i,q)

Description
nndata2sim(x,i,q) takes these arguments,

x Neural network data
i Index of signal (default = 1)
q Index of sample (default = 1)

and returns time series q of signal i as a Simulink time series structure.

Examples
Here random neural network data is created with two signals having 4 and 3 elements respectively,
over 10 timesteps. Three such series are created.

x = nndata([4;3],3,10);

Now the second signal of the first series is converted to Simulink form.

y_2_1 = nndata2sim(x,2,1)

See Also
nndata | nnsize | sim2nndata

Introduced in R2010b
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nnsize
Number of neural data elements, samples, timesteps, and signals

Syntax
[N,Q,TS,M] = nnsize(X)

Description
[N,Q,TS,M] = nnsize(X) takes neural network data x and returns,

N Vector containing the number of element sizes for each of M signals
Q Number of samples
TS Number of timesteps
M Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns, and both TS and M are 1.

If X is a cell array, N is an Sx1 vector, where M is the number of rows in X, and N(i) is the number of
rows in X{i,1}. Q is the number of columns in the matrices in X.

Examples
This code gets the dimensions of matrix data:

x = [1 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)

This code gets the dimensions of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)

See Also
nndata | numelements | numsamples | numsignals | numtimesteps

Introduced in R2010b
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nnstart
Neural network getting started GUI

Syntax
nnstart

Description
nnstart opens a window with launch buttons for neural network fitting, pattern recognition,
clustering and time series tools. It also provides links to lists of data sets, examples, and other useful
information for getting started. See specific topics on “Get Started with Deep Learning Toolbox”.

See Also
nctool | nftool | nprtool | ntstool

Introduced in R2010b
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nntool
Open Network/Data Manager

Syntax
nntool

Description
nntool opens the Network/Data Manager window, which allows you to import, create, use, and
export neural networks and data.

Note Although it is still available, nntool is no longer recommended. Instead, use nnstart, which
provides graphical interfaces that allow you to design and deploy fitting, pattern recognition,
clustering, and time-series neural networks.

See Also
nnstart

Introduced before R2006a
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nntraintool
Neural network training tool

Syntax
nntraintool
nntraintool close
nntraintool('close')

Description
nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before training has occurred, after
training if the window has been closed, or just to bring the training GUI to the front.

Network training functions handle all activity within the training window.

To access additional useful plots, related to the current or last network trained, during or after
training, click their respective buttons in the training window.

nntraintool close or nntraintool('close') closes the training window.

Introduced in R2008a
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noloop
Remove neural network open- and closed-loop feedback

Syntax
net = noloop(net)

Description
net = noloop(net) takes a neural network and returns the network with open- and closed-loop
feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the feedback mode is set to
'none', outputs{i}.feedbackInput is set to the empty matrix, and the associated network input
is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the feedback mode is set to
'none'.

Examples
Here a NARX network is designed. The NARX network has a standard input and an open-loop
feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)

Now the network is converted to no loop form. The output and second input are no longer associated.

net = noloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,T);
Y = net(Xs,Xi,Ai)

See Also
closeloop | openloop

Introduced in R2010b
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normc
Normalize columns of matrix

Syntax
normc(M)

Description
normc(M) normalizes the columns of M to a length of 1.

Examples
m = [1 2; 3 4];
normc(m)
ans =
     0.3162     0.4472
     0.9487     0.8944

See Also
normr

Introduced before R2006a
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normprod
Normalized dot product weight function

Syntax
Z = normprod(W,P,FP)
dim = normprod('size',S,R,FP)
dw = normprod('dz_dw',W,P,Z,FP)

Description
normprod is a weight function. Weight functions apply weights to an input to get weighted inputs.

Z = normprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of normalized dot products.

dim = normprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = normprod('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use
You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set net.inputWeights{i,j}.weightFcn
to 'normprod'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for simulation
examples.

Algorithms
normprod returns the dot product normalized by the sum of the input vector elements.
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z = w*p/sum(p)

See Also
dotprod

Introduced before R2006a
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normr
Normalize rows of matrix

Syntax
normr(M)

Description
normr(M) normalizes the rows of M to a length of 1.

Examples
m = [1 2; 3 4];
normr(m)
ans =
      0.4472     0.8944
      0.6000     0.8000

See Also
normc

Introduced before R2006a
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nprtool
Neural Net Pattern Recognition tool

Syntax
nprtool

Description
nprtool opens the Neural Net Pattern Recognition tool.

For more information and an example of its usage, see “Classify Patterns with a Shallow Neural
Network”.

Algorithms
nprtool leads you through solving a pattern-recognition classification problem using a two-layer
feed-forward patternnet network with sigmoid output neurons.

See Also
nctool | nftool | ntstool

Introduced in R2008a
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ntstool
Neural network time series tool

Syntax
ntstool
ntstool('close')

Description
ntstool opens the neural network time series tool and leads you through solving a fitting problem
using a two-layer feed-forward network.

For more information and an example of its usage, see “Shallow Neural Network Time-Series
Prediction and Modeling”.

ntstool('close') closes the tool.

See Also
nctool | nftool | nprtool

Introduced in R2010b
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num2deriv
Numeric two-point network derivative function

Syntax
num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num2deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the two-point numeric derivative rule.

dy
dx = y(x + dx)− y(x)

dx

This function is much slower than the analytical (non-numerical) derivative functions, but is provided
as a means of checking the analytical derivative functions. The other numerical function, num5deriv,
is slower but more accurate.

num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

num2deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)
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See Also
bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv

Introduced in R2010b
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num5deriv
Numeric five-point stencil neural network derivative function

Syntax
num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num5deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the five-point numeric derivative rule.

y1 = y(x + 2dx)
y2 = y(x + dx)
y3 = y(x− dx)
y4 = y(x− 2dx)

dy
dx =

−y1 + 8y2− 8y3 + y4
12dx

This function is much slower than the analytical (non-numerical) derivative functions, but is provided
as a means of checking the analytical derivative functions. The other numerical function, num2deriv,
is faster but less accurate.

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

num5deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
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net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)

See Also
bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

Introduced in R2010b
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numelements
Number of elements in neural network data

Syntax
numelements(x)

Description
numelements(x) takes neural network data x in matrix or cell array form, and returns the number
of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an S-by-1 vector, where S is the number of signals (i.e., rows of X), and
each element S(i) is the number of elements in each signal i (i.e., rows of x{i,1}).

Examples
This code calculates the number of elements represented by matrix data:

x = [1 2 3; 4 7 4]
n = numelements(x)

This code calculates the number of elements represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)

See Also
catelements | getelements | nndata | nnsize | numsamples | numsignals | numtimesteps |
setelements

Introduced in R2010b
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numfinite
Number of finite values in neural network data

Syntax
numfinite(x)

Description
numfinite(x) takes a matrix or cell array of matrices and returns the number of finite elements in
it.

Examples
x = [1 2; 3 NaN]
n = numfinite(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)

See Also
nndata | nnsize | numnan

Introduced in R2010b
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numnan
Number of NaN values in neural network data

Syntax
numnan(x)

Description
numnan(x) takes a matrix or cell array of matrices and returns the number of NaN elements in it.

Examples
x = [1 2; 3 NaN]
n = numnan(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numnan(x)

See Also
nndata | nnsize | numnan

Introduced in R2010b
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numsamples
Number of samples in neural network data

Syntax
numsamples(x)

Description
numsamples(x) takes neural network data x in matrix or cell array form, and returns the number of
samples.

If x is a matrix, the result is the number of columns of x.

If x is a cell array, the result is the number of columns of the matrices in x.

Examples
This code calculates the number of samples represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsamples(x)

This code calculates the number of samples represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)

See Also
catsamples | getsamples | nndata | nnsize | numelements | numsignals | numtimesteps |
setsamples

Introduced in R2010b
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numsignals
Number of signals in neural network data

Syntax
numsignals(x)

Description
numsignals(x) takes neural network data x in matrix or cell array form, and returns the number of
signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples
This code calculates the number of signals represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsignals(x)

This code calculates the number of signals represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)

See Also
catsignals | getsignals | nndata | nnsize | numelements | numsamples | numtimesteps |
setsignals

Introduced in R2010b
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numtimesteps
Number of time steps in neural network data

Syntax
numtimesteps(x)

Description
numtimesteps(x) takes neural network data x in matrix or cell array form, and returns the number
of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples
This code calculates the number of time steps represented by matrix data:

x = [1 2 3; 4 7 4]
n = numtimesteps(x)

This code calculates the number of time steps represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)

See Also
cattimesteps | gettimesteps | nndata | nnsize | numelements | numsamples | numsignals |
settimesteps

Introduced in R2010b

2 Approximation, Clustering, and Control Functions

2-218



openloop
Convert neural network closed-loop feedback to open loop

Syntax
net = openloop(net)
[net,xi,ai] = openloop(net,xi,ai)

Description
net = openloop(net) takes a neural network and opens any closed-loop feedback. For each
feedback output i whose property net.outputs{i}.feedbackMode is 'closed', it replaces its
associated feedback layer weights with a new input and input weight connections. The
net.outputs{i}.feedbackMode property is set to 'open', and the
net.outputs{i}.feedbackInput property is set to the index of the new input. Finally, the value of
net.outputs{i}.feedbackDelays is subtracted from the delays of the feedback input weights
(i.e., to the delays values of the replaced layer weights).

[net,xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its current input
delay states xi and layer delay states ai to open-loop form.

Examples
Convert NARX Network to Open-Loop Form

Here a NARX network is designed in open-loop form and then converted to closed-loop form, then
converted back.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet
and narnet.

See Also
closeloop | narnet | narxnet | noloop
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patternnet
Generate pattern recognition network

Syntax
net = patternnet(hiddenSizes,trainFcn,performFcn)

Description
net = patternnet(hiddenSizes,trainFcn,performFcn) returns a pattern recognition neural
network with a hidden layer size of hiddenSizes, a training function, specified by trainFcn, and a
performance function, specified by trainFcn.

Pattern recognition networks are feedforward networks that can be trained to classify inputs
according to target classes. The target data for pattern recognition networks should consist of
vectors of all zero values except for a 1 in element i, where i is the class they are to represent.

Examples

Construct and Train a Pattern Recognition Neural Network

This example shows how to design a pattern recognition network to classify iris flowers.

Load the training data.

[x,t] = iris_dataset;

Construct a pattern network with one hidden layer of size 10.

net = patternnet(10);

Train the network net using the training data.

net = train(net,x,t);

View the trained network.

view(net)

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,t,y)

perf = 0.0302

classes = vec2ind(y);
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Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainscg' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainlm' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

performFcn — Performance function
character vector

Performance function. The default value is 'crossentropy'.

This argument defines the function used to measure the network’s performance. The performance
function is used to calculate network performance during training.
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For a list of functions, in the MATLAB command window, type help nnperformance.

Output Arguments
net — Pattern recognition network
network object

Pattern recognition neural network, returned as a network object.

See Also
competlayer | lvqnet | network | nprtool | selforgmap

Topics
“Classify Patterns with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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perceptron
Perceptron

Syntax
perceptron(hardlimitTF,perceptronLF)

Description
Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear
decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were one of the first
neural networks to reliably solve a given class of problem, and their advantage is a simple learning
rule.

perceptron(hardlimitTF,perceptronLF) takes these arguments,

hardlimitTF Hard limit transfer function (default = 'hardlim')
perceptronLF Perceptron learning rule (default = 'learnp')

and returns a perceptron.

In addition to the default hard limit transfer function, perceptrons can be created with the hardlims
transfer function. The other option for the perceptron learning rule is learnpn.

Note Deep Learning Toolbox supports perceptrons for historical interest. For better results, you
should instead use patternnet, which can solve nonlinearly separable problems. Sometimes the
term “perceptrons” refers to feed-forward pattern recognition networks; but the original perceptron,
described here, can solve only simple problems.

Examples
Solve Simple Classification Problem Using Perceptron

Use a perceptron to solve a simple classification logical-OR problem.

x = [0 0 1 1; 0 1 0 1];
t = [0 1 1 1];
net = perceptron;
net = train(net,x,t);
view(net)
y = net(x);
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See Also
narnet | narxnet | patternnet | preparets | removedelay | timedelaynet

Introduced in R2010b
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perform
Calculate network performance

Syntax
perform(net,t,y,ew)

Description
perform(net,t,y,ew) takes these arguments,

net Neural network
t Target data
y Output data
ew Error weights (default = {1})

and returns network performance calculated according to the net.performFcn and
net.performParam property values.

The target and output data must have the same dimensions. The error weights may be the same
dimensions as the targets, in the most general case, but may also have any of its dimensions be 1.
This gives the flexibility of defining error weights across any dimension desired.

Error weights can be defined by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs

The error weights can also be defined across any combination, such as across two time-series (i.e.,
two samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};

In the general case, error weights may have exactly the same dimensions as targets, in which case
each target value will have an associated error weight.

The default error weight treats all errors the same.

ew = {1}

Examples
Here a simple fitting problem is solved with a feed-forward network and its performance calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)
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perf =

   2.3654e-06

See Also
configure | init | train

Introduced in R2010b
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plotconfusion
Plot classification confusion matrix

Syntax
plotconfusion(targets,outputs)
plotconfusion(targets,outputs,name)
plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,ou
tputsn,namen)

Description
plotconfusion(targets,outputs) plots a confusion matrix for the true labels targets and
predicted labels outputs. Specify the labels as categorical vectors, or in one-of-N (one-hot) form.

On the confusion matrix plot, the rows correspond to the predicted class (Output Class) and the
columns correspond to the true class (Target Class). The diagonal cells correspond to observations
that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations.
Both the number of observations and the percentage of the total number of observations are shown in
each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong
to each class that are correctly and incorrectly classified. These metrics are often called the precision
(or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot
shows the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are often called the recall (or true positive rate) and false negative rate,
respectively. The cell in the bottom right of the plot shows the overall accuracy.

plotconfusion(targets,outputs,name) plots a confusion matrix and adds name to the
beginning of the plot title.

plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,ou
tputsn,namen) plots multiple confusion matrices in one figure and adds the name arguments to the
beginnings of the titles of the corresponding plots.

Examples

Plot Confusion Matrix Using Categorical Labels

Load the data consisting of synthetic images of handwritten digits. XTrain is a 28-by-28-by-1-
by-5000 array of images and YTrain is a categorical vector containing the image labels.

[XTrain,YTrain] = digitTrain4DArrayData;  
whos YTrain

  Name           Size            Bytes  Class          Attributes

  YTrain      5000x1              6062  categorical              

Define the architecture of a convolutional neural network.
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layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer    
    convolution2dLayer(3,16,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options and train the network.

options = trainingOptions('sgdm', ...
    'MaxEpochs',5, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);

Load and classify test data using the trained network.

[XTest,YTest] = digitTest4DArrayData;
YPredicted = classify(net,XTest);

Plot the confusion matrix of the true test labels YTest and the predicted labels YPredicted.

plotconfusion(YTest,YPredicted)
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The rows correspond to the predicted class (Output Class) and the columns correspond to the true
class (Target Class). The diagonal cells correspond to observations that are correctly classified. The
off-diagonal cells correspond to incorrectly classified observations. Both the number of observations
and the percentage of the total number of observations are shown in each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong
to each class that are correctly and incorrectly classified. These metrics are often called the precision
(or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot
shows the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are often called the recall (or true positive rate) and false negative rate,
respectively. The cell in the bottom right of the plot shows the overall accuracy.

Close all figures.
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close(findall(groot,'Type','figure'))

Plot Confusion Matrix Using One-of-N Labels

Load sample data using the cancer_dataset function. XTrain is a 9-by-699 matrix defining nine
attributes of 699 biopsies. YTrain is a 2-by-699 matrix where each column indicates the correct
category of the corresponding observation. Each column of YTrain has one element that equals one
in either the first or second row, corresponding to the cancer being benign or malignant, respectively.
For more information on this dataset, type help cancer_dataset at the command line.

rng default
[XTrain,YTrain] = cancer_dataset;
YTrain(:,1:10)

ans = 2×10

     1     1     1     0     1     1     0     0     0     1
     0     0     0     1     0     0     1     1     1     0

Create a pattern recognition network and train it using the sample data.

net = patternnet(10);
net = train(net,XTrain,YTrain);

Estimate the cancer status using the trained network. Each column of the matrix YPredicted
contains the predicted probabilities of each observation belonging to class 1 and class 2, respectively.

YPredicted = net(XTrain);
YPredicted(:,1:10)

ans = 2×10

    0.9980    0.9979    0.9894    0.0578    0.9614    0.9960    0.0026    0.0023    0.0084    0.9944
    0.0020    0.0021    0.0106    0.9422    0.0386    0.0040    0.9974    0.9977    0.9916    0.0056

Plot the confusion matrix. To create the plot, plotconfusion labels each observation according to
the highest class probability.

plotconfusion(YTrain,YPredicted)
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In this figure, the first two diagonal cells show the number and percentage of correct classifications
by the trained network. For example, 446 biopsies are correctly classified as benign. This
corresponds to 63.8% of all 699 biopsies. Similarly, 236 cases are correctly classified as malignant.
This corresponds to 33.8% of all biopsies.

5 of the malignant biopsies are incorrectly classified as benign and this corresponds to 0.7% of all
699 biopsies in the data. Similarly, 12 of the benign biopsies are incorrectly classified as malignant
and this corresponds to 1.7% of all data.

Out of 451 benign predictions, 98.9% are correct and 1.1% are wrong. Out of 248 malignant
predictions, 95.2% are correct and 4.8% are wrong. Out of 458 benign cases, 97.4% are correctly
predicted as benign and 2.6% are predicted as malignant. Out of 241 malignant cases, 97.9% are
correctly classified as malignant and 2.1% are classified as benign.
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Overall, 97.6% of the predictions are correct and 2.4% are wrong.

Input Arguments
targets — True class labels
categorical vector | matrix

True class labels, specified one of the following:

• A categorical vector, where each element is the class label of one observation. The outputs and
targets arguments must have the same number of elements. If the categorical vectors define
underlying classes, then plotconfusion displays all the underlying classes, even if there are no
observations of some of the underlying classes. If the arguments are ordinal categorical vectors,
then they must both define the same underlying categories, in the same order.

• An N-by-M matrix, where N is the number of classes and M is the number of observations. Each
column of the matrix must be in one-of-N (one-hot) form, where a single element equal to 1
indicates the true label and all other elements equal 0.

outputs — Predicted class labels
categorical vector | matrix

Predicted class labels, specified one of the following:

• A categorical vector, where each element is the class label of one observation. The outputs and
targets arguments must have the same number of elements. If the categorical vectors define
underlying classes, then plotconfusion displays all the underlying classes, even if there are no
observations of some of the underlying classes. If the arguments are ordinal categorical vectors,
then they must both define the same underlying categories, in the same order.

• An N-by-M matrix, where N is the number of classes and M is the number of observations. Each
column of the matrix can be in one-of-N (one-hot) form, where a single element equal to 1
indicates the predicted label, or in the form of probabilities that sum to one.

name — Name of the confusion matrix
character array

Name of the confusion matrix, specified as a character array. plotconfusion adds the specified
name to the beginning of the plot title.
Data Types: char

See Also
trainNetwork | trainingOptions

Introduced in R2008a
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plotep
Plot weight-bias position on error surface

Syntax
H = plotep(W,B,E)
H = plotep(W,B,E,H)

Description
plotep is used to show network learning on a plot created by plotes.

H = plotep(W,B,E) takes these arguments,

W Current weight value
B Current bias value
E Current error

and returns a cell array H, containing information for continuing the plot.

H = plotep(W,B,E,H) continues plotting using the cell array H returned by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time; as well as
points on the error contour, so they can be connected.

See Also
errsurf | plotes

Introduced before R2006a
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ploterrcorr
Plot autocorrelation of error time series

Syntax
ploterrcorr(error)
ploterrcorr(errors,'outputIndex',outIdx)

Description
ploterrcorr(error) takes an error time series and plots the autocorrelation of errors across
varying lags.

ploterrcorr(errors,'outputIndex',outIdx) uses the optional property name/value pair to
define which output error autocorrelation is plotted. The default is 1.

Examples
Plot Autocorrelation of Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
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See Also
plotinerrcorr | plotresponse

Introduced in R2010b
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ploterrhist
Plot error histogram

Syntax
ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)

Description
ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of errors and names and plots
each pair.

ploterrhist(...,'bins',bins) takes an optional property name/value pair which defines the
number of bins to use in the histogram plot. The default is 20.

Examples
Plot Histogram of Error Values

Here a feedforward network is used to solve a simple fitting problem:

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)
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See Also
plotconfusion | ploterrcorr | plotinerrcorr

Introduced in R2010b

2 Approximation, Clustering, and Control Functions

2-238



plotes
Plot error surface of single-input neuron

Syntax
plotes(WV,BV,ES,V)

Description
plotes(WV,BV,ES,V) takes these arguments,

WV 1-by-N row vector of values of W
BV 1-by-M row vector of values of B
ES M-by-N matrix of error vectors
V View (default = [-37.5, 30])

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples
Plot Error Surface of Single-Input Neuron

p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4;
bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])
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See Also
errsurf

Introduced before R2006a
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plotfit
Plot function fit

Syntax
plotfit(net,inputs,targets)
plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...)
plotfit(...,'outputIndex',outputIndex)

Description
plotfit(net,inputs,targets) plots the output function of a network across the range of the
inputs inputs and also plots target targets and output data points associated with values in
inputs. Error bars show the difference between outputs and targets.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one output.

plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...) plots multiple sets
of data.

plotfit(...,'outputIndex',outputIndex) plots using an optional parameter that overrides
the default index of the output element.

Examples
Plot Output and Target Values

This example shows how to use a feed-forward network to solve a simple fitting problem.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
plotfit(net,x,t)
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See Also
plottrainstate

Introduced in R2008a
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plotinerrcorr
Plot input to error time-series cross-correlation

Syntax
plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)

Description
plotinerrcorr(x,e) takes an input time series x and an error time series e, and plots the cross-
correlation of inputs to errors across varying lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which input element is
being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which error element is
being correlated and plotted. The default is 1.

Examples
Plot Cross-Correlation of Inputs to Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
plotinerrcorr(Xs,E)
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See Also
ploterrcorr | ploterrhist | plotresponse

Introduced in R2010b
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plotpc
Plot classification line on perceptron vector plot

Syntax
plotpc(W,B)
plotpc(W,B,H)

Description
plotpc(W,B) takes these inputs,

W S-by-R weight matrix (R must be 3 or less)
B S-by-1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes an additional input,

H Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after plotpv.

Examples
Plot Classification Line

The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
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The following code creates a perceptron, assigns values to its weights and biases, and plots the
resulting classification line.

net = perceptron;
net = configure(net,p,t);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
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See Also
plotpv

Introduced before R2006a
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plotperform
Plot network performance

Syntax
plotperform(TR)

Description
plotperform(TR) plots error vs. epoch for the training, validation, and test performances of the
training record TR returned by the function train.

Examples

Plot Validation Performance of Network

This example shows how to use plotperform to obtain a plot of training record error values against
the number of training epochs.

[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plotperform(tr)
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Generally, the error reduces after more epochs of training, but might start to increase on the
validation data set as the network starts overfitting the training data. In the default setup, the
training stops after six consecutive increases in validation error, and the best performance is taken
from the epoch with the lowest validation error.

See Also
plottrainstate

Introduced in R2008a
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plotpv
Plot perceptron input/target vectors

Syntax
plotpv(P,T)
plotpv(P,T,V)

Description
plotpv(P,T) takes these inputs,

P R-by-Q matrix of input vectors (R must be 3 or less)
T S-by-Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

V Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples
Plot Inputs and Targets for Perceptron

This example shows how to define and plot the inputs and targets for a perceptron.

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
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See Also
plotpc

Introduced before R2006a
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plotregression
Plot linear regression

Syntax
plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

Description
plotregression(targets,outputs) plots the linear regression of targets relative to outputs.

plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...) generates multiple
plots.

Examples
Plot Linear Regression

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
plotregression(t,y,'Regression')
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See Also
plottrainstate

Introduced in R2008a
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plotresponse
Plot dynamic network time series response

Syntax
plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)

Description
plotresponse(t,y) takes a target time series t and an output time series y, and plots them on the
same axis showing the errors between them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name pairs, typically
defining training, validation and testing targets, and the output. It plots the responses with colors
indicating the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines which error element is
being correlated and plotted. The default is 1.

Examples
Plot Target and Output Time Series Data

This example shows how to use a NARX network to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
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See Also
ploterrcorr | ploterrhist | plotinerrcorr

Introduced in R2010b
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plotroc
Plot receiver operating characteristic

Syntax
plotroc(targets,outputs)
plotroc(targets1,outputs2,'name1',...)

Description
plotroc(targets,outputs) plots the receiver operating characteristic for each output class. The
more each curve hugs the left and top edges of the plot, the better the classification.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples
Plot Receiver Operating Characteristic

load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
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See Also
roc

Introduced in R2008a
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plotsom
Plot self-organizing map

Syntax
plotsom(pos)
plotsom(W,D,ND)

Description
plotsom(pos) takes one argument,

POS N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within a Euclidean distance of 1.

plotsom(W,D,ND) takes three arguments,

W S-by-R weight matrix
D S-by-S distance matrix
ND Neighborhood distance (default = 1)

and plots the neuron’s weight vectors with connections between weight vectors whose neurons are
within a distance of 1.

Examples
Plot Self-Organizing Maps

These examples generate plots of various layer topologies.

pos = hextop([5 6]); 
plotsom(pos)
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pos = gridtop([4 5]); 
plotsom(pos)
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pos = randtop([18 12]); 
plotsom(pos)
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pos = gridtop([4 5 2]); 
plotsom(pos)
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pos = hextop([4 4 3]); 
plotsom(pos)
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See plotsompos for an example of plotting a layer’s weight vectors with the input vectors they map.

See Also
learnsom

Introduced before R2006a
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plotsomhits
Plot self-organizing map sample hits

Syntax
plotsomhits(net,inputs)

Description
plotsomhits(net,inputs) plots a SOM layer, with each neuron showing the number of input
vectors that it classifies. The relative number of vectors for each neuron is shown via the size of a
colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Sample Hits
x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomhits(net,x)
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See Also
plotsomplanes

Introduced in R2008a
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plotsomnc
Plot self-organizing map neighbor connections

Syntax
plotsomnc(net)

Description
plotsomnc(net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor
relations with red lines.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Neighbor Connections
x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
plotsomnc(net)
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See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
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plotsomnd
Plot self-organizing map neighbor distances

Syntax
plotsomnd(net)

Description
plotsomnd(net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor
relations with red lines. The neighbor patches are colored from black to yellow to show how close
each neuron’s weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Neighbor Distances
x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomnd(net)
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See Also
plotsomhits | plotsomnc | plotsomplanes

Introduced in R2008a
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plotsomplanes
Plot self-organizing map weight planes

Syntax
plotsomplanes(net)

Description
plotsomplanes(net) generates a set of subplots. Each ith subplot shows the weights from the ith
input to the layer’s neurons, with the most negative connections shown as black, zero connections as
red, and the strongest positive connections as yellow.

The plot is only shown for layers organized in one or two dimensions.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

This function can also be called with standardized plotting function arguments used by the function
train.

Examples
Plot SOM Weight Planes

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomplanes(net)
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See Also
plotsomhits | plotsomnc | plotsomnd

Introduced in R2008a
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plotsompos
Plot self-organizing map weight positions

Syntax
plotsompos(net)
plotsompos(net,inputs)

Description
plotsompos(net) plots the input vectors as green dots and shows how the SOM classifies the input
space by showing blue-gray dots for each neuron’s weight vector and connecting neighboring
neurons with red lines.

plotsompos(net,inputs) plots the input data alongside the weights.

Examples
Plot SOM Weight Positions

x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
plotsompos(net,x)
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See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
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plotsomtop
Plot self-organizing map topology

Syntax
plotsomtop(net)

Description
plotsomtop(net) plots the topology of a SOM layer.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Topology

x = iris_dataset;
net = selforgmap([8 8]);
plotsomtop(net)
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See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
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plottrainstate
Plot training state values

Syntax
plottrainstate(tr)

Description
plottrainstate(tr) plots the training state from a training record tr returned by train.

Examples

Plot Training State Values

This example shows how to plot training state values using plottrainstate.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
[net, tr] = train(net, x, t);
plottrainstate(tr)
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See Also
plotfit | plotperform | plotregression

Introduced in R2008a
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plotv
Plot vectors as lines from origin

Syntax
plotv(M,T)

Description
plotv(M,T) takes a matrix of column vectors, M, and the line plotting type, T, and plots the column
vectors of M.

Examples

Plot Vectors Using the plotv Function

This example shows how to plot three 2-element vectors.

M = [-0.4 0.7 0.2 ;
     -0.5 0.1 0.5];
plotv(M,'-')
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Input Arguments
M — Matrix to plot
matrix

Matrix of column vectors to plot, specified as a R-by-Q matrix of Q column vectors with R elements.

R must be 2 or greater. If R is greater than 2, this function only uses the first two rows of M for the
plot.

T — Line plotting type
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the nodes and no edges between them.
Example: '--or' is a red dashed line with circle markers.

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y Yellow
m Magenta

 plotv

2-279



Color Description
c Cyan
r Red
g Green
b Blue
w White
k Black

See Also
plotfit | plotvec

Introduced before R2006a
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plotvec
Plot vectors with different colors

Syntax
plotvec(X,C,M)

Description
plotvec(X,C,M) takes these inputs,

X Matrix of (column) vectors
C Row vector of color coordinates
M Marker (default = '+')

and plots each ith vector in X with a marker M, using the ith value in C as the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker '+' using the index i
as the color coordinate.

Examples
Plot Vectors with Different Colors

This example shows how to plot four 2-element vectors.

x = [ 0 1 0.5 0.7 ; ...
     -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
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Introduced before R2006a
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plotwb
Plot Hinton diagram of weight and bias values

Syntax
plotwb(net)
plotwb(IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)

Description
plotwb(net) takes a neural network and plots all its weights and biases.

plotwb(IW,LW,B) takes a neural networks input weights, layer weights and biases and plots them.

plotwb(...,'toLayers',toLayers) optionally defines which destination layers whose input
weights, layer weights and biases will be plotted.

plotwb(...,'fromInputs',fromInputs) optionally defines which inputs will have their weights
plotted.

plotwb(...,'fromLayers',fromLayers) optionally defines which layers will have weights
coming from them plotted.

plotwb(...,'root',root) optionally defines the root used to scale the weight/bias patch sizes.
The default is 2, which makes the 2-dimensional patch sizes scale directly with absolute weight and
bias sizes. Larger values of root magnify the relative patch sizes of smaller weights and biases,
making differences in smaller values easier to see.

Examples
Plot Weights and Biases

Here a cascade-forward network is configured for particular data and its weights and biases are
plotted in several ways.

[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
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plotwb(net,'root',3)
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plotwb(net,'root',4)
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plotwb(net,'toLayers',2)
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plotwb(net,'fromLayers',1)
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plotwb(net,'toLayers',2,'fromInputs',1)
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See Also
plotsomplanes

Introduced in R2010b
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pnormc
Pseudonormalize columns of matrix

Syntax
pnormc(X,R)

Description
pnormc(X,R) takes these arguments,

X M-by-N matrix
R (Optional) radius to normalize columns to (default = 1)

and returns X with an additional row of elements, which results in new column vector lengths of R.

Caution For this function to work properly, the columns of X must originally have vector lengths less
than R.

Examples
x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also
normc | normr

Introduced before R2006a
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poslin
Positive linear transfer function

Graph and Symbol

Syntax
A = poslin(N,FP)
info = poslin('code')

Description
poslin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = poslin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, inf].

info = poslin('code') returns information about this function. The following codes are
supported:

poslin('name') returns the name of this function.

poslin('output',FP) returns the [min max] output range.

poslin('active',FP) returns the [min max] active range.

poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

poslin('fpnames') returns the names of the function parameters.

poslin('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the poslin transfer function.
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n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network Use
To change a network so that a layer uses poslin, set net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithms
The transfer function poslin returns the output n if n is greater than or equal to zero and 0 if n is
less than or equal to zero.

poslin(n) = n, if n >= 0
          = 0, if n <= 0

See Also
purelin | satlin | satlins | sim

Introduced before R2006a
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preparets
Prepare input and target time series data for network simulation or training

Syntax
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description
This function simplifies the normally complex and error prone task of reformatting input and target
time series. It automatically shifts input and target time series as many steps as are needed to fill the
initial input and layer delay states. If the network has open-loop feedback, then it copies feedback
targets into the inputs as needed to define the open-loop inputs.

Each time a new network is designed, with different numbers of delays or feedback settings,
preparets can reformat input and target data accordingly. Also, each time a network is transformed
with openloop, closeloop, removedelay or adddelay, this function can reformat the data
accordingly.

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes these arguments,

net Neural network
Xnf Non-feedback inputs
Tnf Non-feedback targets
Tf Feedback targets
EW Error weights (default = {1})

and returns,

Xs Shifted inputs
Xi Initial input delay states
Ai Initial layer delay states
Ts Shifted targets
EWs Shifted error weights
shift The number of timesteps truncated from the front of X and T in order

to properly fill Xi and Ai.

Examples
Prepare Data for Open- and Closed-Loop Networks

Here a time-delay network with 20 hidden neurons is created, trained and simulated.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
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net = train(net,Xs,Ts);
view(net)
Y = net(Xs,Xi,Ai);

Here a NARX network is designed. The NARX network has a standard input and an open-loop
feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
y = net(Xs,Xi,Ai);

Now the network is converted to closed loop, and the data is reformatted to simulate the network’s
closed-loop response.

net = closeloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);
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See Also
adddelay | closeloop | narnet | narxnet | openloop | removedelay | timedelaynet

Introduced in R2010b
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processpca
Process columns of matrix with principal component analysis

Syntax
[Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);

Description
processpca processes matrices using principal component analysis so that each row is
uncorrelated, the rows are in the order of the amount they contribute to total variation, and rows
whose contribution to total variation are less than maxfrac are removed.

[Y,PS] = processpca(X,maxfrac) takes X and an optional parameter,

X N-by-Q matrix
maxfrac Maximum fraction of variance for removed rows (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.

Y = processpca('apply',X,PS) returns Y, given X and settings PS.

X = processpca('reverse',Y,PS) returns X, given Y and settings PS.

name = processpca('name') returns the name of this process method.

fp = processpca('pdefaults') returns default process parameter structure.

names = processpca('pdesc') returns the process parameter descriptions.

processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples
Here is how to format a matrix with an independent row, a correlated row, and a completely
redundant row so that its rows are uncorrelated and the redundant row is dropped.
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x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x1_independent;
x1_redundant = x1_independent + x1_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x1_independent;
x2_redundant = x1_independent + x1_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

More About
Reduce Input Dimensionality Using processpca

In some situations, the dimension of the input vector is large, but the components of the vectors are
highly correlated (redundant). It is useful in this situation to reduce the dimension of the input
vectors. An effective procedure for performing this operation is principal component analysis. This
technique has three effects: it orthogonalizes the components of the input vectors (so that they are
uncorrelated with each other), it orders the resulting orthogonal components (principal components)
so that those with the largest variation come first, and it eliminates those components that contribute
the least to the variation in the data set. The following code illustrates the use of processpca, which
performs a principal-component analysis using the processing setting maxfrac of 0.02.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance.
This is a standard procedure when using principal components. In this example, the second argument
passed to processpca is 0.02. This means that processpca eliminates those principal components
that contribute less than 2% to the total variation in the data set. The matrix ptrans contains the
transformed input vectors. The settings structure ps2 contains the principal component
transformation matrix. After the network has been trained, these settings should be used to transform
any future inputs that are applied to the network. It effectively becomes a part of the network, just
like the network weights and biases. If you multiply the normalized input vectors pn by the
transformation matrix transMat, you obtain the transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained network is
used with new inputs, you should preprocess them with the transformation matrix that was computed
for the training set, using ps2. The following code applies a new set of inputs to a network already
trained.

pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is only recommended for input
processing. Outputs require reversible processing functions.
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Principal component analysis is not part of the default processing for feedforwardnet. You can add
this with the following command:

net.inputs{1}.processFcns{end+1} = 'processpca';

Algorithms
Values in rows whose elements are not all the same value are set to

y = 2*(x-minx)/(maxx-minx) - 1;

Values in rows with all the same value are set to 0.

See Also
fixunknowns | mapminmax | mapstd

Introduced in R2006a
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prune
Delete neural inputs, layers, and outputs with sizes of zero

Syntax
[net,pi,pl,po] = prune(net)

Description
This function removes zero-sized inputs, layers, and outputs from a network. This leaves a network
which may have fewer inputs and outputs, but which implements the same operations, as zero-sized
inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for Simulink, where
zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with the transformed
network.

[net,pi,pl,po] = prune(net) takes a neural network and returns

net The same network with zero-sized subobjects removed
pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs

Examples
Here a NARX dynamic network is created which has one external input and a second input which
feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 timesteps. The external
input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and initializing its input
and layer states.

[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
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See Also
gensim | prunedata

Introduced in R2010b
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prunedata
Prune data for consistency with pruned network

Syntax
[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T)

Description
This function prunes data to be consistent with a network whose zero-sized inputs, layers, and
outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized subobjects for Simulink, where
zero-sized signals are not supported.

[Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T) takes these arguments,

pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs
X Input data
Xi Initial input delay states
Ai Initial layer delay states
T Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples
Here a NARX dynamic network is created which has one external input and a second input which
feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 timesteps. The external
input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and initializing its input
and layer states.

[net2,pi,pl,po] = prune(net);
view(net)
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[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also
gensim | prune

Introduced in R2010b
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purelin
Linear transfer function

Graph and Symbol

Syntax
A = purelin(N,FP)
info = purelin('code')

Description
purelin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = purelin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix equal to N.

info = purelin('code') returns useful information for each supported code character vector:

purelin('name') returns the name of this function.

purelin('output',FP) returns the [min max] output range.

purelin('active',FP) returns the [min max] active input range.

purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

purelin('fpnames') returns the names of the function parameters.

purelin('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the purelin transfer function.
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n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'purelin';

Algorithms
a = purelin(n) = n

See Also
satlin | satlins | sim

Introduced before R2006a
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quant
Discretize values as multiples of quantity

Syntax
quant(X,Q)

Description
quant(X,Q) takes two inputs,

X Matrix, vector, or scalar
Q Minimum value

and returns values from X rounded to nearest multiple of Q.

Examples
x = [1.333 4.756 -3.897];
y = quant(x,0.1)

Introduced before R2006a
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radbas
Radial basis transfer function

Graph and Symbol

Syntax
A = radbas(N,FP)

Description
radbas is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = radbas(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples
Here you create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbas';

Algorithms
a = radbas(n) = exp(-n^2)

See Also
radbasn | sim | tribas
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Introduced before R2006a
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radbasn
Normalized radial basis transfer function

Graph and Symbol

Syntax
A = radbasn(N,FP)

Description
radbasn is a neural transfer function. Transfer functions calculate a layer’s output from its net input.
This function is equivalent to radbas, except that output vectors are normalized by dividing by the
sum of the pre-normalized values.

A = radbasn(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples
Here six random 3-element vectors are passed through the radial basis transform and normalized.

n = rand(3,6)
a = radbasn(n)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbasn';

Algorithms
a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))

See Also
radbas | sim | tribas
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Introduced in R2010b
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randnc
Normalized column weight initialization function

Syntax
W = randnc(S,PR)

Description
randnc is a weight initialization function.

W = randnc(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized columns.

You can also call this in the form randnc(S,R).

Examples
A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =
    -0.6007   -0.4715   -0.2724    0.5596
    -0.7628   -0.6967   -0.9172    0.7819
    -0.2395    0.5406   -0.2907    0.2747

See Also
randnr

Introduced before R2006a
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randnr
Normalized row weight initialization function

Syntax
W = randnr(S,PR)

Description
randnr is a weight initialization function.

W = randnr(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized rows.

You can also call this in the form randnr(S,R).

Examples
A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =
    0.9713    0.0800   -0.1838   -0.1282
    0.8228    0.0338    0.1797    0.5381
   -0.3042   -0.5725    0.5436    0.5331

See Also
randnc

Introduced before R2006a
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rands
Symmetric random weight/bias initialization function

Syntax
W = rands(S,PR)
M = rands(S,R)
v = rands(S)

Description
rands is a weight/bias initialization function.

W = rands(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between –1 and 1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns an S-by-1
vector of random values.

Examples
Here, three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use
To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'rands'.
4 Set each net.layerWeights{i,j}.initFcn to 'rands'.
5 Set each net.biases{i}.initFcn to 'rands'.

To initialize the network, call init.

See Also
init | initlay | initwb | randnc | randnr | randsmall
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Introduced before R2006a
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randsmall
Small random weight/bias initialization function

Syntax
W = randsmall(S,PR)
M = rands(S,R)
v = rands(S)

Description
randsmall is a weight/bias initialization function.

W = randsmall(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between –0.1 and 0.1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns an S-by-1
vector of random values.

Examples
Here three sets of random values are generated with rands.

randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)

Network Use
To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'randsmall'.
4 Set each net.layerWeights{i,j}.initFcn to 'randsmall'.
5 Set each net.biases{i}.initFcn to 'randsmall'.

To initialize the network, call init.

See Also
init | initlay | initwb | randnc | randnr | rands
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randtop
Random layer topology function

Syntax
pos = randtop(dimensions)

Description
randtop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional
random pattern.

pos = randtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Random Pattern

This shows how to display a two-dimensional layer with neurons arranged in a random pattern.

pos = randtop([18 12]);
plotsom(pos)
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See Also
gridtop | hextop | tritop

Introduced before R2006a
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regression
(Not recommended) Perform linear regression of shallow network outputs on targets

Note regression is not recommended. Use fitlm instead. For more information, see
“Compatibility Considerations”.

Syntax
[r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')

Description
[r,m,b] = regression(t,y) calculates the linear regression between each element of the
network response and the corresponding target.

This function takes cell array or matrix target t and output y, each with total matrix rows of N, and
returns the regression values, r, the slopes of regression fit, m, and the y-intercepts, b, for each of the
N matrix rows.

[r,m,b] = regression(t,y,'one') combines all matrix rows before regressing, and returns
single scalar regression, slope, and offset values.

Examples

Fit Regression Model and Plot Fitted Values versus Targets

This example shows how to train a feedforward network and calculate and plot the regression
between its targets and outputs.

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a feedforward neural network with one hidden layer of size 20.

net = feedforwardnet(20);

Train the network net using the training data.

net = train(net,x,t);

Estimate the targets using the trained network.

y = net(x);
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Calculate and plot the regression between its targets and outputs.

[r,m,b] = regression(t,y)

r = 1.0000

m = 1.0000

b = 1.0878e-04

plotregression(t,y)

Input Arguments
t — Target
matrix | cell array

Network targets, specified as a matrix or cell array.

y — Output
scalar

 regression

2-319



Network outputs, specified as a matrix or cell array.

Output Arguments
r — Regression value
scalar

Regression value, returned as a scalar.

m — Slope
scalar

Slope of regression fit, returned as a scalar.

b — Offset
scalar

Offset of regression fit, returned as a scalar.

Compatibility Considerations
regression is not recommended
Not recommended starting in R2020b

regression is not recommended. To fit a linear regression model, use fitlm instead.

See Also
confusion | fitlm | plotregression

Introduced in R2010b
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removeconstantrows
Process matrices by removing rows with constant values

Syntax
[Y,PS] = removeconstantrows(X,max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse',Y,PS)

Description
removeconstantrows processes matrices by removing rows with constant values.

[Y,PS] = removeconstantrows(X,max_range) takes X and an optional parameter,

X N-by-Q matrix
max_range Maximum range of values for row to be removed (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = removeconstantrows(X,FP) takes parameters as a struct: FP.max_range.

Y = removeconstantrows('apply',X,PS) returns Y, given X and settings PS.

X = removeconstantrows('reverse',Y,PS) returns X, given Y and settings PS.

Any NaN values in the input matrix are treated as missing data, and are not considered as unique
values. So, for example, removeconstantrows removes the first row from the matrix [1 1 1 NaN;
1 1 1 2].

Examples
Format a matrix so that the rows with constant values are removed.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0];
[y1,PS] = removeconstantrows(x1);

y1 =
     1     2     4
     3     2     2

PS = 
    max_range: 0
         keep: [1 3]
       remove: [2 4]
        value: [2x1 double]

 removeconstantrows

2-321



        xrows: 4
        yrows: 2
    constants: [2x1 double]
    no_change: 0

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0];
y2 = removeconstantrows('apply',x2,PS)

5     2     3
6     7     3

Reverse the processing of y1 to get the original x1 matrix.

x1_again = removeconstantrows('reverse',y1,PS)

1     2     4
1     1     1
3     2     2
0     0     0

See Also
fixunknowns | mapminmax | mapstd | processpca

Introduced in R2006a
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removedelay
Remove delay to neural network’s response

Syntax
net = removedelay(net,n)

Description
net = removedelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections decreased, and output feedback delays
increased, by the specified number of delays n. The result is a network which behaves identically,
except that outputs are produced n timesteps earlier.

If the number of delays n is not specified, a default of one delay is used.

Examples
Remove and Add Delay to Network

This example creates, trains, and simulates a time delay network in its original form, on an input time
series X and target series T. Then the delay is removed and later added back. The first and third
outputs will be identical, while the second result will include a new prediction for the following step.

[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)
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net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)

See Also
adddelay | closeloop | openloop

Introduced in R2010b
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removerows
Process matrices by removing rows with specified indices

Syntax
[Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)

Description
removerows processes matrices by removing rows with the specified indices.

[Y,PS] = removerows(X,'ind',ind) takes X and an optional parameter,

X N-by-Q matrix
ind Vector of row indices to remove (default is [])

and returns

Y M-by-Q matrix, where M == N-length(ind)
PS Process settings that allow consistent processing of values

[Y,PS] = removerows(X,FP) takes parameters as a struct: FP.ind.

Y = removerows('apply',X,PS) returns Y, given X and settings PS.

X = removerows('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = removerows('dx',X,Y,PS) returns the M-by-N-by-Q derivative of Y with respect to X.

dx_dy = removerows('dx',X,[],PS) returns the derivative, less efficiently.

name = removerows('name') returns the name of this process method.

fp = removerows('pdefaults') returns the default process parameter structure.

names = removerows('pdesc') returns the process parameter descriptions.

removerows('pcheck',FP) throws an error if any parameter is illegal.
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Examples
Here is how to format a matrix so that rows 2 and 4 are removed:

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,'ind',[2 4])

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows('reverse',y1,ps)

Algorithms
In the reverse calculation, the unknown values of replaced rows are represented with NaN values.

See Also
fixunknowns | mapminmax | mapstd | processpca

Introduced in R2006a
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revert
Change network weights and biases to previous initialization values

Syntax
net = revert (net)

Description
net = revert (net) returns neural network net with weight and bias values restored to the
values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different input or layer
sizes, then revert cannot set the weights and biases to their previous values and they are set to
zeros instead.

Examples
Here a perceptron is created with input size set to 2 and number of neurons to 1.

net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2]; 
net.b{1} = 5;
net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
net.iw{1,1}, net.b{1}

See Also
adapt | init | sim | train

Introduced before R2006a
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roc
Receiver operating characteristic

Syntax
[tpr,fpr,thresholds] = roc(targets,outputs)

Description
The receiver operating characteristic is a metric used to check the quality of classifiers. For each
class of a classifier, roc applies threshold values across the interval [0,1] to outputs. For each
threshold, two values are calculated, the True Positive Ratio (TPR) and the False Positive Ratio (FPR).
For a particular class i, TPR is the number of outputs whose actual and predicted class is class i,
divided by the number of outputs whose predicted class is class i. FPR is the number of outputs
whose actual class is not class i, but predicted class is class i, divided by the number of outputs
whose predicted class is not class i.

You can visualize the results of this function with plotroc.

[tpr,fpr,thresholds] = roc(targets,outputs) takes these arguments:

targets S-by-Q matrix, where each column vector contains a single 1 value,
with all other elements 0. The index of the 1 indicates which of S
categories that vector represents.

outputs S-by-Q matrix, where each column contains values in the range [0,1].
The index of the largest element in the column indicates which of S
categories that vector presents. Alternately, 1-by-Q vector, where
values greater or equal to 0.5 indicate class membership, and values
below 0.5, nonmembership.

and returns these values:

tpr 1-by-S cell array of 1-by-N true-positive/positive ratios.
fpr 1-by-S cell array of 1-by-N false-positive/negative ratios.
thresholds 1-by-S cell array of 1-by-N thresholds over interval [0,1].

roc(targets,outputs) takes these arguments:

targets 1-by-Q matrix of Boolean values indicating class membership.
outputs S-by-Q matrix, of values in [0,1] interval, where values greater than

or equal to 0.5 indicate class membership.

and returns these values:

tpr 1-by-N vector of true-positive/positive ratios.
fpr 1-by-N vector of false-positive/negative ratios.
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thresholds 1-by-N vector of thresholds over interval [0,1].

Examples
load iris_dataset
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)

See Also
confusion | plotroc

Introduced in R2008a
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sae
Sum absolute error performance function

Syntax
perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,FP)

Description
sae is a network performance function. It measures performance according to the sum of squared
errors.

perf = sae(net,t,y,ew) takes these input arguments and optional function parameters,

net Neural network
t Matrix or cell array of target vectors
y Matrix or cell array of output vectors
ew Error weights (default = {1})

and returns the sum squared error.

This function has two optional function parameters that can be defined with parameter name/pair
arguments, or as a structure FP argument with fields having the parameter name and assigned the
parameter values:

[...] = sae(...,'regularization',regularization)

[...] = sae(...,'normalization',normalization)

[...] = sae(...,FP)

• regularization — can be set to any value between the default of 0 and 1. The greater the
regularization value, the more squared weights and biases are taken into account in the
performance calculation.

• normalization

• 'none' — performs no normalization, the default.
• 'standard' — normalizes outputs and targets to [-1, +1], and therefore normalizes errors

to [-2, +2].
• 'percent' — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes

errors to [-1, +1].

Examples
Here a network is trained to fit a simple data set and its performance calculated
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[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)

Network Use
To prepare a custom network to be trained with sae, set net.performFcn to 'sae'. This
automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate performance.

Introduced in R2010b
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satlin
Saturating linear transfer function

Graph and Symbol

Syntax
A = satlin(N,FP)

Description
satlin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = satlin(N,FP) takes one input,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, 1].

info = satlin('code') returns useful information for each supported code character vector:

satlin('name') returns the name of this function.

satlin('output',FP) returns the [min max] output range.

satlin('active',FP) returns the [min max] active input range.

satlin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

satlin('fpnames') returns the names of the function parameters.

satlin('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the satlin transfer function.
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n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithms
a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1 <= n

See Also
poslin | purelin | satlins | sim

Introduced before R2006a
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satlins
Symmetric saturating linear transfer function

Graph and Symbol

Syntax
A = satlins(N,FP)

Description
satlins is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = satlins(N,FP) takes N and an optional argument,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [-1, 1].

info = satlins('code') returns useful information for each supported code character vector:

satlins('name') returns the name of this function.

satlins('output',FP) returns the [min max] output range.

satlins('active',FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the satlins transfer function.

2 Approximation, Clustering, and Control Functions

2-334



n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Algorithms
satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n

See Also
poslin | purelin | satlin | sim

Introduced before R2006a
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scalprod
Scalar product weight function

Syntax
Z = scalprod(W,P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)

Description
scalprod is the scalar product weight function. Weight functions apply weights to an input to get
weighted inputs.

Z = scalprod(W,P) takes these inputs,

W 1-by-1 weight matrix
P R-by-Q matrix of Q input (column) vectors

and returns the R-by-Q scalar product of W and P defined by Z = w*P.

dim = scalprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [1-by-1].

dw = scalprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(1,1);
P = rand(3,1);
Z = scalprod(W,P)

Network Use
To change a network so an input weight uses scalprod, set net.inputWeights{i,j}.weightFcn
to 'scalprod'.

For a layer weight, set net.layerWeights{i,j}.weightFcn to 'scalprod'.

In either case, call sim to simulate the network with scalprod.

See Also
dist | dotprod | negdist | normprod | sim
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Introduced in R2006a
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selforgmap
Self-organizing map

Syntax
selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn)

Description
Self-organizing maps learn to cluster data based on similarity, topology, with a preference (but no
guarantee) of assigning the same number of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the dimensionality of data. They are
inspired by the sensory and motor mappings in the mammal brain, which also appear to automatically
organizing information topologically.

selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distanceFcn) takes
these arguments,

dimensions Row vector of dimension sizes (default = [8 8])
coverSteps Number of training steps for initial covering of the input space

(default = 100)
initNeighbor Initial neighborhood size (default = 3)
topologyFcn Layer topology function (default = 'hextop')
distanceFcn Neuron distance function (default = 'linkdist')

and returns a self-organizing map.

Examples
Use Self-Organizing Map to Cluster Data

Here a self-organizing map is used to cluster a simple set of data.

x = simplecluster_dataset;
net = selforgmap([8 8]);
net = train(net,x);
view(net)
y = net(x);
classes = vec2ind(y);
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See Also
competlayer | lvqnet | nctool

Introduced in R2010b

 selforgmap

2-339



separatewb
Separate biases and weight values from weight/bias vector

Syntax
[b,IW,LW] = separatewb(net,wb)

Description
[b,IW,LW] = separatewb(net,wb) takes two arguments,

net Neural network
wb Weight/bias vector

and returns

b Cell array of bias vectors
IW Cell array of input weight matrices
LW Cell array of layer weight matrices

Examples
Here a feedforward network is trained to fit some data, then its bias and weight values formed into a
vector. The single vector is then redivided into the original biases and weights.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,wb)

See Also
formwb | getwb | setwb

Introduced in R2010b
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seq2con
Convert sequential vectors to concurrent vectors

Syntax
b = seq2con(s)

Description
Deep Learning Toolbox software represents batches of vectors with a matrix, and sequences of
vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential vectors, and back
again.

b = seq2con(s) takes one input,

s N-by-TS cell array of matrices with M columns

and returns

b N-by-1 cell array of matrices with M*TS columns

Examples
Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also
con2seq | concur

Introduced before R2006a
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setelements
Set neural network data elements

Syntax
setelements(x,i,v)

Description
setelements(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the elements indicated by the indices i.

Examples
This code sets elements 1 and 3 of matrix data:

x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)

This code sets elements 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)

See Also
catelements | getelements | nndata | numelements | setsamples | setsignals |
settimesteps

Introduced in R2010b
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setsamples
Set neural network data samples

Syntax
setsamples(x,i,v)

Description
setsamples(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the samples indicated by the indices i.

Examples
This code sets samples 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)

This code sets samples 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)

See Also
catsamples | getsamples | nndata | numsamples | setelements | setsignals | settimesteps

Introduced in R2010b
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setsignals
Set neural network data signals

Syntax
setsignals(x,i,v)

Description
setsignals(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the signals indicated by the indices i.

Examples
This code sets signal 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)

See Also
catsignals | getsignals | nndata | numsignals | setelements | setsamples | settimesteps

Introduced in R2010b
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setsiminit
Set neural network Simulink block initial conditions

Syntax
setsiminit(sysName,netName,net,xi,ai,Q)

Description
setsiminit(sysName,netName,net,xi,ai,Q) takes these arguments,

sysName The name of the Simulink system containing the neural network block
netName The name of the Simulink neural network block
net The original neural network
xi Initial input delay states
ai Initial layer delay states
Q Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as specified.

Examples
Here a NARX network is designed. The NARX network has a standard input and an open loop
feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed loop, and the data is reformatted to simulate the network’s
closed loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output ports. Its delay
states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical
to the values set with setsiminit.)

 setsiminit

2-345



[xi,ai] = getsiminit(sysName,netName,net);

See Also
gensim | getsiminit | nndata2sim | sim2nndata

Introduced in R2010b
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settimesteps
Set neural network data timesteps

Syntax
settimesteps(x,i,v)

Description
settimesteps(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the timesteps indicated by the indices i.

Examples
This code sets timestep 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)

See Also
cattimesteps | gettimesteps | nndata | numtimesteps | setelements | setsamples |
setsignals

Introduced in R2010b
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setwb
Set all network weight and bias values with single vector

Syntax
net = setwb(net,wb)

Description
This function sets a network’s weight and biases to a vector of values.

net = setwb(net,wb) takes the following inputs:

net Neural network
wb Vector of weight and bias values

Examples
Set Network's Weights and Biases

This example shows how to set and view a network’s weight and bias values.

Create and configure a network.

[x,t] = simplefit_dataset;
net = feedforwardnet(3);
net = configure(net,x,t);
view(net)

This network has three weights and three biases in the first layer, and three weights and one bias in
the second layer. So, the total number of weight and bias values in the network is 10. Set the weights
and biases to random values.

net = setwb(net,rand(10,1));

View the weight and bias values

net.IW{1,1}
net.b{1}
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ans =

    0.1576
    0.9706
    0.9572

ans =

    0.5469
    0.9575
    0.9649

See Also
formwb | getwb | separatewb

Introduced in R2010b
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sim
Simulate neural network

Syntax
[Y,Xf,Af] = sim(net,X,Xi,Ai,T)
[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)
[Y,...] = sim(net,...,'useParallel',...)
[Y,...] = sim(net,...,'useGPU',...)
[Y,...] = sim(net,...,'showResources',...)
[Ycomposite,...] = sim(net,Xcomposite,...)
[Ygpu,...] = sim(net,Xgpu,...)

To Get Help
Type help network/sim.

Description
sim simulates neural networks.

[Y,Xf,Af] = sim(net,X,Xi,Ai,T) takes

net Network
X Network inputs
Xi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)
T Network targets (default = zeros)

and returns

Y Network outputs
Xf Final input delay conditions
Af Final layer delay conditions

sim is usually called implicitly by calling the neural network as a function. For instance, these two
expressions return the same result:

y = sim(net,x,xi,ai)
y = net(x,xi,ai)

Note that arguments Xi, Ai, Xf, and Af are optional and need only be used for networks that have
input or layer delays.

The signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs
and outputs, and allows sequences of inputs to be presented:
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X Ni-by-TS cell array Each element X{i,ts} is an Ri-by-Q matrix.
Xi Ni-by-ID cell array Each element Xi{i,k} is an Ri-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.
T No-by-TS cell array Each element X{i,ts} is a Ui-by-Q matrix.
Y No-by-TS cell array Each element Y{i,ts} is a Ui-by-Q matrix.
Xf Ni-by-ID cell array Each element Xf{i,k} is an Ri-by-Q matrix.
Af Nl-by-LD cell array Each element Af{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
ID = net.numInputDelays
LD = net.numLayerDelays
TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:

Xi{i,k} = Input i at time ts = k - ID
Xf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for
networks with only one input and output, but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a
single matrix:

X (sum of Ri)-by-Q matrix
Xi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
T (sum of Ui)-by-Q matrix
Y (sum of Ui)-by-Q matrix
Xf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai) is used for networks that do not have an input when cell
array notation is used.
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[Y,...] = sim(net,...,'useParallel',...), [Y,...] = sim(net,...,'useGPU',...),
or [Y,...] = sim(net,...,'showResources',...) (or the network called as a function)
accepts optional name/value pair arguments to control how calculations are performed. Two of these
options allow training to happen faster or on larger datasets using parallel workers or GPU devices if
Parallel Computing Toolbox is available. These are the optional name/value pairs:

'useParallel','no' Calculations occur on normal MATLAB thread. This is the default
'useParallel' setting.

'useParallel','yes' Calculations occur on parallel workers if a parallel pool is open. Otherwise
calculations occur on the normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU','yes' Calculations occur on the current gpuDevice if it is a supported GPU (See

Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is
not supported, calculations remain on the CPU. If 'useParallel' is also
'yes' and a parallel pool is open, then each worker with a unique GPU uses
that GPU, other workers run calculations on their respective CPU cores.

'useGPU','only' If no parallel pool is open, then this setting is the same as 'yes'. If a parallel
pool is open, then only workers with unique GPUs are used. However, if a
parallel pool is open, but no supported GPUs are available, then calculations
revert to performing on all worker CPUs.

'showResources','no' Do not display computing resources used at the command line. This is the
default setting.

'showResources','yes' Show at the command line a summary of the computing resources actually
used. The actual resources may differ from the requested resources, if parallel
or GPU computing is requested but a parallel pool is not open or a supported
GPU is not available. When parallel workers are used, each worker’s
computation mode is described, including workers in the pool that are not
used.

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns Composite
results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.

[Ygpu,...] = sim(net,Xgpu,...) takes gpuArray data and returns gpuArray results. If
gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

Examples
In the following examples, the sim function is called implicitly by calling the neural network object
(net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps anatomical measurements x to body fat percentages t. A
feedforward network with 10 neurons is created and trained on that data, then simulated.

[x,t] =  bodyfat_dataset;  
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
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Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input, to model a
levitated magnet system defined by a control current x and the magnet’s vertical position response t,
then simulates the network. The function preparets prepares the data before training and
simulation. It creates the open-loop network’s combined inputs xo, which contains both the external
input x and previous values of position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Simulate in Parallel on a Parallel Pool

With Parallel Computing Toolbox you can simulate and train networks faster and on larger datasets
than can fit on one PC. Here training and simulation happens across parallel MATLAB workers.

parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');

Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a Composite value.
If the data is loaded as it is distributed, then while each piece of the dataset must fit in RAM, the
entire dataset is limited only by the total RAM of all the workers.

Xc = Composite;
for i=1:numel(Xc)
    Xc{i} = X+rand(size(X))*0.1;  % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');

Networks can be simulated using the current GPU device, if it is supported by Parallel Computing
Toolbox.

gpuDevice % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');

To put the data on a GPU manually, and get the results on the GPU:

Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);

To run in parallel, with workers associated with unique GPUs taking advantage of that hardware,
while the rest of the workers use CPUs:
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Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');

Using only workers with unique GPUs might result in higher speeds, as CPU workers might not keep
up.

Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');

Algorithms
sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values and the number of delays
associated with each weight:

net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to inputs to get each
layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

See Also
adapt | init | revert | train

Introduced before R2006a
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sim2nndata
Convert Simulink time series to neural network data

Syntax
sim2nndata(x)

Description
sim2nndata(x) takes either a column vector of values or a Simulink time series structure and
converts it to a neural network data time series.

Examples
Here a random Simulink 20-step time series is created and converted.

simts = rands(20,1);
nnts = sim2nndata(simts)

Here a similar time series is defined with a Simulink structure and converted.

simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)

See Also
nndata | nndata2sim

Introduced in R2010b
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softmax
Soft max transfer function

Graph and Symbol

Syntax
A = softmax(N,FP)

Description
softmax is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = softmax(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of the softmax competitive function applied to each column of N.

info = softmax('code') returns information about this function. The following codes are
defined:

softmax('name') returns the name of this function.

softmax('output',FP) returns the [min max] output range.

softmax('active',FP) returns the [min max] active input range.

softmax('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

softmax('fpnames') returns the names of the function parameters.

softmax('fpdefaults') returns the default function parameters.

Examples
Here you define a net input vector N, calculate the output, and plot both with bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
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subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'softmax';

Algorithms
a = softmax(n) = exp(n)/sum(exp(n))

See Also
compet | sim

Introduced before R2006a
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srchbac
1-D minimization using backtracking

Syntax
[a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description
srchbac is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called backtracking.

[a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the backstepping algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
low_lim Lower limit on change in step size
up_lim Upper limit on change in step size
maxstep Maximum step length
minstep Minimum step length
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
V Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Backtracking Search

The backtracking search routine srchbac is best suited to use with the quasi-Newton optimization
algorithms. It begins with a step multiplier of 1 and then backtracks until an acceptable reduction in
the performance is obtained. On the first step it uses the value of performance at the current point
and a step multiplier of 1. It also uses the value of the derivative of performance at the current point
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to obtain a quadratic approximation to the performance function along the search direction. The
minimum of the quadratic approximation becomes a tentative optimum point (under certain
conditions) and the performance at this point is tested. If the performance is not sufficiently reduced,
a cubic interpolation is obtained and the minimum of the cubic interpolation becomes the new
tentative optimum point. This process is continued until a sufficient reduction in the performance is
obtained.

The backtracking algorithm is described in Dennis and Schnabel. It is used as the default line search
for the quasi-Newton algorithms, although it might not be the best technique for all problems.

Algorithms
srchbac locates the minimum of the performance function in the search direction dX, using the
backtracking algorithm described on page 126 and 328 of Dennis and Schnabel’s book, noted below.

References
Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ, Prentice-Hall, 1983

See Also
srchcha | srchgol | srchhyb

Introduced before R2006a
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srchbre
1-D interval location using Brent’s method

Syntax
[a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchbre is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called Brent’s technique.

[a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Brent algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Brent’s Search

Brent’s search is a linear search that is a hybrid of the golden section search and a quadratic
interpolation. Function comparison methods, like the golden section search, have a first-order rate of
convergence, while polynomial interpolation methods have an asymptotic rate that is faster than
superlinear. On the other hand, the rate of convergence for the golden section search starts when the
algorithm is initialized, whereas the asymptotic behavior for the polynomial interpolation methods
can take many iterations to become apparent. Brent’s search attempts to combine the best features
of both approaches.
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For Brent’s search, you begin with the same interval of uncertainty used with the golden section
search, but some additional points are computed. A quadratic function is then fitted to these points
and the minimum of the quadratic function is computed. If this minimum is within the appropriate
interval of uncertainty, it is used in the next stage of the search and a new quadratic approximation is
performed. If the minimum falls outside the known interval of uncertainty, then a step of the golden
section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has the advantage that it
does not require computation of the derivative. The derivative computation requires a
backpropagation through the network, which involves more computation than a forward pass.
However, the algorithm can require more performance evaluations than algorithms that use
derivative information.

Algorithms
srchbre brackets the minimum of the performance function in the search direction dX, using Brent’s
algorithm, described on page 46 of Scales (see reference below). It is a hybrid algorithm based on the
golden section search and the quadratic approximation.

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchcha | srchgol | srchhyb

Introduced before R2006a
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srchcha
1-D minimization using Charalambous' method

Syntax
[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchcha is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique based on Charalambous’ method.

[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Charalambous algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
gama Parameter to avoid small reductions in performance, usually set to 0.1
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Charalambous’ Search

The method of Charalambous, srchcha, was designed to be used in combination with a conjugate
gradient algorithm for neural network training. Like srchbre and srchhyb, it is a hybrid search. It
uses a cubic interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous' search. This routine is used as the default search for
most of the conjugate gradient algorithms because it appears to produce excellent results for many
different problems. It does require the computation of the derivatives (backpropagation) in addition
to the computation of performance, but it overcomes this limitation by locating the minimum with
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fewer steps. This is not true for all problems, and you might want to experiment with other line
searches.

Algorithms
srchcha locates the minimum of the performance function in the search direction dX, using an
algorithm based on the method described in Charalambous (see reference below).

References
Charalambous, C., “Conjugate gradient algorithm for efficient training of artificial neural networks,”
IEEE Proceedings, Vol. 139, No. 3, June, 1992, pp. 301–310.

See Also
srchbac | srchbre | srchgol | srchhyb

Introduced before R2006a
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srchgol
1-D minimization using golden section search

Syntax
[a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchgol is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called the golden section search.

[a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the golden section algorithm are

alpha Scale factor that determines sufficient reduction in perf
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Golden Section Search

The golden section search srchgol is a linear search that does not require the calculation of the
slope. This routine begins by locating an interval in which the minimum of the performance function
occurs. This is accomplished by evaluating the performance at a sequence of points, starting at a
distance of delta and doubling in distance each step, along the search direction. When the
performance increases between two successive iterations, a minimum has been bracketed. The next
step is to reduce the size of the interval containing the minimum. Two new points are located within
the initial interval. The values of the performance at these two points determine a section of the
interval that can be discarded, and a new interior point is placed within the new interval. This
procedure is continued until the interval of uncertainty is reduced to a width of tol, which is equal to
delta/scale_tol.
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See [HDB96], starting on page 12-16, for a complete description of the golden section search. Try the
Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the performance of
the golden section search in combination with a conjugate gradient algorithm.

Algorithms
srchgol locates the minimum of the performance function in the search direction dX, using the
golden section search. It is based on the algorithm as described on page 33 of Scales (see reference
below).

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchhyb

Introduced before R2006a
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srchhyb
1-D minimization using a hybrid bisection-cubic search

Syntax
[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchhyb is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique that is a combination of a bisection and a
cubic interpolation.

[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
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retcode Return code that has three elements. The first two elements
correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.

 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Hybrid Bisection Cubic Search

Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of bisection and cubic
interpolation. For the bisection algorithm, one point is located in the interval of uncertainty, and the
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performance and its derivative are computed. Based on this information, half of the interval of
uncertainty is discarded. In the hybrid algorithm, a cubic interpolation of the function is obtained by
using the value of the performance and its derivative at the two endpoints. If the minimum of the
cubic interpolation falls within the known interval of uncertainty, then it is used to reduce the interval
of uncertainty. Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. This algorithm does
require derivative information, so it performs more computations at each step of the algorithm than
the golden section search or Brent’s algorithm.

Algorithms
srchhyb locates the minimum of the performance function in the search direction dX, using the
hybrid bisection-cubic interpolation algorithm described on page 50 of Scales (see reference below).

References
Scales, L.E., Introduction to Non-Linear Optimization, New York Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchgol

Introduced before R2006a
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sse
Sum squared error performance function

Syntax
perf = sse(net,t,y,ew)
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,FP)

Description
sse is a network performance function. It measures performance according to the sum of squared
errors.

perf = sse(net,t,y,ew) takes these input arguments and optional function parameters,

net Neural network
t Matrix or cell array of target vectors
y Matrix or cell array of output vectors
ew Error weights (default = {1})

and returns the sum squared error.

This function has two optional function parameters which can be defined with parameter name/pair
arguments, or as a structure FP argument with fields having the parameter name and assigned the
parameter values.

[...] = sse(...,'regularization',regularization)

[...] = sse(...,'normalization',normalization)

[...] = sse(...,FP)

• regularization — can be set to any value between the default of 0 and 1. The greater the
regularization value, the more squared weights and biases are taken into account in the
performance calculation.

• normalization

• 'none' — performs no normalization, the default.
• 'standard' — normalizes outputs and targets to [-1, +1], and therefore normalizes errors

to [-2, +2].
• 'percent' — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes

errors to [-1, +1].

Examples
Here a network is trained to fit a simple data set and its performance calculated
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[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)

Network Use
To prepare a custom network to be trained with sse, set net.performFcn to 'sse'. This
automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate performance.

Introduced before R2006a
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staticderiv
Static derivative function

Syntax
staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from the networks performance or outputs
back to its inputs. For time series data and dynamic networks this function ignores the delay
connections resulting in a approximation (which may be good or not) of the actual derivative. This
function is used by Elman networks (elmannet) which is a dynamic network trained by the static
derivative approximation when full derivative calculations are not available. As full derivatives are
calculated by all the other derivative functions, this function is not recommended for dynamic
networks except for research into training algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)
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See Also
bttderiv | defaultderiv | fpderiv | num2deriv

Introduced in R2010b
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sumabs
Sum of absolute elements of matrix or matrices

Syntax
[s,n] = sumabs(x)

Description
[s,n] = sumabs(x) takes a matrix or cell array of matrices and returns,

s Sum of all absolute finite values
n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples
m = sumabs([1 2;3 4])
[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})

See Also
meanabs | meansqr | sumsqr

Introduced in R2010b
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sumsqr
Sum of squared elements of matrix or matrices

Syntax
[s,n] = sumsqr(x)

Description
[s,n] = sumsqr(x) takes a matrix or cell array of matrices, x, and returns the sum, s, of all
squared finite values in x, and the number of finite values, n.

If x does not contain finite values, the sum returned is 0.

Examples

Calculate the Sum of Squared Elements Using the sumsqr Function

This example shows how to calculate the sum of squared elements of a matrix and a cell array using
the sumsqr function.

m = sumsqr([1 2;3 4])

m = 30

[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})

m = 75

n = 7

Input Arguments
x — Input matrix
matrix | cell array of matrices

Input elements, specified as a matrix or cell array of matrices.

Output Arguments
s — Sum of squared elements
scalar

Sum of all squared elements in x, returned as a scalar.

n — Number of finite values
scalar

Number of finite values in x, returned as a scalar.
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See Also
meanabs | meansqr | sumabs

Introduced before R2006a
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tansig
Hyperbolic tangent sigmoid transfer function

Graph and Symbol

Syntax
A = tansig(N,FP)

Description
tansig is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = tansig(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements squashed into [-1 1].

Examples
Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tansig';

Algorithms
a = tansig(n) = 2/(1+exp(-2*n))-1

This is mathematically equivalent to tanh(N). It differs in that it runs faster than the MATLAB
implementation of tanh, but the results can have very small numerical differences. This function is a
good tradeoff for neural networks, where speed is important and the exact shape of the transfer
function is not.
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References
Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating the convergence of the
backpropagation method,” Biological Cybernetics, Vol. 59, 1988, pp. 257–263

See Also
logsig | sim

Introduced before R2006a
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tapdelay
Shift neural network time series data for tap delay

Syntax
tapdelay(x,i,ts,delays)

Description
tapdelay(x,i,ts,delays) takes these arguments,

x Neural network time series data
i Signal index
ts Timestep index
delays Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples
Here a random signal x consisting of eight timesteps is defined, and a tap delay with delays of [0 1
4] is simulated at timestep 6.

x = num2cell(rand(1,8));
y = tapdelay(x,1,6,[0 1 4])

See Also
extendts | nndata | preparets

Introduced in R2010b
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timedelaynet
Time delay neural network

Syntax
timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description
Time delay networks are similar to feedforward networks, except that the input weight has a tap
delay line associated with it. This allows the network to have a finite dynamic response to time series
input data. This network is also similar to the distributed delay neural network (distdelaynet),
which has delays on the layer weights in addition to the input weight.

timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a time delay neural network.

Examples

Train Time Delay Network and Predict on New Data

Partition the training set. Use Xnew to do prediction in closed loop mode later.

[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);

Train a time delay network, and simulate it on the first 80 observations.

net = timedelaynet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
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Calculate the network performance.

[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y);

Run the prediction for 20 timesteps ahead in closed loop mode.

[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)

y2 = netc(Xnew,Xic,Aic);

See Also
distdelaynet | narnet | narxnet | preparets | removedelay

Introduced in R2010b
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tonndata
Convert data to standard neural network cell array form

Syntax
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description
[y,wasMatrix] = tonndata(x,columnSamples,cellTime) takes these arguments,

x Matrix or cell array of matrices
columnSamples True if original samples are oriented as columns, false if rows
cellTime True if original samples are columns of a cell array, false if they are

stored in a matrix

and returns

y Original data transformed into standard neural network cell array form
wasMatrix True if original data was a matrix (as opposed to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will be transposed, so row
samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns of a cell array so time
originally represented as vectors in a matrix will now be represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the transformation.

Examples
Here data consisting of six timesteps of 5-element vectors, originally represented as a matrix with six
columns, is converted to standard neural network representation and back.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false;     % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

See Also
fromnndata | nndata | nndata2sim | sim2nndata

Introduced in R2010b
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train
Train shallow neural network

Syntax
trainedNet = train(net,X,T,Xi,Ai,EW)
[trainedNet,tr] = train(net,X,T,Xi,Ai,EW)
[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value)

Description
This function trains a shallow neural network. For deep learning with convolutional or LSTM neural
networks, see trainNetwork instead.

trainedNet = train(net,X,T,Xi,Ai,EW) trains a network net according to net.trainFcn
and net.trainParam.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW) also returns a training record.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value) trains a network with additional
options specified by one or more name-value pair arguments.

Examples

Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

x = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'o')

Here feedforwardnet creates a two-layer feed-forward network. The network has one hidden layer
with ten neurons.

net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
plot(x,t,'o',x,y1,'x')

The network is trained and then resimulated.

net = train(net,x,t);
y2 = net(x)
plot(x,t,'o',x,y1,'x',x,y2,'*')

Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input, to model a
levitated magnet system defined by a control current x and the magnet’s vertical position response t,
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then simulates the network. The function preparets prepares the data before training and
simulation. It creates the open-loop network’s combined inputs xo, which contains both the external
input x and previous values of position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Deep Learning Toolbox to simulate and train networks faster and
on larger datasets than can fit on one PC. Parallel training is currently supported for backpropagation
training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);

Use Composite values to distribute the data manually, and get back the results as a Composite value.
If the data is loaded as it is distributed then while each piece of the dataset must fit in RAM, the
entire dataset is limited only by the total RAM of all the workers.

[X,T] = vinyl_dataset;
Q = size(X,2);
Xc = Composite;
Tc = Composite;
numWorkers = numel(Xc);
ind = [0 ceil((1:numWorkers)*(Q/numWorkers))];
for i=1:numWorkers
    indi = (ind(i)+1):ind(i+1);
    Xc{i} = X(:,indi);
    Tc{i} = T(:,indi);
end
net = feedforwardnet;
net = configure(net,X,T);
net = train(net,Xc,Tc);
Yc = net(Xc);

Note in the example above the function configure was used to set the dimensions and processing
settings of the network's inputs. This normally happens automatically when train is called, but when
providing composite data this step must be done manually with non-Composite data.
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Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel Computing
Toolbox. GPU training is currently supported for backpropagation training only, not for self-organizing
maps.

[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useGPU','yes');
y = net(X); 

To put the data on a GPU manually:

[X,T] = vinyl_dataset;
Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = configure(net,X,T);
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu); 

Note in the example above the function configure was used to set the dimensions and processing
settings of the network's inputs. This normally happens automatically when train is called, but when
providing gpuArray data this step must be done manually with non-gpuArray data.

To run in parallel, with workers each assigned to a different unique GPU, with extra workers running
on CPU:

net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);

Using only workers with unique GPUs might result in higher speed, as CPU workers might not keep
up.

net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net(X);

Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every two minutes.
[x,t] = vinyl_dataset;
net = fitnet([60 30]);
net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);

After a computer failure, the latest network can be recovered and used to continue training from the
point of failure. The checkpoint file includes a structure variable checkpoint, which includes the
network, training record, filename, time, and number.

[x,t] = vinyl_dataset;
load MyCheckpoint
net = checkpoint.net;
net = train(net,x,t,'CheckpointFile','MyCheckpoint');

Another use for the checkpoint feature is when you stop a parallel training session (started with the
'UseParallel' parameter) even though the Neural Network Training Tool is not available during
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parallel training. In this case, set a 'CheckpointFile', use Ctrl+C to stop training any time, then
load your checkpoint file to get the network and training record.

Input Arguments
net — Input network
network object

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

X — Network inputs
matrix | cell array | composite data | gpuArray

Network inputs, specified as an R-by-Q matrix or an Ni-by-TS cell array, where

• R is the input size
• Q is the batch size
• Ni = net.numInputs
• TS is the number of time steps

train arguments can have two formats: matrices, for static problems and networks with single
inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and
outputs.

• The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient
for networks with only one input and output, but can be used with networks that have more. When
the network has multiple inputs, the matrix size is (sum of Ri)-by-Q.

• The cell array format is more general, and more convenient for networks with multiple inputs and
outputs, allowing sequences of inputs to be presented. Each element X{i,ts} is an Ri-by-Q
matrix, where Ri = net.inputs{i}.size.

If Composite data is used, then 'useParallel' is automatically set to 'yes'. The function takes
Composite data and returns Composite results.

If gpuArray data is used, then 'useGPU' is automatically set to 'yes'. The function takes gpuArray
data and returns gpuArray results

Note If a column of X contains at least one NaN, train does not use that column for training,
testing, or validation. If a target value in T is a NaN, then train ignores that row, and uses the other
rows for training, testing, or validation.

T — Network targets
zeros (default) | matrix | cell array | composite data | gpuArray

Network targets, specified as a U-by-Q matrix or an No-by-TS cell array, where

• U is the output size
• Q is the batch size
• No = net.numOutputs
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• TS is the number of time steps

train arguments can have two formats: matrices, for static problems and networks with single
inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and
outputs.

• The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient
for networks with only one input and output, but can be used with networks that have more. When
the network has multiple inputs, the matrix size is (sum of Ui)-by-Q.

• The cell array format is more general, and more convenient for networks with multiple inputs and
outputs, allowing sequences of inputs to be presented. Each element T{i,ts} is a Ui-by-Q matrix,
where Ui = net.outputs{i}.size.

If Composite data is used, then 'useParallel' is automatically set to 'yes'. The function takes
Composite data and returns Composite results.

If gpuArray data is used, then 'useGPU' is automatically set to 'yes'. The function takes gpuArray
data and returns gpuArray results

Note that T is optional and need only be used for networks that require targets.

Note Any NaN values in the inputs X or the targets T, are treated as missing data. If a column of X or
T contains at least one NaN, that column is not used for training, testing, or validation.

Xi — Initial input delay conditions
zeros (default) | cell array | matrix

Initial input delay conditions, specified as an Ni-by-ID cell array or an R-by-(ID*Q) matrix, where

• ID = net.numInputDelays
• Ni = net.numInputs
• R is the input size
• Q is the batch size

For cell array input, the columns of Xi are ordered from the oldest delay condition to the most
recent: Xi{i,k} is the input i at time ts = k - ID.

Xi is also optional and need only be used for networks that have input or layer delays.

Ai — Initial layer delay conditions
zeros (default) | cell array | matrix

Initial layer delay conditions, specified as a Nl-by-LD cell array or a (sum of Si)-by-(LD*Q) matrix,
where

• Nl = net.numLayers
• LD = net.numLayerDelays
• Si = net.layers{i}.size
• Q is the batch size
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For cell array input, the columns of Ai are ordered from the oldest delay condition to the most
recent: Ai{i,k} is the layer output i at time ts = k - LD.

EW — Error weights
cell array

Error weights, specified as a No-by-TS cell array or a (sum of Ui)-by-Q matrix, where

• No = net.numOutputs
• TS is the number of time steps
• Ui = net.outputs{i}.size
• Q is the batch size

For cell array input. each element EW{i,ts} is a Ui-by-Q matrix, where

• Ui = net.outputs{i}.size
• Q is the batch size

The error weights EW can also have a size of 1 in place of all or any of No, TS, Ui or Q. In that case, EW
is automatically dimension extended to match the targets T. This allows for conveniently weighting
the importance in any dimension (such as per sample) while having equal importance across another
(such as time, with TS=1). If all dimensions are 1, for instance if EW = {1}, then all target values are
treated with the same importance. That is the default value of EW.

As noted above, the error weights EW can be of the same dimensions as the targets T, or have some
dimensions set to 1. For instance if EW is 1-by-Q, then target samples will have different importances,
but each element in a sample will have the same importance. If EW is (sum of Ui)-by-1, then each
output element has a different importance, with all samples treated with the same importance.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'useParallel','yes'

useParallel — Option to specify parallel calculations
'no' (default) | 'yes'

Option to specify parallel calculations, specified as 'yes' or 'no'.

• 'no' – Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.
• 'yes' – Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations

occur on the normal MATLAB thread.

useGPU — Option to specify GPU calculations
'no' (default) | 'yes' | 'only'

Option to specify GPU calculations, specified as 'yes', 'no', or 'only'.

• 'no' – Calculations occur on the CPU. This is the default 'useGPU' setting.
• 'yes' – Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel

Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported,
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calculations remain on the CPU. If 'useParallel' is also 'yes' and a parallel pool is open, then
each worker with a unique GPU uses that GPU, other workers run calculations on their respective
CPU cores.

• 'only' – If no parallel pool is open, then this setting is the same as 'yes'. If a parallel pool is
open then only workers with unique GPUs are used. However, if a parallel pool is open, but no
supported GPUs are available, then calculations revert to performing on all worker CPUs.

showResources — Option to show resources
'no' (default) | 'yes'

Option to show resources, specified as 'yes' or 'no'.

• 'no' – Do not display computing resources used at the command line. This is the default setting.
• 'yes' – Show at the command line a summary of the computing resources actually used. The

actual resources may differ from the requested resources, if parallel or GPU computing is
requested but a parallel pool is not open or a supported GPU is not available. When parallel
workers are used, each worker’s computation mode is described, including workers in the pool
that are not used.

reduction — Memory reduction
1 (default) | positive integer

Memory reduction, specified as a positive integer.

For most neural networks, the default CPU training computation mode is a compiled MEX algorithm.
However, for large networks the calculations might occur with a MATLAB calculation mode. This can
be confirmed using 'showResources'. If MATLAB is being used and memory is an issue, setting the
reduction option to a value N greater than 1, reduces much of the temporary storage required to
train by a factor of N, in exchange for longer training times.

CheckpointFile — Checkpoint file
'' (default) | character vector

Checkpoint file, specified as a character vector.

The value for 'CheckpointFile' can be set to a filename to save in the current working folder, to a
file path in another folder, or to an empty string to disable checkpoint saves (the default value).

CheckpointDelay — Checkpoint delay
60 (default) | nonnegative integer

Checkpoint delay, specified as a nonnegative integer.

The optional parameter 'CheckpointDelay' limits how often saves happen. Limiting the frequency
of checkpoints can improve efficiency by keeping the amount of time saving checkpoints low
compared to the time spent in calculations. It has a default value of 60, which means that checkpoint
saves do not happen more than once per minute. Set the value of 'CheckpointDelay' to 0 if you
want checkpoint saves to occur only once every epoch.

Output Arguments
trainedNet — Trained network
network object
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Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

Algorithms
train calls the function indicated by net.trainFcn, using the training parameter values indicated
by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors to the network.
The network is then updated according to the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met, or any other
stopping condition of the function net.trainFcn occurs.

Some training functions depart from this norm by presenting only one input vector (or sequence)
each epoch. An input vector (or sequence) is chosen randomly for each epoch from concurrent input
vectors (or sequences). competlayer returns networks that use trainru, a training function that
does this.

See Also
adapt | init | revert | sim

Introduced before R2006a
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trainb
Batch training with weight and bias learning rules

Syntax
net.trainFcn = 'trainb'
[net,tr] = train(net,...)

Description
trainb is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainb', thus:

net.trainFcn = 'trainb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainb.

trainb trains a network with weight and bias learning rules with batch updates. The weights and
biases are updated at the end of an entire pass through the input data.

Training occurs according to trainb’s training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainb by calling linearlayer.

To prepare a custom network to be trained with trainb,

1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
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2 Set weight and bias learning parameters to desired values.
3 Call train.

Algorithms
Each weight and bias is updated according to its learning function after each epoch (one pass
through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
linearlayer | train

Introduced before R2006a
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trainbfg
BFGS quasi-Newton backpropagation

Syntax
net.trainFcn = 'trainbfg'
[net,tr] = train(net,...)

Description
trainbfg is a network training function that updates weight and bias values according to the BFGS
quasi-Newton method.

net.trainFcn = 'trainbfg' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbfg.

Training occurs according to trainbfg training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.showWindow true Show training window
net.trainParam.show 25 Epochs between displays (NaN for no

displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchbac' Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size
net.trainParam.batch_frag 0 In case of multiple batches, they are considered

independent. Any nonzero value implies a fragmented
batch, so the final layer’s conditions of a previous trained
epoch are used as initial conditions for the next epoch.

Network Use
You can create a standard network that uses trainbfg with feedfowardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1 Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to trainbfg’s default
parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbfg.

Examples

Train Neural Network Using trainbfg Train Function

This example shows how to train a neural network using the trainbfg train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainbfg');
net = train(net, x, t);
y = net(x);

More About
BFGS Quasi-Newton Backpropagation

Newton’s method is an alternative to the conjugate gradient methods for fast optimization. The basic
step of Newton’s method is

xk + 1 = xk− Ak
−1gk

where Ak
−1 is the Hessian matrix (second derivatives) of the performance index at the current values

of the weights and biases. Newton’s method often converges faster than conjugate gradient methods.
Unfortunately, it is complex and expensive to compute the Hessian matrix for feedforward neural
networks. There is a class of algorithms that is based on Newton’s method, but which does not
require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They
update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as
a function of the gradient. The quasi-Newton method that has been most successful in published
studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is implemented
in the trainbfg routine.
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The BFGS algorithm is described in [DeSc83]. This algorithm requires more computation in each
iteration and more storage than the conjugate gradient methods, although it generally converges in
fewer iterations. The approximate Hessian must be stored, and its dimension is n x n, where n is
equal to the number of weights and biases in the network. For very large networks it might be better
to use Rprop or one of the conjugate gradient algorithms. For smaller networks, however, trainbfg
can be an efficient training function.

Algorithms
trainbfg can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is a approximate Hessian matrix. See page 119 of Gill, Murray, and
Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton
method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Gill, Murray, & Wright, Practical Optimization, 1981

See Also
cascadeforwardnet | feedforwardnet | traincgb | traincgf | traincgp | traingda |
traingdm | traingdx | trainlm | trainoss | trainrp | trainscg

Introduced before R2006a
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trainbfgc
BFGS quasi-Newton backpropagation for use with NN model reference adaptive controller

Syntax
[net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q)
info = trainbfgc(code)

Description
trainbfgc is a network training function that updates weight and bias values according to the BFGS
quasi-Newton method. This function is called from nnmodref, a GUI for the model reference adaptive
control Simulink block.

[net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q) takes these
inputs,

net Neural network
P Delayed input vectors
T Layer target vectors
Pi Initial input delay conditions
Ai Initial layer delay conditions
epochs Number of iterations for training
TS Time steps
Q Batch size

and returns

net Trained network
TR Training record of various values over each epoch:
 TR.epoch  Epoch number
 TR.perf  Training performance
 TR.vperf  Validation performance
 TR.tperf  Test performance
Y Network output for last epoch
E Layer errors for last epoch
Pf Final input delay conditions
Af Collective layer outputs for last epoch
flag_stop Indicates if the user stopped the training

Training occurs according to trainbfgc’s training parameters, shown here with their default values:
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net.trainParam.epochs 100 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 5 Maximum validation failures
net.trainParam.searchFcn 'srchbacx

'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear
search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
net.trainParam.bmax 26 Maximum step size

info = trainbfgc(code) returns useful information for each code character vector:

'pnames' Names of training parameters
'pdefaults' Default training parameters

Algorithms
trainbfgc can train any network as long as its weight, net input, and transfer functions have
derivative functions. Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill, Murray, and
Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton
method.
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Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Precision problems have occurred in the matrix inversion.

References
Gill, Murray, and Wright, Practical Optimization, 1981

Introduced in R2006a
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trainbr
Bayesian regularization backpropagation

Syntax
net.trainFcn = 'trainbr'
[net,tr] = train(net,...)

Description
trainbr is a network training function that updates the weight and bias values according to
Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, and
then determines the correct combination so as to produce a network that generalizes well. The
process is called Bayesian regularization.

net.trainFcn = 'trainbr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbr.

Training occurs according to trainbr training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.mu 0.005 Marquardt adjustment parameter
net.trainParam.mu_dec 0.1 Decrease factor for mu
net.trainParam.mu_inc 10 Increase factor for mu
net.trainParam.mu_max 1e10 Maximum value for mu
net.trainParam.max_fail inf Maximum validation failures
net.trainParam.min_grad 1e-7 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation stops are disabled by default (max_fail = inf) so that training can continue until an
optimal combination of errors and weights is found. However, some weight/bias minimization can still
be achieved with shorter training times if validation is enabled by setting max_fail to 6 or some
other strictly positive value.

Network Use
You can create a standard network that uses trainbr with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbr,
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1 Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to trainbr’s default
parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbr. See
feedforwardnet and cascadeforwardnet for examples.

Examples
Here is a problem consisting of inputs p and targets t to be solved with a network. It involves fitting
a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

A feed-forward network is created with a hidden layer of 2 neurons.

net = feedforwardnet(2,'trainbr');

Here the network is trained and tested.

net = train(net,p,t);
a = net(p)

Limitations
This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of
squared errors. Therefore networks trained with this function must use either the mse or sse
performance function.

Algorithms
trainbr can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It also
modifies the linear combination so that at the end of training the resulting network has good
generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and
Foresee and Hagan (Proceedings of the International Joint Conference on Neural Networks, June,
1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm.
Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight
and bias variables X. Each variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change shown above results in a reduced
performance value. The change is then made to the network, and mu is decreased by mu_dec.
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Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• mu exceeds mu_max.

References
[1] MacKay, David J. C. "Bayesian interpolation." Neural computation. Vol. 4, No. 3, 1992, pp. 415–

447.

[2] Foresee, F. Dan, and Martin T. Hagan. "Gauss-Newton approximation to Bayesian learning."
Proceedings of the International Joint Conference on Neural Networks, June, 1997.

See Also
cascadeforwardnet | feedforwardnet | trainbfg | traincgb | traincgf | traincgp |
traingda | traingdm | traingdx | trainlm | trainrp | trainscg

Introduced before R2006a
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trainbu
Batch unsupervised weight/bias training

Syntax
net.trainFcn = 'trainbu'
[net,tr] = train(net,...)

Description
trainbu trains a network with weight and bias learning rules with batch updates. Weights and
biases updates occur at the end of an entire pass through the input data.

trainbu is not called directly. Instead the train function calls it for networks whose
NET.trainFcn property is set to 'trainbu', thus:

net.trainFcn = 'trainbu' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbu.

Training occurs according to trainbu training parameters, shown here with the following default
values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation and test vectors have no impact on training for this function, but act as independent
measures of network generalization.

Network Use
You can create a standard network that uses trainbu by calling selforgmap. To prepare a custom
network to be trained with trainbu:

1 Set NET.trainFcn to 'trainbu'. (This option sets NET.trainParam to trainbu default
parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.
3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.
4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network:

1 Set NET.trainParam properties to desired values.
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2 Set weight and bias learning parameters to desired values.
3 Call train.

See selforgmap for training examples.

Algorithms
Each weight and bias updates according to its learning function after each epoch (one pass through
the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
train | trainb

Introduced in R2010b
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trainc
Cyclical order weight/bias training

Syntax
net.trainFcn = 'trainc'
[net,tr] = train(net,...)

Description
trainc is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainc', thus:

net.trainFcn = 'trainc' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainc.

trainc trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in cyclic order.

Training occurs according to trainc training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainc by calling competlayer. To prepare a custom
network to be trained with trainc,

1 Set net.trainFcn to 'trainc'. This sets net.trainParam to trainc’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

 trainc

2-407



See perceptron for training examples.

Algorithms
For each epoch, each vector (or sequence) is presented in order to the network, with the weight and
bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

See Also
competlayer | train

Introduced before R2006a
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traincgb
Conjugate gradient backpropagation with Powell-Beale restarts

Syntax
net.trainFcn = 'traincgb'
[net,tr] = train(net,...)

Description
traincgb is a network training function that updates weight and bias values according to the
conjugate gradient backpropagation with Powell-Beale restarts.

net.trainFcn = 'traincgb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgb.

Training occurs according to traincgb training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchch

a'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgb with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgb,

1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgb.

Examples

Train Neural Network Using traincgb Train Function

This example shows how to train a neural network using the traincgb train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgb');
net = train(net, x, t);
y = net(x);

More About
Powell-Beale Algorithm

For all conjugate gradient algorithms, the search direction is periodically reset to the negative of the
gradient. The standard reset point occurs when the number of iterations is equal to the number of
network parameters (weights and biases), but there are other reset methods that can improve the
efficiency of training. One such reset method was proposed by Powell [Powe77], based on an earlier
version proposed by Beale [Beal72]. This technique restarts if there is very little orthogonality left
between the current gradient and the previous gradient. This is tested with the following inequality:

gk− 1
T gk ≥ 0.2 gk

2

If this condition is satisfied, the search direction is reset to the negative of the gradient.

The traincgb routine has somewhat better performance than traincgp for some problems,
although performance on any given problem is difficult to predict. The storage requirements for the
Powell-Beale algorithm (six vectors) are slightly larger than for Polak-Ribiére (four vectors).
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Algorithms
traincgb can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous search direction according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. The Powell-
Beale variation of conjugate gradient is distinguished by two features. First, the algorithm uses a test
to determine when to reset the search direction to the negative of the gradient. Second, the search
direction is computed from the negative gradient, the previous search direction, and the last search
direction before the previous reset. See Powell, Mathematical Programming, Vol. 12, 1977, pp. 241 to
254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Powell, M.J.D., “Restart procedures for the conjugate gradient method,” Mathematical Programming,
Vol. 12, 1977, pp. 241–254

See Also
trainbfg | traincgf | traincgp | traingda | traingdm | traingdx | trainlm | trainoss |
trainscg

Introduced before R2006a
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traincgf
Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax
net.trainFcn = 'traincgf'
[net,tr] = train(net,...)

Description
traincgf is a network training function that updates weight and bias values according to conjugate
gradient backpropagation with Fletcher-Reeves updates.

net.trainFcn = 'traincgf' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgf.

Training occurs according to traincgf training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha

'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgf with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgf,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgf.

Examples

Train Neural Network Using traincgf Train Function

This example shows how to train a neural network using the traincgf train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgf');
net = train(net, x, t);
y = net(x);

More About
Conjugate Gradient Algorithms

All the conjugate gradient algorithms start out by searching in the steepest descent direction
(negative of the gradient) on the first iteration.

p0 = − g0

A line search is then performed to determine the optimal distance to move along the current search
direction:

xk + 1 = xkαkpk

Then the next search direction is determined so that it is conjugate to previous search directions. The
general procedure for determining the new search direction is to combine the new steepest descent
direction with the previous search direction:

pk = − gk + βkpk− 1

The various versions of the conjugate gradient algorithm are distinguished by the manner in which
the constant βk is computed. For the Fletcher-Reeves update the procedure is
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βk =
gk

Tgk
gk− 1

T gk− 1

This is the ratio of the norm squared of the current gradient to the norm squared of the previous
gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than variable learning rate
backpropagation, and are sometimes faster than trainrp, although the results vary from one
problem to another. The conjugate gradient algorithms require only a little more storage than the
simpler algorithms. Therefore, these algorithms are good for networks with a large number of
weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an illustration of the
performance of a conjugate gradient algorithm.

Algorithms
traincgf can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous search direction, according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. For the
Fletcher-Reeves variation of conjugate gradient it is computed according to

Z = normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr is the norm square
of the current gradient. See page 78 of Scales (Introduction to Non-Linear Optimization) for a more
detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).
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References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
trainbfg | traincgb | traincgp | traingda | traingdm | traingdx | trainlm | trainoss |
trainscg

Introduced before R2006a
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traincgp
Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax
net.trainFcn = 'traincgp'
[net,tr] = train(net,...)

Description
traincgp is a network training function that updates weight and bias values according to conjugate
gradient backpropagation with Polak-Ribiére updates.

net.trainFcn = 'traincgp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgp.

Training occurs according to traincgp training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha

'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgp with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgp.

Examples

Train Neural Network Using traincgp Train Function

This example shows how to train a neural network using the traincgp train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgp');
net = train(net, x, t);
y = net(x);

More About
Conjugate Gradient Backpropagation with Polak-Ribiére Updates

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére. As with the
Fletcher-Reeves algorithm, traincgf, the search direction at each iteration is determined by

pk = − gk + βkpk− 1

For the Polak-Ribiére update, the constant βk is computed by

βk =
Δgk− 1

T gk
gk− 1

T gk− 1

This is the inner product of the previous change in the gradient with the current gradient divided by
the norm squared of the previous gradient. See [FlRe64] or [HDB96] for a discussion of the Polak-
Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict which algorithm
will perform best on a given problem. The storage requirements for Polak-Ribiére (four vectors) are
slightly larger than for Fletcher-Reeves (three vectors).
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Algorithms
traincgp can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous search direction according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. For the Polak-
Ribiére variation of conjugate gradient, it is computed according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient, and gX_old is the gradient on the
previous iteration. See page 78 of Scales (Introduction to Non-Linear Optimization, 1985) for a more
detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
trainbfg | traincgb | traincgf | traingda | traingdm | traingdx | trainlm | trainoss |
trainrp | trainscg

Introduced before R2006a
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traingd
Gradient descent backpropagation

Syntax
net.trainFcn = 'traingd'
[net,tr] = train(net,...)

Description
traingd is a network training function that updates weight and bias values according to gradient
descent.

net.trainFcn = 'traingd' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingd.

Training occurs according to traingd training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingd with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingd.

See help feedforwardnet and help cascadeforwardnet for examples.
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More About
Gradient Descent Backpropagation

The batch steepest descent training function is traingd. The weights and biases are updated in the
direction of the negative gradient of the performance function. If you want to train a network using
batch steepest descent, you should set the network trainFcn to traingd, and then call the function
train. There is only one training function associated with a given network.

There are seven training parameters associated with traingd:

• epochs
• show
• goal
• time
• min_grad
• max_fail
• lr

The learning rate lr is multiplied times the negative of the gradient to determine the changes to the
weights and biases. The larger the learning rate, the bigger the step. If the learning rate is made too
large, the algorithm becomes unstable. If the learning rate is set too small, the algorithm takes a long
time to converge. See page 12-8 of [HDB96] for a discussion of the choice of learning rate.

The training status is displayed for every show iterations of the algorithm. (If show is set to NaN, then
the training status is never displayed.) The other parameters determine when the training stops. The
training stops if the number of iterations exceeds epochs, if the performance function drops below
goal, if the magnitude of the gradient is less than mingrad, or if the training time is longer than
time seconds. max_fail, which is associated with the early stopping technique, is discussed in
Improving Generalization.

The following code creates a training set of inputs p and targets t. For batch training, all the input
vectors are placed in one matrix.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];

Create the feedforward network.

net = feedforwardnet(3,'traingd');

In this simple example, turn off a feature that is introduced later.

net.divideFcn = '';

At this point, you might want to modify some of the default training parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding commands are not necessary.
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Now you are ready to train the network.

[net,tr] = train(net,p,t);

The training record tr contains information about the progress of training.

Now you can simulate the trained network to obtain its response to the inputs in the training set.

a = net(p)
a =
   -1.0026   -0.9962   1.0010   0.9960

Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the
performance of the batch gradient descent algorithm.

Algorithms
traingd can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
traingda | traingdm | traingdx | trainlm

Introduced before R2006a
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traingda
Gradient descent with adaptive learning rate backpropagation

Syntax
net.trainFcn = 'traingda'
[net,tr] = train(net,...)

Description
traingda is a network training function that updates weight and bias values according to gradient
descent with adaptive learning rate.

net.trainFcn = 'traingda' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingda.

Training occurs according to traingda training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.lr_inc 1.05 Ratio to increase learning rate
net.trainParam.lr_dec 0.7 Ratio to decrease learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.max_perf_inc 1.04 Maximum performance increase
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingda with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingda,

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to traingda’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingda.

See help feedforwardnet and help cascadeforwardnet for examples.
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More About
Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training. The
performance of the algorithm is very sensitive to the proper setting of the learning rate. If the
learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is
too small, the algorithm takes too long to converge. It is not practical to determine the optimal
setting for the learning rate before training, and, in fact, the optimal learning rate changes during the
training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to
change during the training process. An adaptive learning rate attempts to keep the learning step size
as large as possible while keeping learning stable. The learning rate is made responsive to the
complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First,
the initial network output and error are calculated. At each epoch new weights and biases are
calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio,
max_perf_inc (typically 1.04), the new weights and biases are discarded. In addition, the learning
rate is decreased (typically by multiplying by lr_dec = 0.7). Otherwise, the new weights, etc., are
kept. If the new error is less than the old error, the learning rate is increased (typically by multiplying
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can learn without
large error increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a
larger learning rate could result in stable learning, the learning rate is increased. When the learning
rate is too high to guarantee a decrease in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an illustration of the
performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the function traingda,
which is called just like traingd, except for the additional training parameters max_perf_inc,
lr_dec, and lr_inc. Here is how it is called to train the previous two-layer network:

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)

Algorithms
traingda can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to the weight
and bias variables X. Each variable is adjusted according to gradient descent:

dX = lr*dperf/dX
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At each epoch, if performance decreases toward the goal, then the learning rate is increased by the
factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is
adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
traingd | traingdm | traingdx | trainlm

Introduced before R2006a
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traingdm
Gradient descent with momentum backpropagation

Syntax
net.trainFcn = 'traingdm'
[net,tr] = train(net,...)

Description
traingdm is a network training function that updates weight and bias values according to gradient
descent with momentum.

net.trainFcn = 'traingdm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdm.

Training occurs according to traingdm training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.mc 0.9 Momentum constant
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between showing progress
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingdm with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.
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More About
Gradient Descent with Momentum

In addition to traingd, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by traingdm, allows a network to respond not only
to the local gradient, but also to recent trends in the error surface. Acting like a lowpass filter,
momentum allows the network to ignore small features in the error surface. Without momentum a
network can get stuck in a shallow local minimum. With momentum a network can slide through such
a minimum. See page 12–9 of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter lr indicates
the learning rate, similar to the simple gradient descent. The parameter mc is the momentum
constant that defines the amount of momentum. mc is set between 0 (no momentum) and values close
to 1 (lots of momentum). A momentum constant of 1 results in a network that is completely
insensitive to the local gradient and, therefore, does not learn properly.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = net(p)

Try the Neural Network Design demonstration nnd12mo [HDB96] for an illustration of the
performance of the batch momentum algorithm.

Algorithms
traingdm can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
traingd | traingda | traingdx | trainlm
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traingdx
Gradient descent with momentum and adaptive learning rate backpropagation

Syntax
net.trainFcn = 'traingdx'
[net,tr] = train(net,...)

Description
traingdx is a network training function that updates weight and bias values according to gradient
descent momentum and an adaptive learning rate.

net.trainFcn = 'traingdx' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdx.

Training occurs according to traingdx training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.lr_inc 1.05 Ratio to increase learning rate
net.trainParam.lr_dec 0.7 Ratio to decrease learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.max_perf_inc 1.04 Maximum performance increase
net.trainParam.mc 0.9 Momentum constant
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingdx with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to traingdx’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.
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Algorithms
The function traingdx combines adaptive learning rate with momentum training. It is invoked in the
same way as traingda, except that it has the momentum coefficient mc as an additional training
parameter.

traingdx can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning rate is increased by the
factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is
adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

See Also
traingd | traingda | traingdm | trainlm

Introduced before R2006a
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trainlm
Levenberg-Marquardt backpropagation

Syntax
net.trainFcn = 'trainlm'
[net,tr] = train(net,...)

Description
trainlm is a network training function that updates weight and bias values according to Levenberg-
Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly recommended as
a first-choice supervised algorithm, although it does require more memory than other algorithms.

net.trainFcn = 'trainlm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainlm.

Training occurs according to trainlm training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-7 Minimum performance gradient
net.trainParam.mu 0.001 Initial mu
net.trainParam.mu_dec 0.1 mu decrease factor
net.trainParam.mu_inc 10 mu increase factor
net.trainParam.mu_max 1e10 Maximum mu
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation vectors are used to stop training early if the network performance on the validation vectors
fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further
check that the network is generalizing well, but do not have any effect on training.

Network Use
You can create a standard network that uses trainlm with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with trainlm,
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1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to trainlm’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainlm.

See help feedforwardnet and help cascadeforwardnet for examples.

Examples

Train Neural Network Using trainlm Train Function

This example shows how to train a neural network using the trainlm train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainlm');
net = train(net, x, t);
y = net(x);

Limitations
This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of
squared errors. Therefore, networks trained with this function must use either the mse or sse
performance function.

More About
Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach
second-order training speed without having to compute the Hessian matrix. When the performance
function has the form of a sum of squares (as is typical in training feedforward networks), then the
Hessian matrix can be approximated as

H = JTJ

and the gradient can be computed as

g = JTe

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the
weights and biases, and e is a vector of network errors. The Jacobian matrix can be computed
through a standard backpropagation technique (see [HaMe94]) that is much less complex than
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following
Newton-like update:

xk + 1 = xk− [JTJ + μI]−1JTe
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When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix. When
µ is large, this becomes gradient descent with a small step size. Newton’s method is faster and more
accurate near an error minimum, so the aim is to shift toward Newton’s method as quickly as
possible. Thus, µ is decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function. In this way, the
performance function is always reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in [Marq63]. The application
of Levenberg-Marquardt to neural network training is described in [HaMe94] and starting on page
12-19 of [HDB96]. This algorithm appears to be the fastest method for training moderate-sized
feedforward neural networks (up to several hundred weights). It also has an efficient implementation
in MATLAB® software, because the solution of the matrix equation is a built-in function, so its
attributes become even more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an illustration of the
performance of the batch Levenberg-Marquardt algorithm.

Algorithms
trainlm supports training with validation and test vectors if the network’s NET.divideFcn
property is set to a data division function. Validation vectors are used to stop training early if the
network performance on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do
not have any effect on training.

trainlm can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight
and bias variables X. Each variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in a reduced
performance value. The change is then made to the network and mu is decreased by mu_dec.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• mu exceeds mu_max.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

Introduced before R2006a
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trainoss
One-step secant backpropagation

Syntax
net.trainFcn = 'trainoss'
[net,tr] = train(net,...)

Description
trainoss is a network training function that updates weight and bias values according to the one-
step secant method.

net.trainFcn = 'trainoss' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainoss.

Training occurs according to trainoss training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.searchFcn 'srchbac

'
Name of line search routine to use

net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses trainoss with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to trainoss’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainoss.

Examples

Train Neural Network Using trainoss Train Function

This example shows how to train a neural network using the trainoss train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainoss');
net = train(net, x, t);
y = net(x);

More About
One Step Secant Method

Because the BFGS algorithm requires more storage and computation in each iteration than the
conjugate gradient algorithms, there is need for a secant approximation with smaller storage and
computation requirements. The one step secant (OSS) method is an attempt to bridge the gap
between the conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm
does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian
was the identity matrix. This has the additional advantage that the new search direction can be
calculated without computing a matrix inverse.

The one step secant method is described in [Batt92]. This algorithm requires less storage and
computation per epoch than the BFGS algorithm. It requires slightly more storage and computation
per epoch than the conjugate gradient algorithms. It can be considered a compromise between full
quasi-Newton algorithms and conjugate gradient algorithms.

Algorithms
trainoss can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:
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X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous steps and gradients, according to the
following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous iteration, and dgX is
the change in the gradient from the last iteration. See Battiti (Neural Computation, Vol. 4, 1992, pp.
141–166) for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Battiti, R., “First and second order methods for learning: Between steepest descent and Newton’s
method,” Neural Computation, Vol. 4, No. 2, 1992, pp. 141–166

See Also
trainbfg | traincgb | traincgf | traincgp | traingda | traingdm | traingdx | trainlm |
trainrp | trainscg

Introduced before R2006a
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trainr
Random order incremental training with learning functions

Syntax
net.trainFcn = 'trainr'
[net,tr] = train(net,...)

Description
trainr is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainr', thus:

net.trainFcn = 'trainr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainr.

trainr trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in random order.

Training occurs according to trainr training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainr by calling competlayer or selforgmap. To
prepare a custom network to be trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
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3 Call train.

See help competlayer and help selforgmap for training examples.

Algorithms
For each epoch, all training vectors (or sequences) are each presented once in a different random
order, with the network and weight and bias values updated accordingly after each individual
presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

See Also
train

Introduced before R2006a
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trainrp
Resilient backpropagation

Syntax
net.trainFcn = 'trainrp'
[net,tr] = train(net,...)

Description
trainrp is a network training function that updates weight and bias values according to the resilient
backpropagation algorithm (Rprop).

net.trainFcn = 'trainrp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainrp.

Training occurs according to trainrp training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.lr 0.01 Learning rate
net.trainParam.delt_inc 1.2 Increment to weight change
net.trainParam.delt_dec 0.5 Decrement to weight change
net.trainParam.delta0 0.07 Initial weight change
net.trainParam.deltamax 50.0 Maximum weight change

Network Use
You can create a standard network that uses trainrp with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with trainrp,

1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainrp.
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Examples
Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this training function is created.

Create and test a network.

net = feedforwardnet(2,'trainrp');

Here the network is trained and retested.

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = net(p)

See help feedforwardnet and help cascadeforwardnet for other examples.

More About
Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are
often called “squashing” functions, because they compress an infinite input range into a finite output
range. Sigmoid functions are characterized by the fact that their slopes must approach zero as the
input gets large. This causes a problem when you use steepest descent to train a multilayer network
with sigmoid functions, because the gradient can have a very small magnitude and, therefore, cause
small changes in the weights and biases, even though the weights and biases are far from their
optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate these harmful
effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the
direction of the weight update; the magnitude of the derivative has no effect on the weight update.
The size of the weight change is determined by a separate update value. The update value for each
weight and bias is increased by a factor delt_inc whenever the derivative of the performance
function with respect to that weight has the same sign for two successive iterations. The update value
is decreased by a factor delt_dec whenever the derivative with respect to that weight changes sign
from the previous iteration. If the derivative is zero, the update value remains the same. Whenever
the weights are oscillating, the weight change is reduced. If the weight continues to change in the
same direction for several iterations, the magnitude of the weight change increases. A complete
description of the Rprop algorithm is given in [RiBr93].

The following code recreates the previous network and trains it using the Rprop algorithm. The
training parameters for trainrp are epochs, show, goal, time, min_grad, max_fail, delt_inc,
delt_dec, delta0, and deltamax. The first eight parameters have been previously discussed. The
last two are the initial step size and the maximum step size, respectively. The performance of Rprop is
not very sensitive to the settings of the training parameters. For the example below, the training
parameters are left at the default values:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
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net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)

rprop is generally much faster than the standard steepest descent algorithm. It also has the nice
property that it requires only a modest increase in memory requirements. You do need to store the
update values for each weight and bias, which is equivalent to storage of the gradient.

Algorithms
trainrp can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is the gradient. At each iteration
the elements of deltaX are modified. If an element of gX changes sign from one iteration to the next,
then the corresponding element of deltaX is decreased by delta_dec. If an element of gX
maintains the same sign from one iteration to the next, then the corresponding element of deltaX is
increased by delta_inc. See Riedmiller, M., and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE International Conference
on Neural Networks,1993, pp. 586–591.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Riedmiller, M., and H. Braun, “A direct adaptive method for faster backpropagation learning: The
RPROP algorithm,” Proceedings of the IEEE International Conference on Neural Networks,1993, pp.
586–591.

See Also
trainbfg | traincgb | traincgf | traincgp | traingda | traingdm | traingdx | trainlm |
trainoss | trainscg

Introduced before R2006a
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trainru
Unsupervised random order weight/bias training

Syntax
net.trainFcn = 'trainru'
[net,tr] = train(net,...)

Description
trainru is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainru', thus:

net.trainFcn = 'trainru' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainru.

trainru trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in random order.

Training occurs according to trainru training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds

Network Use
To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainru'. This sets net.trainParam to trainru’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

 trainru

2-441



Algorithms
For each epoch, all training vectors (or sequences) are each presented once in a different random
order, with the network and weight and bias values updated accordingly after each individual
presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.

See Also
train | trainr

Introduced in R2010b
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trains
Sequential order incremental training with learning functions

Syntax
net.trainFcn = 'trains'
[net,tr] = train(net,...)

Description
trains is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trains', thus:

net.trainFcn = 'trains' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trains.

trains trains a network with weight and bias learning rules with sequential updates. The sequence
of inputs is presented to the network with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive applications.

Training occurs according to trains training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trains for adapting by calling perceptron or
linearlayer.

To prepare a custom network to adapt with trains,

1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To allow the network to adapt,

1 Set weight and bias learning parameters to desired values.

 trains
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2 Call adapt.

See help perceptron and help linearlayer for adaption examples.

Algorithms
Each weight and bias is updated according to its learning function after each time step in the input
sequence.

See Also
train | trainb | trainc | trainr

Introduced before R2006a
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trainscg
Scaled conjugate gradient backpropagation

Syntax
net.trainFcn = 'trainscg'
[net,tr] = train(net,...)

Description
trainscg is a network training function that updates weight and bias values according to the scaled
conjugate gradient method.

net.trainFcn = 'trainscg' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainscg.

Training occurs according to trainscg training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.sigma 5.0e-5 Determine change in weight for second derivative

approximation
net.trainParam.lambda 5.0e-7 Parameter for regulating the indefiniteness of the

Hessian

Network Use
You can create a standard network that uses trainscg with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainscg.

 trainscg
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Examples
Here is a problem consisting of inputs p and targets t to be solved with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this training function is created.

net = feedforwardnet(2,'trainscg');

Here the network is trained and retested.

net = train(net,p,t);
a = net(p)

See help feedforwardnet and help cascadeforwardnet for other examples.

Algorithms
trainscg can train any network as long as its weight, net input, and transfer functions have
derivative functions. Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in traincgp,
traincgf, and traincgb, but this algorithm does not perform a line search at each iteration. See
Moller (Neural Networks, Vol. 6, 1993, pp. 525–533) for a more detailed discussion of the scaled
conjugate gradient algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased

(when using validation).

References
Moller, Neural Networks, Vol. 6, 1993, pp. 525–533

See Also
trainbfg | traincgb | traincgf | traincgp | traingda | traingdm | traingdx | trainlm |
trainoss | trainrp

Introduced before R2006a
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tribas
Triangular basis transfer function

Graph and Symbol

Syntax
A = tribas(N,FP)

Description
tribas is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = tribas(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied to each element of N.

info = tribas('code') can take the following forms to return specific information:

tribas('name') returns the name of this function.

tribas('output',FP) returns the [min max] output range.

tribas('active',FP) returns the [min max] active input range.

tribas('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

tribas('fpnames') returns the names of the function parameters.

tribas('fpdefaults') returns the default function parameters.

Examples
Here you create a plot of the tribas transfer function.

 tribas
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n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithms
a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
              = 0, otherwise

See Also
radbas | sim

Introduced before R2006a
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tritop
Triangle layer topology function

Syntax
pos = tritop(dimensions)

Description
tritop calculates neuron positions for layers whose neurons are arranged in an N-dimensional
triangular grid.

pos = tritop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Triangular Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
triangular grid.

pos = tritop([8 5]);
plotsom(pos)

 tritop
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See Also
gridtop | hextop | randtop

Introduced in R2010b
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unconfigure
Unconfigure network inputs and outputs

Syntax
unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)

Description
unconfigure(net) returns a network with its input and output sizes set to 0, its input and output
processing settings and related weight initialization settings set to values consistent with zero-sized
signals. The new network will be ready to be reconfigured for data of the same or different
dimensions than it was previously configured for.

unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i. If no
indices are specified, all inputs are unconfigured.

unconfigure(net, 'outputs', i) unconfigures the outputs indicated by the indices i. If no
indices are specified, all outputs are unconfigured.

Examples
Here a network is configured for a simple fitting problem, and then unconfigured.

[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)

See Also
configure | isconfigured

Introduced in R2010b
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vec2ind
Convert vectors to indices

Syntax
[ind,n] = vec2ind(vec)

Description
ind2vec and vec2ind allow indices to be represented either by themselves or as vectors containing
a 1 in the row of the index they represent.

[ind,n] = vec2ind(vec) takes one argument,

vec Matrix of vectors, each containing a single 1

and returns

ind The indices of the 1s
n The number of rows in vec

Examples
Here three vectors are converted to indices and back, while preserving the number of rows.

vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'

vec =
     0     1     0
     0     0     1
     1     0     0
     0     0     0

[ind,n] = vec2ind(vec)

ind =
     3     1     2

n =
     4

vec2 = full(ind2vec(ind,n)) 

vec2 =
     0     1     0
     0     0     1
     1     0     0
     0     0     0

See Also
ind2sub | ind2vec | sub2ind
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view
View shallow neural network

Syntax
view(net)

Description
view(net) opens a window that shows your shallow neural network (specified in net) as a graphical
diagram.

Tip To visualize deep learning networks, see Deep Network Designer.

Example
View Neural Network

This example shows how to view the diagram of a pattern recognition network.

[x,t] = iris_dataset;
net = patternnet;
net = configure(net,x,t);
view(net)

Introduced in R2008a
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Neural Net Fitting
Fit data by training a two-layer feed-forward network

Description
The Neural Net Fitting app leads you through solving a data-fitting problem using a two-layer feed-
forward network. It helps you select data, divide it into training, validation, and testing sets, define
the network architecture, and train the network. You can select your own data from the MATLAB
workspace or use one of the example datasets. After training the network, evaluate its performance
using mean squared error and regression analysis. Further analyze the results using visualization
tools such as a regression fit or histogram of the errors. You can then evaluate the performance of the
network on a test set. If you are not satisfied with the results, you can retrain the network with
modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can
also save the trained network to test on new data or use for solving similar fitting problems. The app
also provides the option to generate various deployable versions of your trained network. For
example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink
Coder tools.

Required Products

• MATLAB
• Deep Learning Toolbox

Open the Neural Net Fitting App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter nftool.

Examples
• “Fit Data with a Shallow Neural Network”

See Also
Apps
Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions
feedforwardnet | fitnet | trainbr | trainlm | trainscg

Topics
“Fit Data with a Shallow Neural Network”

 Neural Net Fitting
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Neural Net Clustering
Cluster data by training a self-organizing maps network

Description
The Neural Net Clustering app leads you through solving a clustering problem using a self-
organizing map (SOM). It helps you select data, define the network architecture, and train the
network. You can select your own data from the MATLAB workspace or use one of the example
datasets. After training the network, analyze the results using various visualization tools. You can
then evaluate the performance of the network on a test set. If you are not satisfied with the results,
you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can
also save the trained network to test on new data or use for solving similar clustering problems. The
app also provides the option to generate various deployable versions of your trained network. For
example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink
Coder tools.

Required Products

• MATLAB
• Deep Learning Toolbox

Open the Neural Net Clustering App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter nctool.

Examples
• “Cluster Data with a Self-Organizing Map”

See Also
Apps
Neural Net Fitting | Neural Net Pattern Recognition | Neural Net Time Series

Functions
learnsomb | selforgmap | trainbu

Topics
“Cluster Data with a Self-Organizing Map”
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Neural Net Pattern Recognition
Classify data by training a two-layer feed-forward network

Description
The Neural Net Pattern Recognition app leads you through solving a data classification problem
using a two-layer feed-forward network. It helps you select data, divide it into training, validation,
and testing sets, define the network architecture, and train the network. You can select your own data
from the MATLAB workspace or use one of the example datasets. After training the network, evaluate
its performance using cross-entropy and percent misclassification error. Further analyze the results
using visualization tools such as confusion matrices and receiver operating characteristic curves. You
can then evaluate the performance of the network on a test set. If you are not satisfied with the
results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can
also save the trained network to test on new data or use for solving similar classification problems.
The app also provides the option to generate various deployable versions of your trained network. For
example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink
Coder tools.

Required Products

• MATLAB
• Deep Learning Toolbox

Open the Neural Net Pattern Recognition App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter nprtool.

Examples
• “Classify Patterns with a Shallow Neural Network”

See Also
Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Time Series

Functions
patternnet | trainlm

Topics
“Classify Patterns with a Shallow Neural Network”
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Neural Net Time Series
Solve a nonlinear time series problem by training a dynamic neural network

Description
The Neural Net Time Series app leads you through solving three different kinds of nonlinear time
series problems using a dynamic network. It helps you select data, divide it into training, validation,
and testing sets, define the network architecture, and train the network. You can select your own data
from the MATLAB workspace or use one of the example datasets. After training the network, evaluate
its performance using mean squared error and regression analysis. Further analyze the results using
visualization tools such as an error autocorrelation plot or histogram of the errors. You can then
evaluate the performance of the network on a test set. If you are not satisfied with the results, retrain
the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can
also save the trained network to test on new data or use for solving similar classification problems.
The app also provides the option to generate various deployable versions of your trained network. For
example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink
Coder tools.

Required Products

• MATLAB
• Deep Learning Toolbox

Open the Neural Net Time Series App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter ntstool.

Examples
• “Shallow Neural Network Time-Series Prediction and Modeling”

See Also
Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition

Functions
narnet | narxnet

Topics
“Shallow Neural Network Time-Series Prediction and Modeling”
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matlab.io.datastore.MiniBatchable class
Package: matlab.io.datastore

Add mini-batch support to datastore

Description
matlab.io.datastore.MiniBatchable is an abstract mixin class that adds support for mini-
batches to your custom datastore for use with Deep Learning Toolbox. A mini-batch datastore
contains training and test data sets for use in Deep Learning Toolbox training, prediction, and
classification.

To use this mixin class, you must inherit from the matlab.io.datastore.MiniBatchable class in
addition to inheriting from the matlab.io.Datastore base class. Type the following syntax as the
first line of your class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.MiniBatchable
    ...
end

To add support for mini-batches to your datastore:

• Inherit from an additional class matlab.io.datastore.MiniBatchable
• Define two additional properties: MiniBatchSize and NumObservations.

For more details and steps to create your custom mini-batch datastore to optimize performance
during training, prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

Properties
MiniBatchSize — Number of observations in each batch
positive integer

Number of observations that are returned in each batch, or call of the read function. For training,
prediction, and classification, the MiniBatchSize property is set to the mini-batch size defined in
trainingOptions.

Attributes:

Abstract true
Access Public

NumObservations — Total number of observations in the datastore
positive integer

Total number of observations contained within the datastore. This number of observations is the
length of one training epoch.

Attributes:
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Abstract true
SetAccess Protected
ReadAccess Public

Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Train Network Using Out-of-Memory Sequence Data

This example shows how to train a deep learning network on out-of-memory sequence data by
transforming and combining datastores.

A transformed datastore transforms or processes data read from an underlying datastore. You can
use a transformed datastore as a source of training, validation, test, and prediction data sets for deep
learning applications. Use transformed datastores to read out-of-memory data or to perform specific
preprocessing operations when reading batches of data. When you have separate datastores
containing predictors and labels, you can combine them so you can input the data into a deep
learning network.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. For in-memory data, the trainingOptions function
provides options to pad and truncate input sequences, however, for out-of-memory data, you must pad
and truncate the sequences manually.

Load Training Data

Load the Japanese Vowels data set as described in [1] and [2]. The zip file japaneseVowels.zip
contains sequences of varying length. The sequences are divided into two folders, Train and Test,
which contain training sequences and test sequences, respectively. In each of these folders, the
sequences are divided into subfolders, which are numbered from 1 to 9. The names of these
subfolders are the label names. A MAT file represents each sequence. Each sequence is a matrix with
12 rows, with one row for each feature, and a varying number of columns, with one column for each
time step. The number of rows is the sequence dimension and the number of columns is the sequence
length.

Unzip the sequence data.

filename = "japaneseVowels.zip";
outputFolder = fullfile(tempdir,"japaneseVowels");
unzip(filename,outputFolder);
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For the training predictors, create a file datastore and specify the read function to be the load
function. The load function, loads the data from the MAT-file into a structure array. To read files from
the subfolders in the training folder, set the 'IncludeSubfolders' option to true.

folderTrain = fullfile(outputFolder,"Train");
fdsPredictorTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);

Preview the datastore. The returned struct contains a single sequence from the first file.

preview(fdsPredictorTrain)

ans = struct with fields:
    X: [12×20 double]

For the labels, create a file datastore and specify the read function to be the readLabel function,
defined at the end of the example. The readLabel function extracts the label from the subfolder
name.

classNames = string(1:9);
fdsLabelTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true);

Preview the datastore. The output corresponds to the label of the first file.

preview(fdsLabelTrain)

ans = categorical
     1 

Transform and Combine Datastores

To input the sequence data from the datastore of predictors to a deep learning network, the mini-
batches of the sequences must have the same length. Transform the datastore using the
padSequence function, defined at the end of the datastore, that pads or truncates the sequences to
have length 20.

sequenceLength = 20;
tdsTrain = transform(fdsPredictorTrain,@(data) padSequence(data,sequenceLength));

Preview the transformed datastore. The output corresponds to the padded sequence from the first
file.

X = preview(tdsTrain)

X = 1×1 cell array
    {12×20 double}

To input both the predictors and labels from both datastores into a deep learning network, combine
them using the combine function.

cdsTrain = combine(tdsTrain,fdsLabelTrain);
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Preview the combined datastore. The datastore returns a 1-by-2 cell array. The first element
corresponds to the predictors. The second element corresponds to the label.

preview(cdsTrain)

ans = 1×2 cell array
    {12×20 double}    {[1]}

Define LSTM Network Architecture

Define the LSTM network architecture. Specify the number of features of the input data as the input
size. Specify an LSTM layer with 100 hidden units and to output the last element of the sequence.
Finally, specify a fully connected layer with output size equal to the number of classes, followed by a
softmax layer and a classification layer.

numFeatures = 12;
numClasses = numel(classNames);
numHiddenUnits = 100;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Set the solver to 'adam' and 'GradientThreshold' to 2. Set the
mini-batch size to 27 and set the maximum number of epochs to 75. The datastores do not support
shuffling, so set 'Shuffle' to 'never'.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',75, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never',...
    'Verbose',0, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(cdsTrain,layers,options);
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Test the Network

Create a transformed datastore containing the held-out test data using the same steps as for the
training data.

folderTest = fullfile(outputFolder,"Test");

fdsPredictorTest = fileDatastore(folderTest, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);
tdsTest = transform(fdsPredictorTest,@(data) padSequence(data,sequenceLength));

Make predictions on the test data using the trained network.

YPred = classify(net,tdsTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy on the test data. To get the labels of the test set, create a file
datastore with the read function readLabel and specify to include subfolders. Specify that the
outputs are vertically concatenateable by setting the 'UniformRead' option to true.

fdsLabelTest = fileDatastore(folderTest, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true, ...
    'UniformRead',true);
YTest = readall(fdsLabelTest);

accuracy = mean(YPred == YTest)

accuracy = 0.9351
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Functions

The readLabel function extracts the label from the specified filename over the categories in
classNames.

function label = readLabel(filename,classNames)

filepath = fileparts(filename);
[~,label] = fileparts(filepath);

label = categorical(string(label),classNames);

end

The padSequence function pads or truncates the sequence in data.X to have the specified sequence
length and returns the result in a 1-by-1 cell.

function sequence = padSequence(data,sequenceLength)

sequence = data.X;
[C,S] = size(sequence);

if S < sequenceLength
    padding = zeros(C,sequenceLength-S);
    sequence = [sequence padding];
else
    sequence = sequence(:,1:sequenceLength);
end

sequence = {sequence};

end

Compatibility Considerations
matlab.io.datastore.MiniBatchable is not recommended for custom image
preprocessing
Not recommended starting in R2019a

Starting in R2019a, matlab.io.datastore.MiniBatchable is not recommended for custom
image processing. Use the transform and combine functions with built-in datastores instead. For
more information, see “Preprocess Images for Deep Learning”.

References
[1] Kudo, M., J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pp. 1103–1111.

[2] Kudo, M., J. Toyama, and M. Shimbo. Japanese Vowels Data Set. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

See Also
matlab.io.Datastore | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable | read
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Topics
“Deep Learning in MATLAB”
“Develop Custom Mini-Batch Datastore”

Introduced in R2018a
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read
Class: matlab.io.datastore.MiniBatchable
Package: matlab.io.datastore

Read data from mini-batch datastore

Note The read method of matlab.io.datastore.MiniBatchable is not recommended. For more
information, see Compatibility Considerations.

Syntax
data = read(ds)
[data,info] = read(ds)

Description
data = read(ds) returns data from a mini-batch datastore. Subsequent calls to the read function
continue reading from the endpoint of the previous call.

[data,info] = read(ds) also returns information about the extracted data in info, including
metadata.

Input Arguments
mbds — Mini-batch datastore
datastore | custom MiniBatchable datastore | ...

Mini-batch datastore, specified as a built-in datastore or custom mini-batch datastore. For more
information, see “Datastores for Deep Learning”.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows. For the last mini-batch of
data in the datastore, if NumObservations is not evenly divisible by MiniBatchSize, then data
should contain the remaining observations in the datastore (a partial batch smaller than
MiniBatchSize).

The table should have two columns, with predictors in the first column and responses in the second
column.

info — Information about read data
structure array

Information about read data, returned as a structure array.
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Attributes
Hidden true

To learn about attributes of methods, see Method Attributes.

Compatibility Considerations
read is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable were introduced as a
solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel
training. Implementing a custom mini-batch datastore using
matlab.io.datastore.MiniBatchable has several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, built-in datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove the read method of matlab.io.datastore.MiniBatchable at this
time.
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See Also
combine | matlab.io.Datastore | matlab.io.datastore.MiniBatchable | read
(Datastore) | transform

Topics
“Datastores for Deep Learning”
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

Introduced in R2018a
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matlab.io.datastore.BackgroundDispatchable class
Package: matlab.io.datastore

(Not recommended) Add prefetch reading support to datastore

Note matlab.io.datastore.BackgroundDispatchable is not recommended. For more
information, see Compatibility Considerations.

Description
matlab.io.datastore.BackgroundDispatchable is an abstract mixin class that adds support
for prefetch reading to your custom datastore for use with Deep Learning Toolbox.

To use this mixin class, you must inherit from the
matlab.io.datastore.BackgroundDispatchable class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your class definition
file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.BackgroundDispatchable
    ...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from an additional class matlab.io.datastore.BackgroundDispatchable
• Define the additional method: readByIndex

For more details and steps to create your custom datastore to optimize performance during training,
prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

Properties
DispatchInBackground — Dispatch observations in background
true (default) | false

Dispatch observations in the background during training, prediction, or classification, specified as
true or false. To use background dispatching, you must have Parallel Computing Toolbox.

Attributes:

Public true

Methods
readByIndex (Not recommended) Return observations from a datastore specified by index
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Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Compatibility Considerations
matlab.io.datastore.BackgroundDispatchable is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable were introduced as a solution to perform
custom image preprocessing with support for prefetching, shuffling, and parallel training.
Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has
several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.
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Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable at this time.

See Also
combine | matlab.io.Datastore | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable | transform

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

Introduced in R2018a
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readByIndex
Class: matlab.io.datastore.BackgroundDispatchable
Package: matlab.io.datastore

(Not recommended) Return observations from a datastore specified by index

Note readByIndex is not recommended. For more information, see Compatibility Considerations.

Syntax
[data,info] = readByIndex(ds,ind)

Description
[data,info] = readByIndex(ds,ind) returns a subset of observations in a datastore, ds. The
desired observations are specified by indices, ind.

Input Arguments
ds — Input datastore
Datastore object

Input datastore, specified as a Datastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table or an array according to the read method of the
datastore. For example, when ds is a custom mini-batch datastore, then data is a table with the same
format as returned by the read (MiniBatchable) method.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
Filename Filename is a fully resolved path containing the path

string, name of the file, and file extension.
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Field Name Description
FileSize Total file size, in bytes. For MAT-files, FileSize is

the total number of key-value pairs in the file.

Attributes
Abstract true
Access Public

To learn about attributes of methods, see Method Attributes.

Tips
• You must implement the readByIndex method by deriving a subclass from the

matlab.io.datastore.BackgroundDispatchable class.

Compatibility Considerations
readByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable were introduced as a solution to perform
custom image preprocessing with support for prefetching, shuffling, and parallel training.
Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has
several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

 readByIndex

2-473



• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable class or the
readByIndex method at this time.

See Also
combine | matlab.io.Datastore | read | readall | transform

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

Introduced in R2018a
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matlab.io.datastore.PartitionableByIndex class
Package: matlab.io.datastore

(Not recommended) Add parallelization support to datastore

Note matlab.io.datastore.PartitionableByIndex is not recommended. For more
information, see Compatibility Considerations.

Description
matlab.io.datastore.PartitionableByIndex is an abstract mixin class that adds
parallelization support to your custom datastore for use with Deep Learning Toolbox. This class
requires Parallel Computing Toolbox.

To use this mixin class, you must inherit from the
matlab.io.datastore.PartitionableByIndex class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your class definition
file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.PartitionableByIndex
    ...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from an additional class matlab.io.datastore.PartitionableByIndex
• Define the additional method: partitionByIndex

For more details and steps to create your custom datastore with parallel processing support, see
“Develop Custom Mini-Batch Datastore”.

Methods
partitionByIndex (Not recommended) Partition a datastore according to indices

Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.
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Compatibility Considerations
matlab.io.datastore.PartitionableByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom
image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a
custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges
and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.PartitionableByIndex at this time.

See Also
combine | matlab.io.Datastore | matlab.io.datastore.HadoopFileBased |
matlab.io.datastore.Partitionable | matlab.io.datastore.Shuffleable | transform

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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partitionByIndex
(Not recommended) Partition a datastore according to indices

Note partitionByIndex is not recommended. For more information, see Compatibility
Considerations.

Syntax
ds2 = partitionByIndex(ds,ind)

Description
ds2 = partitionByIndex(ds,ind) partitions a subset of observations in a datastore, ds, into a
new datastore, ds2. The desired observations are specified by indices, ind.

Input Arguments
ds — Input datastore
Datastore object

Input datastore, specified as a Datastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
ds2 — Partitioned datastore
Datastore object

Partitioned datastore, returned as a Datastore object.

Attributes
Abstract true
Access Public

To learn about attributes of methods, see Method Attributes.

Tips
• You must implement the partitionByIndex method by deriving a subclass from the

matlab.io.datastore.Partitionable class.
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Compatibility Considerations
partitionByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom
image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a
custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges
and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove partitionByIndex at this time.

See Also
combine | matlab.io.Datastore | transform

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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trainAutoencoder
Train an autoencoder

Syntax
autoenc = trainAutoencoder(X)
autoenc = trainAutoencoder(X,hiddenSize)
autoenc = trainAutoencoder( ___ ,Name,Value)

Description
autoenc = trainAutoencoder(X) returns an autoencoder, autoenc, trained using the training
data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder autoenc, with the
hidden representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) returns an autoencoder autoenc, for any of
the above input arguments with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the sparsity proportion or the maximum number of training iterations.

Examples

Train Sparse Autoencoder

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I
(for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For
more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with default settings.

autoenc = trainAutoencoder(X);

Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError = 0.0167
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Train Autoencoder with Specified Options

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I
(for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For
more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with hidden size 4, 400 maximum epochs, and linear transfer function for
the decoder.

autoenc = trainAutoencoder(X,4,'MaxEpochs',400,...
'DecoderTransferFunction','purelin');

Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError = 0.0043

Reconstruct Observations Using Sparse Autoencoder

Generate the training data.

rng(0,'twister'); % For reproducibility
n = 1000;
r = linspace(-10,10,n)';
x = 1 + r*5e-2 + sin(r)./r + 0.2*randn(n,1);

Train autoencoder using the training data.

hiddenSize = 25;
autoenc = trainAutoencoder(x',hiddenSize,...
        'EncoderTransferFunction','satlin',...
        'DecoderTransferFunction','purelin',...
        'L2WeightRegularization',0.01,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.10);

Generate the test data.

n = 1000;
r = sort(-10 + 20*rand(n,1));
xtest = 1 + r*5e-2 + sin(r)./r + 0.4*randn(n,1);

Predict the test data using the trained autoencoder, autoenc .

xReconstructed = predict(autoenc,xtest');

Plot the actual test data and the predictions.
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figure;
plot(xtest,'r.');
hold on
plot(xReconstructed,'go');

Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

XTrain = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing
a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);

Load the test data.

XTest = digitTestCellArrayData;
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The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,XTest);

View the actual test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end

View the reconstructed test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(xReconstructed{i});
end

2 Approximation, Clustering, and Control Functions

2-484



Input Arguments
X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix,
then each column contains a single sample. If X is a cell array of image data, then the data in each
cell must have the same number of dimensions. The image data can be pixel intensity data for gray
images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB
data, in which case, each cell contains an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is
the number of neurons in the hidden layer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Example: 'EncoderTransferFunction','satlin','L2WeightRegularization',0.05
specifies the transfer function for the encoder as the positive saturating linear transfer function and
the L2 weight regularization as 0.05.

EncoderTransferFunction — Transfer function for the encoder
'logsig' (default) | 'satlin'

Transfer function for the encoder, specified as the comma-separated pair consisting of
'EncoderTransferFunction' and one of the following.

Transfer Function Option Definition
'logsig' Logistic sigmoid function

f z = 1
1 + e−z

'satlin' Positive saturating linear transfer function

f z =
0, if  z ≤ 0
z, if  0 < z < 1
1, if  z ≥ 1

Example: 'EncoderTransferFunction','satlin'

DecoderTransferFunction — Transfer function for the decoder
'logsig' (default) | 'satlin' | 'purelin'

Transfer function for the decoder, specified as the comma-separated pair consisting of
'DecoderTransferFunction' and one of the following.

Transfer Function Option Definition
'logsig' Logistic sigmoid function

f z = 1
1 + e−z

'satlin' Positive saturating linear transfer function

f z =
0, if  z ≤ 0
z, if  0 < z < 1
1, if  z ≥ 1

'purelin' Linear transfer function

f z = z

Example: 'DecoderTransferFunction','purelin'

MaxEpochs — Maximum number of training epochs
1000 (default) | positive integer value

Maximum number of training epochs or iterations, specified as the comma-separated pair consisting
of 'MaxEpochs' and a positive integer value.
Example: 'MaxEpochs',1200
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L2WeightRegularization — The coefficient for the L2 weight regularizer
0.001 (default) | a positive scalar value

The coefficient for the L2 weight regularizer on page 2-489 in the cost function (LossFunction),
specified as the comma-separated pair consisting of 'L2WeightRegularization' and a positive
scalar value.
Example: 'L2WeightRegularization',0.05

LossFunction — Loss function to use for training
'msesparse' (default)

Loss function to use for training, specified as the comma-separated pair consisting of
'LossFunction' and 'msesparse'. It corresponds to the mean squared error function adjusted for
training a sparse autoencoder on page 2-489 as follows:

E = 1
N ∑

n = 1

N
∑

k = 1

K
xkn− x kn

2

︸
mean squared error

+ λ * Ωweights︸
L2

regularization

+ β * Ωsparsity︸
sparsity

regularization

,

where λ is the coefficient for the L2 regularization term on page 2-489 and β is the coefficient for the
sparsity regularization term on page 2-489. You can specify the values of λ and β by using the
L2WeightRegularization and SparsityRegularization name-value pair arguments,
respectively, while training an autoencoder.

ShowProgressWindow — Indicator to show the training window
true (default) | false

Indicator to show the training window, specified as the comma-separated pair consisting of
'ShowProgressWindow' and either true or false.
Example: 'ShowProgressWindow',false

SparsityProportion — Desired proportion of training examples a neuron reacts to
0.05 (default) | positive scalar value in the range from 0 to 1

Desired proportion of training examples a neuron reacts to, specified as the comma-separated pair
consisting of 'SparsityProportion' and a positive scalar value. Sparsity proportion is a
parameter of the sparsity regularizer. It controls the sparsity of the output from the hidden layer. A
low value for SparsityProportion usually leads to each neuron in the hidden layer "specializing" by
only giving a high output for a small number of training examples. Hence, a low sparsity proportion
encourages higher degree of sparsity. See Sparse Autoencoders on page 2-489.
Example: 'SparsityProportion',0.01 is equivalent to saying that each neuron in the hidden
layer should have an average output of 0.1 over the training examples.

SparsityRegularization — Coefficient that controls the impact of the sparsity regularizer
1 (default) | a positive scalar value

Coefficient that controls the impact of the sparsity regularizer on page 2-489 in the cost function,
specified as the comma-separated pair consisting of 'SparsityRegularization' and a positive
scalar value.
Example: 'SparsityRegularization',1.6
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TrainingAlgorithm — The algorithm to use for training the autoencoder
'trainscg' (default)

The algorithm to use for training the autoencoder, specified as the comma-separated pair consisting
of 'TrainingAlgorithm' and 'trainscg'. It stands for scaled conjugate gradient descent [1].

ScaleData — Indicator to rescale the input data
true (default) | false

Indicator to rescale the input data, specified as the comma-separated pair consisting of
'ScaleData' and either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the
input data must match the range of the transfer function for the decoder. trainAutoencoder
automatically scales the training data to this range when training an autoencoder. If the data was
scaled while training an autoencoder, the predict, encode, and decode methods also scale the
data.
Example: 'ScaleData',false

UseGPU — Indicator to use GPU for training
false (default) | true

Indicator to use GPU for training, specified as the comma-separated pair consisting of 'UseGPU' and
either true or false.
Example: 'UseGPU',true

Output Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an Autoencoder object. For information on the properties and
methods of this object, see Autoencoder class page.

More About
Autoencoders

An autoencoder is a neural network which is trained to replicate its input at its output. Autoencoders
can be used as tools to learn deep neural networks. Training an autoencoder is unsupervised in the
sense that no labeled data is needed. The training process is still based on the optimization of a cost
function. The cost function measures the error between the input x and its reconstruction at the
output x .

An autoencoder is composed of an encoder and a decoder. The encoder and decoder can have
multiple layers, but for simplicity consider that each of them has only one layer.

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,
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where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector. Then, the decoder maps

the encoded representation z back into an estimate of the original input vector, x, as follows:

x = h 2 W 2 z + b 2 ,

where the superscript (2) represents the second layer. h 2 :ℝDx ℝDx is the transfer function for the

decoder,W 1 ∈ ℝDx × D 1
 is a weight matrix, and b 2 ∈ ℝDx is a bias vector.

Sparse Autoencoders

Encouraging sparsity of an autoencoder is possible by adding a regularizer to the cost function [2].
This regularizer is a function of the average output activation value of a neuron. The average output
activation measure of a neuron i is defined as:

ρ i = 1
n ∑j = 1

n
zi

1 x j = 1
n ∑j = 1

n
h wi

1 Tx j + bi
1 ,

where n is the total number of training examples. xj is the jth training example, wi
1 T is the ith row of

the weight matrix W 1 , and bi
1  is the ith entry of the bias vector, b 1 . A neuron is considered to be

‘firing’, if its output activation value is high. A low output activation value means that the neuron in
the hidden layer fires in response to a small number of the training examples. Adding a term to the
cost function that constrains the values of ρ i to be low encourages the autoencoder to learn a
representation, where each neuron in the hidden layer fires to a small number of training examples.
That is, each neuron specializes by responding to some feature that is only present in a small subset
of the training examples.

Sparsity Regularization

Sparsity regularizer attempts to enforce a constraint on the sparsity of the output from the hidden
layer. Sparsity can be encouraged by adding a regularization term that takes a large value when the
average activation value, ρ i, of a neuron i and its desired value, ρ, are not close in value [2]. One such
sparsity regularization term can be the Kullback-Leibler divergence.

Ωsparsity = ∑
i = 1

D 1

KL ρ ∥ ρ i = ∑
i = 1

D 1

ρlog ρ
ρ i

+ 1− ρ log 1− ρ
1− ρ i

Kullback-Leibler divergence is a function for measuring how different two distributions are. In this
case, it takes the value zero when ρ and ρ i are equal to each other, and becomes larger as they
diverge from each other. Minimizing the cost function forces this term to be small, hence ρ and ρ i to
be close to each other. You can define the desired value of the average activation value using the
SparsityProportion name-value pair argument while training an autoencoder.

L2 Regularization

When training a sparse autoencoder, it is possible to make the sparsity regulariser small by
increasing the values of the weights w(l) and decreasing the values of z(1) [2]. Adding a regularization
term on the weights to the cost function prevents it from happening. This term is called the L2
regularization term and is defined by:

 trainAutoencoder

2-489



Ωweights = 1
2∑l

L
∑
j

n
∑
i

k
w ji

l
2
,

where L is the number of hidden layers, n is the number of observations (examples), and k is the
number of variables in the training data.

Cost Function

The cost function for training a sparse autoencoder on page 2-489 is an adjusted mean squared error
function as follows:

E = 1
N ∑

n = 1

N
∑

k = 1

K
xkn− x kn

2

︸
mean squared error

+ λ * Ωweights︸
L2

regularization

+ β * Ωsparsity︸
sparsity

regularization

,

where λ is the coefficient for the L2 regularization term on page 2-489 and β is the coefficient for the
sparsity regularization term on page 2-489. You can specify the values of λ and β by using the
L2WeightRegularization and SparsityRegularization name-value pair arguments,
respectively, while training an autoencoder.

References
[1] Moller, M. F. “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning”, Neural

Networks, Vol. 6, 1993, pp. 525–533.

[2] Olshausen, B. A. and D. J. Field. “Sparse Coding with an Overcomplete Basis Set: A Strategy
Employed by V1.” Vision Research, Vol.37, 1997, pp.3311–3325.

See Also
Autoencoder | encode | stack | trainSoftmaxLayer

Topics
“Train Stacked Autoencoders for Image Classification”
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trainSoftmaxLayer
Train a softmax layer for classification

Syntax
net = trainSoftmaxLayer(X,T)
net = trainSoftmaxLayer(X,T,Name,Value)

Description
net = trainSoftmaxLayer(X,T) trains a softmax layer, net, on the input data X and the targets
T.

net = trainSoftmaxLayer(X,T,Name,Value) trains a softmax layer, net, with additional
options specified by one or more of the Name,Value pair arguments.

For example, you can specify the loss function.

Examples

Classify Using Softmax Layer

Load the sample data.

[X,T] = iris_dataset;

X is a 4x150 matrix of four attributes of iris flowers: Sepal length, sepal width, petal length, petal
width.

T is a 3x150 matrix of associated class vectors defining which of the three classes each input is
assigned to. Each row corresponds to a dummy variable representing one of the iris species (classes).
In each column, a 1 in one of the three rows represents the class that particular sample (observation
or example) belongs to. There is a zero in the rows for the other classes that the observation does not
belong to.

Train a softmax layer using the sample data.

net = trainSoftmaxLayer(X,T);

Classify the observations into one of the three classes using the trained softmax layer.

Y = net(X);

Plot the confusion matrix using the targets and the classifications obtained from the softmax layer.

plotconfusion(T,Y);
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Input Arguments
X — Training data
m-by-n matrix

Training data, specified as an m-by-n matrix, where m is the number of variables in training data, and
n is the number of observations (examples). Hence, each column of X represents a sample.
Data Types: single | double

T — Target data
k-by-n matrix
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Target data, specified as a k-by-n matrix, where k is the number of classes, and n is the number of
observations. Each row is a dummy variable representing a particular class. In other words, each
column represents a sample, and all entries of a column are zero except for a single one in a row. This
single entry indicates the class for that sample.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxEpochs',400,'ShowProgressWindow',false specifies the maximum number of
iterations as 400 and hides the training window.

MaxEpochs — Maximum number of training iterations
1000 (default) | positive integer value

Maximum number of training iterations, specified as the comma-separated pair consisting of
'MaxEpochs' and a positive integer value.
Example: 'MaxEpochs',500
Data Types: single | double

LossFunction — Loss function for the softmax layer
'crossentropy' (default) | 'mse'

Loss function for the softmax layer, specified as the comma-separated pair consisting of
'LossFunction' and either 'crossentropy' or 'mse'.

mse stands for mean squared error function, which is given by:

E = 1
n ∑j = 1

n
∑

i = 1

k
ti j− yi j

2,

where n is the number of training examples, and k is the number of classes. ti j is the ijth entry of the
target matrix, T, and yi j is the ith output from the autoencoder when the input vector is xj.

The cross entropy function is given by:

E = 1
n ∑j = 1

n
∑

i = 1

k
ti jlnyi j + 1− ti j ln 1− yi j .

Example: 'LossFunction','mse'

ShowProgressWindow — Indicator to display the training window
true (default) | false

Indicator to display the training window during training, specified as the comma-separated pair
consisting of 'ShowProgressWindow' and either true or false.
Example: 'ShowProgressWindow',false
Data Types: logical
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TrainingAlgorithm — Training algorithm
'trainscg' (default)

Training algorithm used to train the softmax layer, specified as the comma-separated pair consisting
of 'TrainingAlgorithm' and 'trainscg', which stands for scaled conjugate gradient.
Example: 'TrainingAlgorithm','trainscg'

Output Arguments
net — Softmax layer for classification
network object

Softmax layer for classification, returned as a network object. The softmax layer, net, is the same
size as the target T.

See Also
stack | trainAutoencoder

Introduced in R2015b
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Autoencoder class

Autoencoder class

Description
An Autoencoder object contains an autoencoder network, which consists of an encoder and a
decoder. The encoder maps the input to a hidden representation. The decoder attempts to map this
representation back to the original input.

Construction
autoenc = trainAutoencoder(X) returns an autoencoder trained using the training data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder with the hidden
representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) returns an autoencoder for any of the above
input arguments with additional options specified by one or more name-value pair arguments.

Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix,
then each column contains a single sample. If X is a cell array of image data, then the data in each
cell must have the same number of dimensions. The image data can be pixel intensity data for gray
images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB
data, in which case, each cell contains an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is
the number of neurons in the hidden layer.
Data Types: single | double

Properties
HiddenSize — Size of the hidden representation
a positive integer value

Size of the hidden representation in the hidden layer of the autoencoder, stored as a positive integer
value.
Data Types: double
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EncoderTransferFunction — Name of the transfer function for the encoder
string

Name of the transfer function for the encoder, stored as a string.
Data Types: char

EncoderWeights — Weights for the encoder
matrix

Weights for the encoder, stored as a matrix.
Data Types: double

EncoderBiases — Bias values for the encoder
vector

Bias values for the encoder, stored as a vector.
Data Types: double

DecoderTransferFunction — Name of the transfer function for the decoder
string

Name of the transfer function for the decoder, stored as a string.
Data Types: char

DecoderWeights — Weights for the decoder
matrix

Weights for the decoder, stored as a matrix.
Data Types: double

DecoderBiases — Bias values for the decoder
vector

Bias values for the decoder, stored as a vector.
Data Types: double

TrainingParameters — Parameters that trainAutoencoder uses for training the
autoencoder
structure

Parameters that trainAutoencoder uses for training the autoencoder, stored as a structure.
Data Types: struct

ScaleData — Indicator for data that is rescaled
true or 1 (default) | false or 0

Indicator for data that is rescaled while passing to the autoencoder, stored as either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the
input data must match the range of the transfer function for the decoder. trainAutoencoder
automatically scales the training data to this range when training an autoencoder. If the data was
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scaled while training an autoencoder, the predict, encode, and decode methods also scale the
data.
Data Types: logical

Methods
decode Decode encoded data
encode Encode input data
generateFunction Generate a MATLAB function to run the autoencoder
generateSimulink Generate a Simulink model for the autoencoder
network Convert Autoencoder object into network object
plotWeights Plot a visualization of the weights for the encoder of an autoencoder
predict Reconstruct the inputs using trained autoencoder
stack Stack encoders from several autoencoders together
view View autoencoder

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
trainAutoencoder

Topics
Class Attributes
Property Attributes

Introduced in R2015b
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decode
Class: Autoencoder

Decode encoded data

Syntax
Y = decode(autoenc,Z)

Description
Y = decode(autoenc,Z)returns the decoded data on page 2-499 Y, using the autoencoder
autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned by the trainAutoencoder function as an object of the Autoencoder
class.

Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded sample
(observation).
Data Types: single | double

Output Arguments
Y — Decoded data
matrix | cell array of image data

Decoded data, returned as a matrix or a cell array of image data.

If the autoencoder autoenc was trained on a cell array of image data, then Y is also a cell array of
images.

If the autoencoder autoenc was trained on a matrix, then Y is also a matrix, where each column of Y
corresponds to one sample or observation.

Examples

Decode Encoded Data For New Images

Load the training data.
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X = digitTrainCellArrayData;

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Train an autoencoder using the training data with a hidden size of 15.

hiddenSize = 15;
autoenc = trainAutoencoder(X,hiddenSize);

Extract the encoded data for new images using the autoencoder.

Xnew = digitTestCellArrayData;
features = encode(autoenc,Xnew);

Decode the encoded data from the autoencoder.

Y = decode(autoenc,features);

Y is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Algorithms

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,

where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector. Then, the decoder maps

the encoded representation z back into an estimate of the original input vector, x, as follows:

x = h 2 W 2 z + b 2 ,

where the superscript (2) represents the second layer. h 2 :ℝDx ℝDx is the transfer function for the

decoder,W 1 ∈ ℝDx × D 1
 is a weight matrix, and b 2 ∈ ℝDx is a bias vector.

See Also
encode | trainAutoencoder

Introduced in R2015b
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encode
Class: Autoencoder

Encode input data

Syntax
Z = encode(autoenc,Xnew)

Description
Z = encode(autoenc,Xnew) returns the encoded data on page 2-501, Z, for the input data Xnew,
using the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image
data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample,
then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell
array of image data or an array of single image data.
Data Types: single | double | cell

Output Arguments
Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded sample
(observation).
Data Types: single | double

Examples
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Encode Decoded Data for New Images

Load the sample data.

X = digitTrainCellArrayData;

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Train an autoencoder with a hidden size of 50 using the training data.

autoenc = trainAutoencoder(X,50);

Encode decoded data for new image data.

Xnew = digitTestCellArrayData;
Z = encode(autoenc,Xnew);

Xnew is a 1-by-5000 cell array. Z is a 50-by-5000 matrix, where each column represents the image
data of one handwritten digit in the new data Xnew.

Algorithms

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,

where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector.

See Also
decode | stack | trainAutoencoder

Introduced in R2015b
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generateFunction
Class: Autoencoder

Generate a MATLAB function to run the autoencoder

Syntax
generateFunction(autoenc)
generateFunction(autoenc,pathname)
generateFunction(autoenc,pathname,Name,Value)

Description
generateFunction(autoenc) generates a complete stand-alone function in the current directory,
to run the autoencoder autoenc on input data.

generateFunction(autoenc,pathname) generates a complete stand-alone function to run the
autoencoder autoenc on input data in the location specified by pathname.

generateFunction(autoenc,pathname,Name,Value) generates a complete stand-alone
function with additional options specified by the Name,Value pair argument.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

pathname — Location for generated function
string

Location for generated function, specified as a string.
Example: 'C:\MyDocuments\Autoencoders'
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowLinks — Indicator to display the links to the generated code
false (default) | true

Indicator to display the links to the generated code in the command window, specified as the comma-
separated pair consisting of 'ShowLinks' and either true or false.
Example: 'ShowLinks',true
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Data Types: logical

Examples

Generate MATLAB Function for Running Autoencoder

Load the sample data.

X = iris_dataset;

Train an autoencoder with 4 neurons in the hidden layer.

autoenc = trainAutoencoder(X,4);

Generate the code for running the autoencoder. Show the links to the MATLAB function.

generateFunction(autoenc)

MATLAB function generated: neural_function.m
To view generated function code: edit neural_function
For examples of using function: help neural_function

Generate the code for the autoencoder in a specific path.

generateFunction(autoenc,'H:\Documents\Autoencoder')

MATLAB function generated: H:\Documents\Autoencoder.m
To view generated function code: edit Autoencoder
For examples of using function: help Autoencoder

Tips
• If you do not specify the path and the file name, generateFunction, by default, creates the code

in an m-file with the name neural_function.m. You can change the file name after
generateFunction generates it. Or you can specify the path and file name using the pathname
input argument in the call to generateFunction.

See Also
genFunction | generateSimulink

Introduced in R2015b
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generateSimulink
Class: Autoencoder

Generate a Simulink model for the autoencoder

Syntax
generateSimulink(autoenc)

Description
generateSimulink(autoenc) creates a Simulink model for the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

Generate Simulink Model for Autoencoder

Load the training data.

X = digitsmall_dataset;

The training data is a 1-by-500 cell array, where each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize,...
        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);

Create a Simulink model for the autoencoder, autoenc.

generateSimulink(autoenc)
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See Also
trainAutoencoder

Introduced in R2015b
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network
Class: Autoencoder

Convert Autoencoder object into network object

Syntax
net = network(autoenc)

Description
net = network(autoenc) returns a network object which is equivalent to the autoencoder,
autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments
net — Neural network
network object

Neural network, that is equivalent to the autoencoder autoenc, returned as an object of the
network class.

Examples

Create Network from Autoencoder

Load the sample data.

X = bodyfat_dataset;

X = bodyfat_dataset;

X is a 13-by-252 matrix defining thirteen attributes of 252 different neighborhoods. For more
information on the data, type help house_dataset in the command line.

Train an autoencoder on the attribute data.

autoenc = trainAutoencoder(X);

Create a network object from the autoencoder, autoenc .
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net = network(autoenc);

Predict the attributes using the network, net .

Xpred = net(X);

Fit a linear regression model between the actual and estimated attributes data. Compute the
estimated Pearson correlation coefficient, the slope and the intercept (bias) of the regression model,
using all attribute data as one data set.

[C, S, B] = regression(X, Xpred, 'one')

C = 0.9997

S = 0.9983

B = 0.1130

The correlation coefficient is almost 1, which indicates that the attributes data and the estimations
from the neural network are highly close to each other.

Plot the actual data and the fitted line.

plotregression(X, Xpred);
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The data appears to be on the fitted line, which visually supports the conclusion that the predictions
are very close to the actual data.

See Also
Autoencoder | trainAutoencoder

Introduced in R2015b

2 Approximation, Clustering, and Control Functions

2-508



plotWeights
Class: Autoencoder

Plot a visualization of the weights for the encoder of an autoencoder

Syntax
plotWeights(autoenc)
h = plotWeights(autoenc)

Description
plotWeights(autoenc) visualizes the weights for the autoencoder, autoenc.

h = plotWeights(autoenc) returns a function handle h, for the visualization of the encoder
weights for the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments
h — Image object
handle

Image object, returned as a handle.

Examples

Visualize Learned Features

Load the training data.

X = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer of 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize, ...
  'L2WeightRegularization',0.004, ...
  'SparsityRegularization',4, ...
  'SparsityProportion',0.2);
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Visualize the learned features.

plotWeights(autoenc);

Tips
• plotWeights allows the visualization of the features that the autoencoder learns. Use it when the

autoencoder is trained on image data. The visualization of the weights has the same dimensions as
the images used for training.

See Also
trainAutoencoder

Introduced in R2015b
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predict
Class: Autoencoder

Reconstruct the inputs using trained autoencoder

Syntax
Y = predict(autoenc,X)

Description
Y = predict(autoenc,X) returns the predictions Y for the input data X, using the autoencoder
autoenc. The result Y is a reconstruction of X.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image
data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample,
then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell
array of image data or an array of single image data.
Data Types: single | double | cell

Output Arguments
Y — Predictions for the input data Xnew
matrix | cell array of image data | array of single image data

Predictions for the input data Xnew, returned as a matrix or a cell array of image data.

• If Xnew is a matrix, then Y is also a matrix, where each column corresponds to a single sample
(observation or example).

• If Xnew is a cell array of image data, then Y is also a cell array of image data, where each cell
contains the data for a single image.

• If Xnew is an array of a single image data, then Y is also an array of a single image data.
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Examples

Predict Continuous Measurements Using Trained Autoencoder

Load the training data.

X = iris_dataset;

The training data contains measurements on four attributes of iris flowers: Sepal length, sepal width,
petal length, petal width.

Train an autoencoder on the training data using the positive saturating linear transfer function in the
encoder and linear transfer function in the decoder.

autoenc = trainAutoencoder(X,'EncoderTransferFunction',...
'satlin','DecoderTransferFunction','purelin');

Reconstruct the measurements using the trained network, autoenc.

xReconstructed = predict(autoenc,X);

Plot the predicted measurement values along with the actual values in the training dataset.

for i = 1:4
h(i) = subplot(1,4,i);
plot(X(i,:),'r.');
hold on 
plot(xReconstructed(i,:),'go');
hold off;
end
title(h(1),{'Sepal';'Length'});
title(h(2),{'Sepal';'Width'});
title(h(3),{'Petal';'Length'});
title(h(4),{'Petal';'Width'});

2 Approximation, Clustering, and Control Functions

2-512



The red dots represent the training data and the green circles represent the reconstructed data.

Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

XTrain = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing
a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);

Load the test data.

XTest = digitTestCellArrayData;

The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.
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Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,XTest);

View the actual test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end

View the reconstructed test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(xReconstructed{i});
end
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See Also
trainAutoencoder
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stack
Class: Autoencoder

Stack encoders from several autoencoders together

Syntax
stackednet = stack(autoenc1,autoenc2,...)
stackednet = stack(autoenc1,autoenc2,...,net1)

Description
stackednet = stack(autoenc1,autoenc2,...) returns a network object created by stacking
the encoders of the autoencoders, autoenc1, autoenc2, and so on.

stackednet = stack(autoenc1,autoenc2,...,net1) returns a network object created by
stacking the encoders of the autoencoders and the network object net1.

The autoencoders and the network object can be stacked only if their dimensions match.

Input Arguments
autoenc1 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

autoenc2 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

net1 — Trained neural network
network object

Trained neural network, specified as a network object. net1 can be a softmax layer, trained using
the trainSoftmaxLayer function.

Output Arguments
stackednet — Stacked neural network
network object

Stacked neural network (deep network), returned as a network object

Examples

2 Approximation, Clustering, and Control Functions

2-516



Create a Stacked Network

Load the training data.

[X,T] = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set
the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization', 0.001, ...
    'SparsityRegularization', 4, ...
    'SparsityProportion', 0.05, ...
    'DecoderTransferFunction','purelin');

Extract the features in the hidden layer.

features = encode(autoenc,X);

Train a softmax layer for classification using the features .

softnet = trainSoftmaxLayer(features,T);

Stack the encoder and the softmax layer to form a deep network.

stackednet = stack(autoenc,softnet);

View the stacked network.

view(stackednet);

Tips
• The size of the hidden representation of one autoencoder must match the input size of the next

autoencoder or network in the stack.

The first input argument of the stacked network is the input argument of the first autoencoder.
The output argument from the encoder of the first autoencoder is the input of the second
autoencoder in the stacked network. The output argument from the encoder of the second
autoencoder is the input argument to the third autoencoder in the stacked network, and so on.

• The stacked network object stacknet inherits its training parameters from the final input
argument net1.
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See Also
Autoencoder | trainAutoencoder

Topics
“Train Stacked Autoencoders for Image Classification”

Introduced in R2015b
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view
Class: Autoencoder

View autoencoder

Syntax
view(autoenc)

Description
view(autoenc) returns a diagram of the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

View Autoencoder

Load the training data.

X = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set
the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization',0.001, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.05, ...
    'DecoderTransferFunction','purelin');

View the autoencoder.

view(autoenc)
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See Also
trainAutoencoder

Introduced in R2015b
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fitnet
Function fitting neural network

Syntax
net = fitnet(hiddenSizes)
net = fitnet(hiddenSizes,trainFcn)

Description
net = fitnet(hiddenSizes) returns a function fitting neural network with a hidden layer size of
hiddenSizes.

net = fitnet(hiddenSizes,trainFcn) returns a function fitting neural network with a hidden
layer size of hiddenSizes and training function, specified by trainFcn.

Examples

Construct and Train a Function Fitting Network

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a function fitting neural network with one hidden layer of size 10.

net = fitnet(10);

View the network.

view(net)

The sizes of the input and output are zero. The software adjusts the sizes of these during training
according to the training data.

Train the network net using the training data.
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net = train(net,x,t);

View the trained network.

view(net)

You can see that the sizes of the input and output are 1.

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,y,t)

perf =

   1.4639e-04

The default training algorithm for a function fitting network is Levenberg-Marquardt ( 'trainlm' ).
Use the Bayesian regularization training algorithm and compare the performance results.

net = fitnet(10,'trainbr');
net = train(net,x,t);
y = net(x);
perf = perform(net,y,t)

perf =

   3.3261e-10

The Bayesian regularization training algorithm improves the performance of the network in terms of
estimating the target values.

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector
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Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments
net — Function fitting network
network object

Function fitting network, returned as a network object.

Tips
• Function fitting is the process of training a neural network on a set of inputs in order to produce

an associated set of target outputs. After you construct the network with the desired hidden layers
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and the training algorithm, you must train it using a set of training data. Once the neural network
has fit the data, it forms a generalization of the input-output relationship. You can then use the
trained network to generate outputs for inputs it was not trained on.

See Also
feedforwardnet | network | nftool | perform | train | trainlm

Topics
“Fit Data with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
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Predict
Predict responses using a trained deep learning neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Predict block predicts responses for the data at the input by using the trained network specified
through the block parameter. This block allows loading of a pretrained network into the Simulink
model from a MAT-file or from a MATLAB function.

Note The Predict block does not support dlnetwork objects.

Ports
Input

input — Image or sequence or time series data
numeric array

The input ports of the Predict block takes the names of the input layers of the network that loaded.
For example, if you specify googlenet for MATLAB function, then the input port of the Predict
block is labeled data. Based on the network loaded, the input to the predict block can be image,
sequence, or time series data.

The format of the input depend on the type of data.

Data Format of Predictors
2-D images A h-by-w-by-c-by-N numeric array, where h, w,

and c are the height, width, and number of
channels of the images, respectively, and N is the
number of images.

Vector sequence c-by-s matrices, where c is the number of
features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

If the array contains NaNs, then they are propagated through the network.
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Output

output — Predicted scores, responses, or activations
numeric array

The outputs port of the Predict block takes the names of the output layers of the network loaded. For
example, if you specify googlenet for MATLAB function, then the output port of the Predict block
is labeled output. Based on the network loaded, the output of the Predict block can represent
predicted scores or responses.

Predicted scores or responses, returned as a N-by-K array, where N is the number of observations,
and K is the number of classes.

If you enable Activations for a network layer, the Predict block creates a new output port with the
name of the selected network layer. This port outputs the activations from the selected network layer.

The activations from the network layer is returned as a numeric array. The format of output depends
on the type of input data and the type of layer output.

For 2-D image output, activations is an h-by-w-by-c-by-n array, where h, w, and c are the height,
width, and number of channels for the output of the chosen layer, respectively, and n is the number of
images.

For a single time-step containing vector data, activations is a c-by-n matrix, where n is the number of
sequences and c is the number of features in the sequence.

For a single time-step containing 2-D image data, activations is a h-by-w-by-c-by-n array, where n is
the number of sequences, h, w, and c are the height, width, and the number of channels of the
images, respectively.

Parameters
Network — Source for trained network
Network from MAT-file (default) | Network from MATLAB function | squeezenet

Specify the source for the trained network. Select one of the following:

• Network from MAT-file— Import a trained network from a MAT-file containing a
SeriesNetwork or a DAGNetwork object.

• Network from MATLAB function— Import a pretrained network from a MATLAB function. For
example, by using the googlenet function.

File path — MAT-file containing trained network
untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to
load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

MATLAB function — MATLAB function name
squeezenet (default) | MATLAB function name
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This parameter specifies the name of the MATLAB function for the pretrained deep learning network.
For example, use googlenet function to import the pretrained GoogLeNet model.

Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.

Mini-batch size — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

Predictions — Output predicted scores or responses
off (default) | on

Enable output ports that return predicted scores or responses.

Activations — Output network activations for a specific layer
Layers of the network

Use the Activations list to select the layer to extract features from. The selected layers appear as an
output port of the Predict block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for C++ Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for CUDA code generation, see “Supported Networks
and Layers” (GPU Coder).

• To learn more about generating code for Simulink models containing the Predict block, see “Code
Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection” (GPU
Coder).

See Also
Image Classifier
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Introduced in R2020b
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Image Classifier
Classify data using a trained deep learning neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Image Classifier block predicts class labels for the data at the input by using the trained network
specified through the block parameter. This block allows loading of a pretrained network into the
Simulink model from a MAT-file or from a MATLAB function.

Note The Image Classifier block does not support sequence networks and multiple input and
multiple output networks (MIMO).

Ports
Input

image — Image data
numeric array

A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of
the images, respectively, and N is the number of images. If the array contains NaNs, then they are
propagated through the network.

Output

ypred — Predicted class labels
enumerated

Predicted class labels with the highest score, returned as a N-by-1 enumerated vector of labels,
where N is the number of observations.

scores — Predicted class scores
matrix

Predicted scores, returned as a N-by-K matrix, where N is the number of observations, and K is the
number of classes.

labels — Class labels for predicted scores
matrix

Labels associated with the predicted scores, returned as a N-by-K matrix, where N is the number of
observations, and K is the number of classes.
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Parameters
Network — Source for trained network
Network from MAT-file (default) | Network from MATLAB function | squeezenet

Specify the source for the trained network. Select one of the following:

• Network from MAT-file— Import a trained network from a MAT-file containing a
SeriesNetwork or a DAGNetwork object.

• Network from MATLAB function— Import a pretrained network from a MATLAB function. For
example, by using the googlenet function.

File path — MAT-file containing trained network
untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to
load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

MATLAB function — MATLAB function name
squeezenet (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained deep learning network.
For example, use googlenet function to import the pretrained GoogLeNet model.

Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.

Mini-batch size — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

Resize input — Resize the input dimensions
on (default) | off

Resize the data at the input port to the input size of the network.

Classification — Output predicted label with highest score
on (default) | off

Enable output port ypred that outputs the label with the highest score.

Predictions — Output all scores and associated labels
off (default) | on

Enable output ports scores and labels that output all predicted scores and associated class labels.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for C++ Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for CUDA code generation, see “Supported Networks
and Layers” (GPU Coder).

• To learn more about generating code for Simulink models containing the Image Classifier block,
see “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” (GPU Coder).

See Also
Predict

Introduced in R2020b
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